Representing English letters as sequences of bits ECL = expected code length

\mathbf{a}	8.167%
\mathbf{b}	1.492%
\mathbf{c}	2.782%
\mathbf{d}	4.253%
\mathbf{e}	12.702%
\mathbf{f}	2.228%
\mathbf{g}	2.015%
\mathbf{h}	6.094%
\mathbf{i}	6.966%
\mathbf{j}	0.153%
\mathbf{k}	0.772%
\mathbf{l}	4.025%
\mathbf{m}	2.406%
\mathbf{n}	6.749%
\mathbf{o}	7.507%
\mathbf{p}	1.929%
\mathbf{q}	0.095%
\mathbf{r}	5.987%
\mathbf{s}	6.327%
\mathbf{t}	9.056%
\mathbf{u}	2.758%
\mathbf{v}	0.978%
\mathbf{w}	2.360%
\mathbf{x}	0.150%
\mathbf{y}	1.974%
z	0.074%

$a=1$
$b=01$
$\mathrm{c}=001$
$d=0001$
$e=00001$
$\mathrm{f}=000001$
$\mathrm{g}=0000001$
$\mathrm{h}=00000001$
$\mathrm{i}=000000001$
$j=0000000001$

$\mathrm{ECL} \approx 11.65$ bits per character

```
e t a o i n s h r d l c umw f g y p b v k j x q z
e=1
t=01
a=001
o=0001
i=00001
n=000001
s=0000001
h=00000001
r=000000001
d=0000000001
```


Huffman tree for English based on single letter statistics

English single letter statistics tree from heights

English single letter statistics tree from heights

