
The Entropy of An Event

Definition: The entropy of an event A is:

1. the measure of uncertainty we feel about the occurrence of A.

2. the amount of information, measured in bits, contained by A.

Events that occur with equal probability have the same amount
of uncertainty and contain the same amount of information

⇓

The entropy of an event should be a function
of the probability of that event occurring

The entropy of event A = h(P (A))

What properties should the entropy function, h, have to
numerically express the measure of our uncertainty about the
occurrence of an event in a manner which is compatible with
our intuitive notion of uncertainty?
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Basic Requirements

1. The more probable the event the smaller the uncertainty

h(x) should be a decreasing function

2. The uncertainty about the simultaneous occurrence of two independent
events is equal to the sum of the individual uncertainties

h(xy) = h(x) + h(y)

3. Small changes in the probability should correspond to small changes in the
uncertainty

h(x) should be a continuous function

4. Recording the outcome of a 50/50 situation requires one binary register.

h(1/2) = 1 (bit)

Therefore

h(x) = log2 1/x
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Some identities with log
logb(1) = 0

logb(0) = −∞ (or undefined)

logb(b) = 1

logb(b
a) = a

blogb(a) = a

log2(a) =
logb(a)

logb(2)

log(1/a) = − log(a)

log(ab) = log a + log b

log(a/b) = log a− log b

log(ab) = b log a
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Basic Identities and Inequalities

1. For any two random variables X and Y

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y )

2. For a random variable X which takes k distinct values

H(X) ≤ log2 k

3. For a partition A = {A1, A2, . . . , Ak}

H(A) ≤ log2 k

4. For any two random variables X and Y

H(X|Y ) ≤ H(X)

H(X, Y ) ≤ H(X) + H(Y )





equality if and only if X and Y
are independent

H(X|Y ) = 0 ⇔ X is a function of Y
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