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Public Key Cryptosystems

1 Primitive Roots
Given a prime p, an integer q is said to be a primitive root mod p if the numbers

q1, q2, q3, . . . , qp−1

are all distinct mod p. For instance 2 is a primitive root mod 13, since the successive 12 powers of
2 mod 13 are

s 1 2 3 4 5 6 7 8 9 10 11 12
2s 2 4 8 3 6 12 11 9 5 10 7 1

The knowledge of a primitive root enables us to solve several congruence problems with the
greatest of ease. For instance suppose we wish to find the solution of the congruence

11x ≡ 9 mod 13 (1.1)

Looking at the above table we see that

11 ≡ 27 and 9 ≡ 28 mod 13

this given, setting x = 2y, equation (1.1) can be rewritten in the form

27+y ≡ 28 mod 13 (1.2)

Note now that by Fermat’s theorem we have 212 ≡ 1 mod 13, this implies that for any a we have

2a212−a ≡ 2a+12−a ≡ 212 ≡ 1 mod 13

Using this with a = 7 in 2 gives that

x ≡ 2y ≡ 2528 ≡ 25+8 ≡ 21 ≡ 2 mod 13

The calculation we have carried out in this example should remind us precisely of what we usu-
ally do when solving equations such as (1.1) using a logarithm table. Indeed, the table above gives
us precisely the “logarithms” of the different integers mod 13 in the “base” 2. The computations
are entirely analogous, with the only difference being the fact that calculations in the exponents
need to be done “mod 12” in this case, and “mod p− 1” for the case of a general prime p.

Let us look at another example. For p = 29 we note that the primitive roots are

2, 8, 3, 19, 18, 14, 27, 21, 26, 10, 11, and 15.

Choosing again 2 we can easily construct the following table

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2s 2 4 8 16 3 6 12 24 19 9 18 7 14 28

s 15 16 17 18 19 20 21 22 23 24 25 26 27 28
2s 27 25 21 13 26 23 17 5 10 20 11 22 15 1
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Once we notice that 2 is a primitive root mod 29, the remaining primitive roots may all be read
off of the table above. If a is a primitive root mod p, then so will all powers as mod p where s is
relatively prime to p− 1. In particular, since 2 is a primitive root mod 29 then

21, 23, 25, 29, 211, 213, 215, 217, 219, 223, 225, 227 mod 29

will all be primitive roots.
Suppose then that we seek for the solution of the congruence

27x ≡ 2 mod 29 (1.3)

Using the above table we can rewrite this equation in the form

215 x ≡ 21 mod 29 (1.4)

Or better
215 x−1 ≡ 1 mod 29 (1.5)

Since 2 is a primitive root, this can only hold if

15 x− 1 ≡ 0 mod 28

Using the Euclidean algorithm we find

1 = 7× 28− 13× 15

and this gives
−13× 15 ≡ 1 mod 28

so then the solution of (1.3) is
x ≡ −13 ≡ 15 mod 28

Equation (1.3) is an instance of what is usually referred to as the “discrete logarithm problem”.
Now it develops that without the previous construction of the “logarithm table” such equations are
difficult to solve. Given a very large prime p, the assembly of the table for any give primitive root
is out of the question.

For any prime p we can always find a primitive root. There is a beautiful result in this respect
which can be stated as follows.

Theorem 1.1 For a given prime p there are exactly φ(p− 1) primitive roots.

The proof of this theorem may be found in the “Cyclotomic Polynomials and Primitive roots”
handout.

However, we should note that it is easy to see that if there is a single primitive root q then
there will be exactly φ(p− 1) all together. The reason for this is that all the other primitive roots
are the integers Q such that the equation

Qx ≡ q (mod p)

can be solved for x. Now, since every such Q can be written in the form Q = qy for some y, we
deduce that each Q corresponds to a pair (x, y) such that xy ≡ 1 (mod p− 1). Now these y’s are
precisely the numbers less than p− 1 that are relatively prime to p− 1.
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2 Diffie-Hellman Public Key Exchange
We are now in posession of a mechanism that allows a group of people to use one method of
encryption for everyone while at the same time insures that any two people can have a private
conversation. Since the method of encrpytion is fixed, in order for two people to speak privately,
they must be able to agree upon a common key that only they could possibly know. Here is how
it works.

Our collection of people p1, p2, . . . , p6 first agree on a modulus, p, in which they do their
computations. For example, let’s say that they agree on the number 37.

They also agree on a common base, a, which they will raise to some powers later on. In this
case, they choose base 17. This base must be a primitive root of p. In other words, every integer
from 1 to p− 1 must be represented by some power of a.

Each person then secretly selects a number from 1 to p − 1. In this case, p3 selects 10 and
p6 selects 9. Now, p3 and p6 may create their own common key, known by nobody else, without
compromising their own secret number. To do this, p3 publicly sends p6 the value

1710 mod 37 = 28

and tells p6 to raise it to his secret number. Now, p6 has the number

289 mod 37 = 36

In return, p6 sends p3 the value
179 mod 37 = 6

and p3 raises that to his secret number to get

610 mod 37 = 36

So p3 and p6 both have the number 36, known to nobody else and neither person gave away their
private key. This common key, 36, can now be used as the key for any secret communication
between p3 and p6. For example, they may decide to encrypt with Vigenere, using the digits of the
key as shift values. Or they may use the ElGamal Public Key System.

3 ElGamal Public Key System
Using the “fact” that the logarithm problem is (probably) difficult, one can set up the following
public Key system.

1. First, choose a global prime p (larger than 150 digits), such that p−1 has at least one “large”
factor, and let a be a primitive root for p.

2. Each participant i chooses (at random) a secret number Si in the interval {1, . . . , p− 1}, and
sets

βi := aSi mod p.

3. The values p, a, and βi are all made public.

3



Public Key ma187s: Cryptography November 28, 2005

To send a message X to Bob using his public key β, Alice chooses at random a secret number
SA in the interval {1, . . . , p− 1}, and sends the pair

(Y, Z), where Y := aSA (mod p), and Z := X βSA (mod p)

Bob can then get X back using his secret exponent SB:

X ≡ Z (Y SB )−1 (mod p).

In this, we can consider that Y is used to “encode” SA.

Exercises:

1. Prove that 2 is not a primitive root mod 17.

2. Prove that 3 is a primitive root mod 17 and then find all the primitive roots mod 17.

3. Construct a logarithm table mod 29 using the primitive root 3.

4. Use the tables from the previous exercise or in the text above to solve the following congru-
ences mod 29.

(a) x ≡ (12)(13)

(b) x ≡ (21)(25)

(c) 3x ≡ 7

(d) 17x ≡ 23

(e) 8x ≡ 1

(f) x ≡ 1510

(g) x ≡ 1323

(h) x2 ≡ 16

(i) x2 ≡ 18

(j) x2 ≡ 7

(k) x3 ≡ 18

(l) x4 ≡ 22

5. Six individuals P1, P2, . . . , P6 establish a public key system based on the modulus 37 and
primitve root 18. Suppose that the published keys are

k1 = 6 k2 = 5 k3 = 12 k4 = 7 k5 = 28 k6 = 4.

To eavesdrop on a communication between P2 and P6 you should have their common key
k2,6. Calculate it. For your convenience we give below the table of powers of 2 modulo 37.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2i 2 4 8 16 32 27 17 34 31 25 13 26 15 30 23 9 18 36

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
35 33 29 21 5 10 20 3 6 12 24 11 22 7 14 28 19 1

6. Alice and Bob agree to communicate using the primitive root 15 and the modulus 37. If Alice
choses a secret key of 5 and Bob choses a secret key of 11, then find Alice and Bob’s common
key.

7. Suppose that in an ElGamal system we have p = 2579 and a = 2. If Bob’s secret exponent is
SB = 765 and Alice’s secret exponent is SA = 23, compute Bob’s public key β, and encode
Alice’s message X = 1299.
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