Euler ϕ-function

Definition. Let $\phi(n)$ denote the number of integers between 1 and $n-1$ that are relatively prime to n.

Theorem 1 If $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}$ then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

Proof. (k=3) $n=p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}}$

$$
\# \text { 's } \leq n
$$

divisible	divisible
by p_{1}	by p_{2}

divisible by p_{3}

$$
\begin{aligned}
\phi(n) & =n-\frac{n}{p_{1}}-\frac{n}{p_{2}}-\frac{n}{p_{3}}+\frac{n}{p_{1} p_{2}}+\frac{n}{p_{1} p_{2}}+\frac{n}{p_{2} p_{3}}-\frac{n}{p_{1} p_{2} p_{3}} \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right)\left(1-\frac{1}{p_{3}}\right)
\end{aligned}
$$

Euler ϕ-function: Examples

1. Compute $\phi(12)$.

$$
\phi(12)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4
$$

The 4 numbers less than 12 that are relatively prime to 12 are:

$$
1, \not 2, \not ૂ, A, 5, \not, \boxed{7}, \not \perp, \not 9, \not 10,11
$$

2. Compute $\phi(p)$, where p is any prime number.

$$
\phi(p)=p\left(1-\frac{1}{p}\right)=p-1
$$

3. Compute $\phi(p q)$, where p and q are distinct prime numbers.

$$
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=(p-1)(q-1)
$$

The Euler-Fermat Theorem

Theorem 2 If a and m are relatively prime then

$$
a^{\phi(m)} \equiv 1 \quad(\bmod m)
$$

Proof. Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be the set of numbers less than m that are relatively prime to $m(k=\phi(m))$. Since a is relatively prime to m, a must have a multiplicative inverse mod m. Therefore,

$$
a x \equiv a y(\bmod m) \Leftrightarrow x \equiv y(\bmod m)
$$

and thus

$$
\left\{a x_{1}, a x_{2}, \ldots, a x_{k}\right\}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}
$$

We conclude that

$$
\begin{aligned}
a^{k} x_{1} x_{2} \cdots x_{k} & =a x_{1} a x_{2} \cdots a x_{k} \\
& \equiv x_{1} x_{2} \cdots x_{k}(\bmod m)
\end{aligned}
$$

But since each of the x_{i} 's is invertible, we have

$$
a^{k} \equiv 1(\bmod m)
$$

as desired.
In other words, the Euler-Fermat Theorem says that

$$
a^{x} \equiv a^{x \bmod \phi(m)} \bmod m
$$

Euler-Fermat: Examples

1. Compute $2^{1023} \bmod 17$.

Since $\phi(17)=16$, we have

$$
2^{1023}=2^{64 \times 16-1} \equiv 2^{-1} \equiv 9 \bmod 17
$$

2. Compute $10^{3252} \bmod 5607$

Given that $5607=3^{2} \cdot 7 \cdot 89$, we may compute $\phi(5607)=3168$. Therefore

$$
10^{3252} \equiv 10^{84} \bmod 5607
$$

Next write 84 as a sum of powers of 2 :

$$
84=64+16+4
$$

Compute

$$
\begin{aligned}
10^{2} & =100 \\
10^{4} & \equiv 100^{2} \equiv 4393 \\
10^{8} & \equiv 4393^{2} \equiv 4762 \\
10^{16} & \equiv 4762^{2} \equiv 1936 \\
10^{32} & \equiv 1936^{2} \equiv 2620 \\
10^{64} & \equiv 2620^{2} \equiv 1432
\end{aligned}
$$

Therefore,

$$
10^{84}=10^{64+16+4} \equiv 1432 \times 1936 \times 4393 \equiv 64
$$

Exercises:

1. Compute $\phi(50910363)$ knowing that

$$
50910363=3^{4} \times 7^{2} \times 101 \times 127
$$

2. Use your answer from the previous question to compute $2^{28576807} \bmod 50910363$.
3. Compute $3^{999} \bmod 143$.
