Random Cryptographic System

Plaintext Message Space $M = \{m_1, m_2, \dots, m_N\}$ Key Space $K = \{k_1, k_2, \dots, k_S\}$ Ciphertext Message Space $C = \{c_1, c_2, \dots, c_Q\}$

 $c = E_k(m)$

The encrypting transformation corresponding to the key k

$$m = D_k(c)$$

 $\begin{array}{c} \hline \text{The decrypting} \\ \text{transformation corresponding} \\ \text{to the key } k \end{array}$

	M = the chosen plaintext
Three random variables $\boldsymbol{\zeta}$	K = the chosen key
	C = the resulting ciphertext

Assumptions

$$P(M = m_i) = p_i$$
 and $P(K = k_i) = q_i$

We choose the key K independently of the message M. Since we have the $C = E_K(M)$, the ciphertext is a random variable which depends on M and K. We also have $M = D_K(C)$. Therefore,

$$H(K,C)=H(K,M)$$

H(K|C) = remaining uncertainty about the key after intercepting ciphertext

H(K|C) = 0 means that the ciphertext determines the key

$$H(K) + H(M) = H(K, M)$$

= $H(K, C)$
= $H(C) + H(K|C)$

For a ciphertext only attack

$$H(K|C) = H(K) + H(M) - H(C)$$

Unicity Distance

Definition The *unicity distance* is the smallest number of characters in the ciphertext that uniquely determines the plaintext.

Since we assume that the ciphertext uniquely determines the plaintext, the key must also be determined. Therefore

$$H(K|C) = 0$$

or in other words

$$H(K) = H(C) - H(M)$$

Unicity Distance for Caesar

Assume that we have just intercepted N letters of ciphertext that was encrypted using a Caesar shift. How large does N have to be (on average) in order the uniquely determine the shift? Assume that the entropy of the english language is 3.2 bits.

We begin with the identity:

$$H(K) = H(C) - H(M)$$

Assuming that each of the 26 keys is equally likely, we have

 $H(K) = \log_2 26 \approx 4.7$

Assuming that each of the 26^N ciphertexts is equally likely, we have

 $H(C) = \log_2 26^N = N \log_2 26 \approx 4.7N$

Therefore,

$$4.7 = 4.7N - 3.2N \Rightarrow N \approx 3.13$$

Ε	S	Р	Y	L	Ε	Т	G	Р	D	L	С	Р	С	Р	D	Ε	W	Р	D	D
F	Т																			
G	U	R																		
Η	V																			
Ι	W	Т																		
J	Х																			
Κ	Y																			
L	Ζ																			
М	А	Х	G																	
Ν	В																			
Ο	С	Ζ																		
Р	D																			
Q	Ε																			
R	F																			
S	G																			
Т	Н	Ε	Ν	А	Т	Ι	V	Ε	S	А	R	Ε	R	Ε	S	Т	L	Ε	S	S
U	Ι																			
V	J																			
W	Κ																			
Х																				
	М																			
	Ν																			
А	Ο																			
В	Р																			
C D	Q																			
D	R	Ο	Х																	

Monoalphabetic Substitution

Assume that we have intercepted N letters of a ciphertext message that was encoded using a Monoalphabetic substitution and that the entropy of english is 2 bits.

Length of text	5	10	15	20	30	40	50
# of distinct letters	4	8	11	12	14	16	18

For instance, a typical english sample of 30 letters contains about 14 di erent letters. Thus the key for a Monoalphabetic substitution only permutes 14 letters. Therefore the number of keys is

$$26 \times 25 \times \cdots \times 13$$

and not 26!.

Assuming that each key is equally likely, we have

 $H(K) = \log_2(26 \times 25 \times \dots \times 13) \approx 59.54$

Assuming that each of the 26^N ciphertexts is equally likely, we have

 $H(C) = \log_2 26^N = N \log_2 26 \approx 4.7N$

Therefore,

$$59.54 = 4.7N - 2N \Rightarrow N \approx 22.05$$