$$c = E_k(m)$$
The encrypting
transformation using to
the key k

 $\begin{array}{c} \boxed{m = D_k(c)} \\ \hline \text{The decrypting} \\ \text{transformation using to} \\ \text{the key } k \end{array}$

Two sets of probabilities

$$\{p_1, p_2, \dots, p_N\}$$
 and $\{q_1, q_2, \dots, q_S\}$

Random Cryptographic Transaction

Three random variables $\begin{cases} M = \text{the chosen plaintext} \\ K = \text{the chosen key} \\ C = \text{the resulting ciphertext} \end{cases}$

• Sender produces a message M which is a random variable with

$$P(M=m_i)=p_i$$

• Sender selects a key K by an independent mechanism with

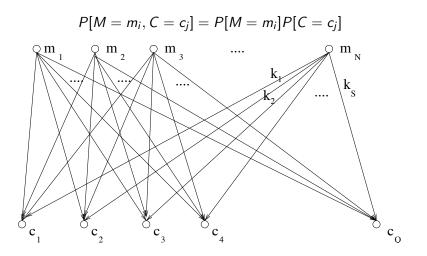
$$P(K=k_s)=q_s$$

- The sender encrypts M into $C = E_{\kappa}(M)$ and sends it to the intended recipient.
- Under our assumptions, the random variable *C* is dependent on *M* and *K*.

C yields no information about M means that M and C are independent random variables.

Definition: We say that a random cryptographic system achieves *perfect secrecy* if for all choices of $m_i \in M$ and $c_i \in C$, we have

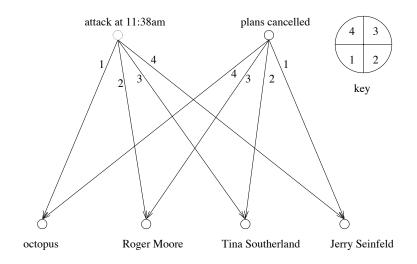
$$P(M = m_i, C = c_j) = P(M = m_i)P(C = c_j)$$



Since every message m_i must be able to be sent to every cyphertext c_j (since M and C are independent), it must be that the number of keys is larger than or equal to the number of cyphertexts.

$$P[M = m_i, C = c_j] = P[M = m_i]P[C = c_j]$$

Since if we fix a key k we see every message is sent to a different cyphertext we must have that the number of cyphertexts is larger or equal to the number of plaintexts.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Perfect secrecy is achieved when

- 1 All keys are equally likely
- ² For each pair (m_i, c_j) there is a unique key, k_s , such that

 $E_{k_s}(m_i) = c_j$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Perfect secrecy is achieved when

- All keys are equally likely
- ² For each pair (m_i, c_j) there is a unique key, k_s , such that

$$E_{k_s}(m_i)=c_j$$

Proof.

$$P(C = c_j) = \sum_{i=1}^{N} P(M = m_i) \sum_{E_{k_s}(m_i) = c_j} P(K = k_s)$$

But if there is only one key k_s yielding $E_{k_s}(mi) = c_j$ then the inner sum reduces to a single term, and if all keys are equally likely then $P(K = k_s) = 1/S$

$$P(C = c_j) = \sum_{i=1}^{N} P(M = m_i) \frac{1}{S} = \frac{1}{S}$$

Perfect secrecy is achieved when

- 1 All keys are equally likely
- ² For each pair (m_i, c_j) there is a unique key, k_s , such that

 $E_{k_s}(m_i)=c_j$

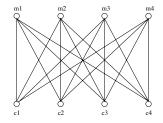
On the other hand

$$P(M = m_i, C = c_j) = \sum_{E_{k_s}(m_i)=c_j} P(M = m_i)P(K = k_s)$$
$$= P(M = m_i)\frac{1}{S}$$
$$= P(M = m_i)P(C = c_j)$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Latin Squares

of Keys = # of Ciphers = # of Plaintexts



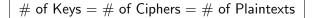
	m_1	m_2	m_3	m_4	
k_1	1	2	3	4	
k_2	2	3	4	1	
k_3	3	4	1	2	
k_4	4	1	2	3	

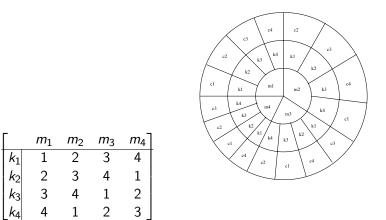
-

A latin square is an $n \times n$ array where the integers 1 through n appear exactly once in each row and column.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Latin Squares





A latin square is an $n \times n$ array where the integers 1 through n appear exactly once in each row and column.

One Time Pad

A "one time pad system" is one in which we encrypt a message with N letters by means of N random integer keys

 $k_1, k_2, ..., k_N$

in the range 0...25 with each of these possibilities equally likely. The i^{th} letter of the message is encrypted by the Caesar substitution C_{k_i} (in other words the i^{th} letter is Caesar k_i -shifted). The vector

$$(k_1, k_2, \ldots, k_N)$$

is called the key stream.

The one time pad system achieves perfect secrecy.

Proof. It is easy to see that given any cipher

$$c = Y_1 Y_2 \cdots Y_N$$

and message

$$m = X_1 X_2 \cdots X_N$$

there is one and only one key stream

$$(k_1, k_2, ..., k_N)$$

such that

$$Y_i = X_i + k_i \mod 26.$$

Since all keys are equally likely we have the conditions of the previous theorem are satisfied.