Subset Sum Problem

Given a positive integer T and the following sequence of positive integers

$$
s_{1}, s_{2}, \ldots, s_{n}
$$

find a sequence $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ such that

$$
T=s_{i_{1}}+s_{i_{2}}+\ldots+s_{i_{k}}
$$

Example:

$$
\begin{aligned}
& \{14,28,56,82,90,132,197,284,341\} \\
& \begin{aligned}
515 & =341+132+28+14 \\
& =341+90+56+28 \\
& =197+132+90+82+14
\end{aligned}
\end{aligned}
$$

On the otherhand, there are no subset sums for 516 .

This problem has been shown to be "NP-complete", which means that (among other things) there is no known polynomial-time algorithm that solves it.

Superincreasing Sequences

Definition: A sequence is said to be superincreasing if for all j from 2 to n, one has

$$
s_{j}>\sum_{i=1}^{j-1} s_{i}
$$

To see if T can be expressed as a subset sum, proceed as follows.

1. If $T<s_{1}$ or $T>s_{1}+s_{2}+\cdots+s_{n}$ then no such subset exists, otherwise
2. Find the largest k such that $s_{k} \leq T$ and set

$$
T=r+s_{k} .
$$

3. Repeat process on r using only $s_{1}, s_{2}, \ldots, s_{k-1}$.

Example Write 55 as the sum of distinct powers of 2 .

$$
\begin{aligned}
55 & =32+23 \\
& =32+16+7 \\
& =32+16+4+3 \\
& =32+16+4+2+1
\end{aligned}
$$

Random Superincreasing Sequence

Fix $n \geq 1$ and $k>1$. Then

1. Let s_{1} be a random number between 1 and k.
2. For i from 2 to n, let

$$
s_{i}=s_{1}+s_{2}+\cdots+s_{i-1}+m_{i}
$$

where m_{i} is a random number between 1 and k

Merkle-Hellman Knapsack Cryptosystem

1. Choose a superincreasing sequence

$$
s_{1}, s_{2}, \ldots, s_{n}
$$

2. Choose p to be a large prime such that

$$
p>s_{1}+s_{2}+\cdots+s_{n}
$$

3. Let a be a random number between 1 and $p-1$ and publicly announce

$$
t_{i}:=a s_{i} \bmod p
$$

Encryption Process: To encode a message $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (made of bits of 0 and 1), one sends the single number

$$
C:=\sum_{i=1}^{n} x_{i} t_{i}
$$

Encryption Process: To decode, we need only solve the subset sum problem for

$$
M:=a^{-1} C \bmod p
$$

Merkle-Hellman: Example

Let

$$
\{3,5,12,21,43\} \quad p=89 \quad a=15
$$

Therefore, the T sequence is given by:

$$
\{45,75,2,48,22\}
$$

Encode 01101 by:

$$
\begin{aligned}
C & =0 \cdot 45+1 \cdot 75+1 \cdot 2+0 \cdot 48+1 \cdot 22 \\
& =10 \bmod 89
\end{aligned}
$$

To decode, since $a^{-1}=6 \bmod 89$, we have that

$$
\begin{aligned}
M=a^{-1} C=60 & =17+43 \\
& =5+12+43 \\
& =0 \cdot 3+1 \cdot 5+1 \cdot 12+0 \cdot 21+1 \cdot 43
\end{aligned}
$$

