Random Cryptographic System

Plaintext Message Space $M=\left\{m_{1}, m_{2}, \ldots, m_{N}\right\}$
Key Space $K=\left\{k_{1}, k_{2}, \ldots, k_{S}\right\}$
Ciphertext Message Space $C=\left\{c_{1}, c_{2}, \ldots, c_{Q}\right\}$
$c=E_{k}(m)$
The encrypting
transformation corresponding to the key k
$m=D_{k}(c)$

The decrypting
transformation corresponding to the key k

Three random variables $\left\{\begin{array}{l}M=\text { the chosen plaintext } \\ K=\text { the chosen key } \\ C=\text { the resulting ciphertext }\end{array}\right.$

Assumptions

$$
P\left(M=m_{i}\right)=p_{i} \text { and } P\left(K=k_{i}\right)=q_{i}
$$

We choose the key K independently of the message M. Since we have the $C=E_{K}(M)$, the ciphertext is a random variable which depends on M and K. We also have $M=D_{K}(C)$. Therefore,

$$
H(K, C)=H(K, M)
$$

$H(K \mid C)=$ remaining uncertainty about the key after intercepting ciphertext

$$
\begin{aligned}
H(K)+H(M) & =H(K, M) \\
& =H(K, C) \\
& =H(C)+H(K \mid C)
\end{aligned}
$$

For a ciphertext only attack

$$
H(K \mid C)=H(K)+H(M)-H(C)
$$

Unicity Distance

Definition The unicity distance is the smallest number of characters in the ciphertext that uniquely determines the plaintext.

Since we assume that the ciphertext uniquely determines the plaintext, the key must also be determined. Therefore

$$
H(K \mid C)=0
$$

or in other words

$$
H(K)=H(C)-H(M)
$$

Unicity Distance for Caesar

Assume that we have just intercepted N letters of ciphertext that was encrypted using a Caesar shift. How large does N have to be (on average) in order the uniquely determine the shift? Assume that the entropy of the english language is 3.2 bits.

We begin with the identity:

$$
H(K)=H(C)-H(M)
$$

Assuming that each of the 26 keys is equally likely, we have

$$
H(K)=\log _{2} 26 \approx 4.7
$$

Assuming that each of the 26^{N} ciphertexts is equally likely, we have

$$
H(C)=\log _{2} 26^{N}=N \log _{2} 26 \approx 4.7 N
$$

Therefore,

$$
4.7=4.7 N-3.2 N \Rightarrow N \approx 3.13
$$

```
E S P Y L E T G P D L C P C P D E W P D D
G U R
H V
I W T
J X
K Y
L Z
M A X G
N B
O C Z
P D
Q E
R F
S G
T H E N A T I V E S A R E R E S T L E S S
U I
V J
W K
X L
Y M
Z N
A O
B P
C Q
D R O X
```


Monoalphabetic Substitution

Assume that we have intercepted N letters of a ciphertext message that was encoded using a Monoalphabetic substitution and that the entropy of english is 2 bits.

Length of text	5	10	15	20	30	40	50
\# of distinct letters	4	8	11	12	14	16	18

For instance, a typical english sample of 30 letters contains about 14 di erent letters. Thus the key for a Monoalphabetic substitution only permutes 14 letters. Therefore the number of keys is

$$
26 \times 25 \times \cdots \times 13
$$

and not 26 !.
Assuming that each key is equally likely, we have

$$
H(K)=\log _{2}(26 \times 25 \times \cdots \times 13) \approx 59.54
$$

Assuming that each of the 26^{N} ciphertexts is equally likely, we have

$$
H(C)=\log _{2} 26^{N}=N \log _{2} 26 \approx 4.7 N
$$

Therefore,

$$
59.54=4.7 N-2 N \Rightarrow N \approx 22.05
$$

