PMZMRQ NO PORSTUVWXY ZAA YLYZMZ ABCDEFGHIJKL NOPQRSTVVXXY ## The Entropy of An Event **Definition:** The entropy of an event A is: - 1. the measure of uncertainty we feel about the occurrence of A. - 2. the amount of *information*, measured in bits, contained by A. Events that occur with equal probability have the same amount of uncertainty and contain the same amount of information \Downarrow The entropy of an event should be a function of the probability of that event occurring The entropy of event A = h(P(A)) information is a function of the probability. What properties should the entropy function, h, have to numerically express the measure of our uncertainty about the occurrence of an event in a manner which is compatible with our intuitive notion of uncertainty? ## Information Theory Definitions **Definition:** The Entropy of a random variable X $$H(X) = \sum_a P[X=a] \ log_2\left(\frac{1}{P[X=a]}\right)$$ Expected value of the entropy function of X **Definition:** The entropy of two random variables X and Y. $$H(X,Y) = \sum_{a,b} P[X = a \& Y = b] \log_2 \left(\frac{1}{P[X = a \& Y = b]} \right)$$ If $$X \notin Y$$ are independent, then $$P(X=a \& Y=b) = P(X=a) P(Y=b)$$ $$H(X,Y) = \sum_{a,b} P(X=a \& Y=b) | cg_2(\frac{1}{P(X=a \& Y=b)})$$ $$= \sum_{a,b} P(X=a) P(Y=b) | log_2(\frac{1}{P(X=a)} P(Y=b))$$ $$= \sum_{a,b} P(X=a) P(Y=b) | log_2(\frac{1}{P(X=a)} + log_2(\frac{1}{P(Y=b)}))$$ $$= \sum_{a,b} P(X=a) P(Y=b) | log_2(\frac{1}{P(X=a)} + \sum_{b} P(X=a) P(Y=b)) | log_2(\frac{1}{P(X=a)} + \sum_{b} P(X=b) | log_2(\frac{1}{P(X=b)}))$$ $$= \sum_{a} P(X=a) P(Y=b) | log_2(\frac{1}{P(X=a)} + \sum_{b} P(X=b) | log_2(\frac{1}{P(X=b)})$$ $$= H(X) + H(Y)$$ Turbition says if $X \notin Y$ are not indep then $H(X,Y) \leq H(X) + H(Y)$