
Huffman Code

Begin with a text file with the following frequencies
letter A B C D E F G

frequency 2 4 6 10 13 13 16



Huffman Code

A B C D E F G
2 4 6 10 13 13 16



Huffman Code

Begin with a text file with the following frequencies
letter A B C D E F G

frequency 2 4 6 10 13 13 16

code length 5 5 4 3 2 2 2

average bits per letter = (5 · 2 + 5 · 4 + 4 · 6 + 3 · 10

+ 2 · 13 + 2 · 13 + 2 · 16)/64 =
168

64
= 2.625

Entropy =
2

64
log2(32) +

4

64
log2(16) +

6

64
log2(

64

6
)

+
10

64
log2(

64

10
) + 2× 13

64
log2(

64

13
) +

1

4
log2(4) ≈ 2.579



Huffman Code

Begin with a text file with the following frequencies
letter A B C D E F G

frequency 2 4 6 10 13 13 16

code length 5 5 4 3 2 2 2

average bits per letter = (5 · 2 + 5 · 4 + 4 · 6 + 3 · 10

+ 2 · 13 + 2 · 13 + 2 · 16)/64 =
168

64
= 2.625

Entropy =
2

64
log2(32) +

4

64
log2(16) +

6

64
log2(

64

6
)

+
10

64
log2(

64

10
) + 2× 13

64
log2(

64

13
) +

1

4
log2(4) ≈ 2.579



Tree from heights

Note that given probabilities pA, pB , . . . , pZ , if we set

hα =

⌈
log2(

1

pα
)

⌉
then since we know from Theorem 4 that

∑Z
α=A hα ≤ 1 then by

Theorem 1 these values must correspond to heights of a (possibly
incomplete) binary tree.

By the same proof as in theorem 4, this code will also have an
expected code length less than or equal to H + 1.



Tree from heights

Begin with a text file with the following frequencies
letter A B C D E F G

frequency 2 4 6 10 13 13 16

The goal is to encode each letter in such a way that minimizes the
average number of bits used to store the file.



Tree from Heights

α A B C D E F G
pα

2
64

4
64

6
64

10
64

13
64

13
64

16
64

dlog2( 1
pα

)e 5 4 4 3 3 3 2



Tree from heights

Begin with a text file with the following frequencies
letter A B C D E F G

frequency 2 4 6 10 13 13 16

code length 4 4 3 3 3 2 2

average bits per letter = (4 · 2 + 4 · 4 + 3 · 6 + 3 · 10

+ 3 · 13 + 2 · 13 + 2 · 16)/64 =
169

64
≈ 2.641

Entropy =
2

64
log2(32) +

4

64
log2(16) +

6

64
log2(

64

6
)

+
10

64
log2(

64

10
) + 2× 13

64
log2(

64

13
) +

1

4
log2(4) ≈ 2.579



Experiment:
Random text consisting of taken from NYTimes consisting of
96,558 alphabetic characters (punctuation and spacing stripped
from file).

A B C D E F G

7964 1466 3172 3897 11547 2023 1918

H I J K L M N

4626 7411 292 647 3955 2417 7007

O P Q R S T U

7423 1966 108 6113 6547 8947 2715

V W X Y Z

1047 1565 139 1532 114



Experiment:
Random text consisting of taken from NYTimes consisting of
96,558 alphabetic characters (punctuation and spacing stripped
from file).

A B C D E F G

7964 1466 3172 3897 11547 2023 1918

H I J K L M N

4626 7411 292 647 3955 2417 7007

O P Q R S T U

7423 1966 108 6113 6547 8947 2715

V W X Y Z

1047 1565 139 1532 114

Calculate entropy of this file to be approximately 4.1727.



Using this text file with 96,558 characters and entropy 4.1727.
Using three UNIX file compression programs zip, compress and
gzip. I wanted to see how close to the theoretical minimum that I
could get.

compress:
file length = 45,122 bytes or 360,976 bits. The average
number of bits per character is approximately 3.7384.

gzip:
file length = 39,584 bytes or 316,672 bits. The average
number of bits per character is approximately 3.2796.

zip:
file length = 39,706 bytes or 317,648 bits. The average
number of bits per character is approximately 3.2897.

Wait!? How is it possible? You got better than the theoretical
minimum? Oops! Read the instructions, and notice that they
are encoding 32 bits at a time (not 8 bits).



Using this text file with 4× 96,558 characters and entropy 4.1727.
Using three UNIX file compression programs zip, compress and
gzip. I wanted to see how close to the theoretical minimum that I
could get.

compress:
file length = 62,159 bytes or 497,272 bits. The average
number of bits per character is approximately 5.15.

gzip:
file length = 57,404 bytes or 459,232 bits. The average
number of bits per character is approximately 4.76.

zip:
file length = 57,526 bytes or 317,648 bits. The average
number of bits per character is approximately 4.77.

Thats better. These values are close (but larger than) the
theoretical minimum.


