- Entropy of random letters with probability of each letter chosen $1 / 26$

$$
\sum_{\alpha=A}^{Z} 1 / 26 \log _{2}(26) \approx 4.7
$$

- Entropy of letters in English chosen independently using single letter probabilities p_{α}

$$
\sum_{\alpha=A}^{z} p_{\alpha} \log _{2}\left(1 / p_{\alpha}\right) \approx 4.16
$$

- Entropy of English using biletter statistics ≈ 3.2
- Experimental entropy of English with at least 25 letters ≈ 1.2

Let F represent the of number of bits of information per English letter of text.

	$n<8$	$F=4.16$
General rules	$8<n \leq 15$	$F=3.2$
	$15<n \leq 25$	$F=2$
	$25<n$	$F=1.2$

For a cyphertext only attack to estimate the unicity distance (set $H(K \mid C)=0$) we use the equation

$$
H(C)=H(K)+H(M)
$$

hence

$$
n 4.7=H(K)+n F
$$

If we solve for n we conclude

$$
n=\frac{H(K)}{4.7-F}
$$

For a known plaintext attack we have the following theorem.

Theorem

$$
H(K \mid C, M)=H(K)-H(C \mid M)
$$

Proof: Applying the identity $H(X, Y)=H(X)+H(Y \mid X)$ we have $H(K, C, M)=H(C, M)+H(K \mid C, M)=H(M)+H(C \mid M)+H(K \mid C, M)$ on the other hand

$$
H(K, C, M)=H(K, M)=H(K)+H(M)
$$

since K and M are independent. Hence

$$
H(M)+H(C \mid M)+H(K \mid C, M)=H(K)+H(M)
$$

and solving for $H(K \mid C, M)$ yields the identity.

