Huffman Code

Begin with a text file with the following frequencies

letter	A	B	C	D	E	F	G
frequency	2	4	6	10	13	13	16

Huffman Code

Huffman Code

Begin with a text file with the following frequencies

letter	A	B	C	D	E	F	G
frequency	2	4	6	10	13	13	16
code length	5	5	4	3	2	2	2

average bits per letter $=(5 \cdot 2+5 \cdot 4+4 \cdot 6+3 \cdot 10$

$$
+2 \cdot 13+2 \cdot 13+2 \cdot 16) / 64=\frac{168}{64}=2.625
$$

Huffman Code

Begin with a text file with the following frequencies

letter	A	B	C	D	E	F	G
frequency	2	4	6	10	13	13	16
code length	5	5	4	3	2	2	2

average bits per letter $=(5 \cdot 2+5 \cdot 4+4 \cdot 6+3 \cdot 10$

$$
+2 \cdot 13+2 \cdot 13+2 \cdot 16) / 64=\frac{168}{64}=2.625
$$

-

$$
\begin{aligned}
& \text { Entropy }=\frac{2}{64} \log _{2}(32)+\frac{4}{64} \log _{2}(16)+\frac{6}{64} \log _{2}\left(\frac{64}{6}\right) \\
& +\frac{10}{64} \log _{2}\left(\frac{64}{10}\right)+2 \times \frac{13}{64} \log _{2}\left(\frac{64}{13}\right)+\frac{1}{4} \log _{2}(4) \approx 2.579
\end{aligned}
$$

Tree from heights

Note that given probabilities $p_{A}, p_{B}, \ldots, p_{Z}$, if we set

$$
h_{\alpha}=\left\lceil\log _{2}\left(\frac{1}{p_{\alpha}}\right)\right\rceil
$$

then since we know from Theorem 4 that $\sum_{\alpha=A}^{Z} h_{\alpha} \leq 1$ then by Theorem 1 these values must correspond to heights of a (possibly incomplete) binary tree.

By the same proof as in theorem 4, this code will also have an expected code length less than or equal to $H+1$.

Tree from heights

Begin with a text file with the following frequencies

letter	A	B	C	D	E	F	G
frequency	2	4	6	10	13	13	16

The goal is to encode each letter in such a way that minimizes the average number of bits used to store the file.

Tree from Heights

$$
\begin{array}{c|ccccccc}
\alpha & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\
p_{\alpha} & \frac{2}{64} & \frac{4}{64} & \frac{6}{64} & \frac{10}{64} & \frac{13}{64} & \frac{13}{64} & \frac{16}{64} \\
\left\lceil\log _{2}\left(\frac{1}{p_{\alpha}}\right)\right\rceil & 5 & 4 & 4 & 3 & 3 & 3 & 2
\end{array}
$$

Tree from heights

Begin with a text file with the following frequencies

letter	A	B	C	D	E	F	G
frequency	2	4	6	10	13	13	16
code length	4	4	3	3	3	2	2

average bits per letter $=(4 \cdot 2+4 \cdot 4+3 \cdot 6+3 \cdot 10$

$$
+3 \cdot 13+2 \cdot 13+2 \cdot 16) / 64=\frac{169}{64} \approx 2.641
$$

-

$$
\begin{aligned}
& \text { Entropy }=\frac{2}{64} \log _{2}(32)+\frac{4}{64} \log _{2}(16)+\frac{6}{64} \log _{2}\left(\frac{64}{6}\right) \\
& +\frac{10}{64} \log _{2}\left(\frac{64}{10}\right)+2 \times \frac{13}{64} \log _{2}\left(\frac{64}{13}\right)+\frac{1}{4} \log _{2}(4) \approx 2.579
\end{aligned}
$$

Experiment:

Random text consisting of taken from NYTimes consisting of 96,558 alphabetic characters (punctuation and spacing stripped from file).

A	B	C	D	E	F	G
7964	1466	3172	3897	11547	2023	1918
H	I	J	K	L	M	N
4626	7411	292	647	3955	2417	7007
O	P	Q	R	S	T	U
7423	1966	108	6113	6547	8947	2715
V	W	X	Y	Z		
1047	1565	139	1532	114		

Experiment:

Random text consisting of taken from NYTimes consisting of 96,558 alphabetic characters (punctuation and spacing stripped from file).

A	B	C	D	E	F	G
7964	1466	3172	3897	11547	2023	1918
H	I	J	K	L	M	N
4626	7411	292	647	3955	2417	7007
O	P	Q	R	S	T	U
7423	1966	108	6113	6547	8947	2715
V	W	X	Y	Z		
1047	1565	139	1532	114		

Calculate entropy of this file to be approximately 4.1727 .

Using this text file with 96,558 characters and entropy 4.1727. Using three UNIX file compression programs zip, compress and gzip. I wanted to see how close to the theoretical minimum that I could get.

- compress:
file length $=45,122$ bytes or 360,976 bits. The average number of bits per character is approximately 3.7384.
- gzip:
file length $=39,584$ bytes or 316,672 bits. The average number of bits per character is approximately 3.2796 .
- zip:
file length $=39,706$ bytes or 317,648 bits. The average number of bits per character is approximately 3.2897.
- Wait!? How is it possible? You got better than the theoretical minimum? Oops! Read the instructions, and notice that they are encoding 32 bits at a time (not 8 bits).

Using this text file with $4 \times 96,558$ characters and entropy 4.1727 . Using three UNIX file compression programs zip, compress and gzip. I wanted to see how close to the theoretical minimum that I could get.

- compress:
file length $=62,159$ bytes or 497,272 bits. The average number of bits per character is approximately 5.15 .
- gzip:
file length $=57,404$ bytes or 459,232 bits. The average number of bits per character is approximately 4.76.
- zip:
file length $=57,526$ bytes or 317,648 bits. The average number of bits per character is approximately 4.77.
- Thats better. These values are close (but larger than) the theoretical minimum.

