Huffman Code

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Begin with a text file with the following frequencies

letter	A	В	С	D	E	F	G
frequency	2	4	6	10	13	13	16

Huffman Code A B C D E F G 2 4 6 10 13 13 16

Huffman Code

Begin with a text file with the following frequencies

letter	Α	В	С	D	E	F	G
frequency	2	4	6	10	13	13	16
code length	5	5	4	3	2	2	2

۲

average bits per letter = $(5 \cdot 2 + 5 \cdot 4 + 4 \cdot 6 + 3 \cdot 10$ + 2 \cdot 13 + 2 \cdot 13 + 2 \cdot 16)/64 = $\frac{168}{64}$ = 2.625

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Huffman Code

Begin with a text file with the following frequencies

letter	Α	В	С	D	E	F	G
frequency	2	4	6	10	13	13	16
code length	5	5	4	3	2	2	2

۲

۰

average bits per letter = $(5 \cdot 2 + 5 \cdot 4 + 4 \cdot 6 + 3 \cdot 10$ + 2 \cdot 13 + 2 \cdot 13 + 2 \cdot 16)/64 = $\frac{168}{64}$ = 2.625

$$\begin{aligned} \mathsf{Entropy} &= \frac{2}{64} \log_2(32) + \frac{4}{64} \log_2(16) + \frac{6}{64} \log_2(\frac{64}{6}) \\ &+ \frac{10}{64} \log_2(\frac{64}{10}) + 2 \times \frac{13}{64} \log_2(\frac{64}{13}) + \frac{1}{4} \log_2(4) \approx 2.579 \end{aligned}$$

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Tree from heights

Note that given probabilities p_A, p_B, \ldots, p_Z , if we set

$$h_{lpha} = \left\lceil \log_2(rac{1}{p_{lpha}})
ight
ceil$$

then since we know from Theorem 4 that $\sum_{\alpha=A}^{Z} h_{\alpha} \leq 1$ then by Theorem 1 these values must correspond to heights of a (possibly incomplete) binary tree.

By the same proof as in theorem 4, this code will also have an expected code length less than or equal to H + 1.

Tree from heights

Begin with a text file with the following frequencies

letter	A	В	С	D	E	F	G
frequency	2	4	6	10	13	13	16

The goal is to encode each letter in such a way that minimizes the average number of bits used to store the file.

Tree from Heights

Tree from heights

Begin with a text file with the following frequencies

letter	Α	В	С	D	E	F	G
frequency	2	4	6	10	13	13	16
code length	4	4	3	3	3	2	2

۲

۰

average bits per letter = $(4 \cdot 2 + 4 \cdot 4 + 3 \cdot 6 + 3 \cdot 10$ + $3 \cdot 13 + 2 \cdot 13 + 2 \cdot 16)/64 = \frac{169}{64} \approx 2.641$

$$\begin{aligned} \mathsf{Entropy} &= \frac{2}{64} \log_2(32) + \frac{4}{64} \log_2(16) + \frac{6}{64} \log_2(\frac{64}{6}) \\ &+ \frac{10}{64} \log_2(\frac{64}{10}) + 2 \times \frac{13}{64} \log_2(\frac{64}{13}) + \frac{1}{4} \log_2(4) \approx 2.579 \end{aligned}$$

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Experiment:

Random text consisting of taken from NYTimes consisting of 96,558 alphabetic characters (punctuation and spacing stripped from file).

A	В	C	D	E	F	G
7964	1466	3172	3897	11547	2023	1918
Н	I	J	K	L	М	Ν
4626	7411	292	647	3955	2417	7007
0	Р	Q	R	S	Т	U
7423	1966	108	6113	6547	8947	2715
V	W	Х	Y	Z		
1047	1565	139	1532	114		

Experiment:

Random text consisting of taken from NYTimes consisting of 96,558 alphabetic characters (punctuation and spacing stripped from file).

A	В	C	D	E	F	G
7964	1466	3172	3897	11547	2023	1918
Н	I	J	K	L	М	Ν
4626	7411	292	647	3955	2417	7007
0	Р	Q	R	S	Т	U
7423	1966	108	6113	6547	8947	2715
V	W	Х	Y	Z		
1047	1565	139	1532	114		

Calculate entropy of this file to be approximately 4.1727.

Using this text file with 96,558 characters and entropy 4.1727. Using three UNIX file compression programs zip, compress and gzip. I wanted to see how close to the theoretical minimum that I could get.

• compress:

file length = 45,122 bytes or 360,976 bits. The average number of bits per character is approximately 3.7384.

• gzip:

file length = 39,584 bytes or 316,672 bits. The average number of bits per character is approximately 3.2796.

• zip:

file length = 39,706 bytes or 317,648 bits. The average number of bits per character is approximately 3.2897.

• Wait!? How is it possible? You got better than the theoretical minimum? Oops! Read the instructions, and notice that they are encoding 32 bits at a time (not 8 bits).

Using this text file with $4 \times 96,558$ characters and entropy 4.1727. Using three UNIX file compression programs zip, compress and gzip. I wanted to see how close to the theoretical minimum that I could get.

• compress:

file length = 62,159 bytes or 497,272 bits. The average number of bits per character is approximately 5.15.

• gzip:

file length = 57,404 bytes or 459,232 bits. The average number of bits per character is approximately 4.76.

• zip:

file length = 57,526 bytes or 317,648 bits. The average number of bits per character is approximately 4.77.

• Thats better. These values are close (but larger than) the theoretical minimum.