Plaintext Message Space $M=\left\{m_{1}, m_{2}, \ldots, m_{N}\right\}$
Key Space $K=\left\{k_{1}, k_{2}, \ldots, k_{S}\right\}$
Ciphertext Message Space $C=\left\{c_{1}, c_{2}, \ldots, c_{Q}\right\}$
$c=E_{k}(m)$
The encrypting
transformation using to the key k

$$
\begin{aligned}
& \qquad m=D_{k}(c) \\
& \text { The decrypting } \\
& \text { transformation using to } \\
& \text { the key } k
\end{aligned}
$$

Two sets of probabilities

$$
\left\{p_{1}, p_{2}, \ldots, p_{N}\right\} \text { and }\left\{q_{1}, q_{2}, \ldots, q_{S}\right\}
$$

Random Cryptographic Transaction

$$
\text { Three random variables }\left\{\begin{array}{l}
M=\text { the chosen plaintext } \\
K=\text { the chosen key } \\
C=\text { the resulting ciphertext }
\end{array}\right.
$$

- Sender produces a message M which is a random variable with

$$
P\left(M=m_{i}\right)=p_{i}
$$

- Sender selects a key K by an independent mechanism with

$$
P\left(K=k_{s}\right)=q_{s}
$$

- The sender encrypts M into $C=E_{K}(M)$ and sends it to the intended recipient.
- Under our assumptions, the random variable C is dependent on M and K.

C yields no information about M means that M and C are independent random variables.

Definition: We say that a random cryptographic system achieves perfect secrecy if for all choices of $m_{i} \in M$ and $c_{j} \in C$, we have

$$
P\left(M=m_{i}, C=c_{j}\right)=P\left(M=m_{i}\right) P\left(C=c_{j}\right)
$$

$$
P\left[M=m_{i}, C=c_{j}\right]=P\left[M=m_{i}\right] P\left[C=c_{j}\right]
$$

Since every message m_{i} must be able to be sent to every cyphertext c_{j} (since M and C are independent), it must be that the number of keys is larger than or equal to the number of cyphertexts.

$$
P\left[M=m_{i}, C=c_{j}\right]=P\left[M=m_{i}\right] P\left[C=c_{j}\right]
$$

Since if we fix a key k we see every message is sent to a different cyphertext we must have that the number of cyphertexts is larger or equal to the number of plaintexts.

Theorem

Perfect secrecy is achieved when
1 All keys are equally likely
2 For each pair $\left(m_{i}, c_{j}\right)$ there is a unique key, k_{s}, such that

$$
E_{k_{s}}\left(m_{i}\right)=c_{j}
$$

Theorem

Perfect secrecy is achieved when

1 All keys are equally likely
2 For each pair $\left(m_{i}, c_{j}\right)$ there is a unique key, k_{s}, such that

$$
E_{k_{s}}\left(m_{i}\right)=c_{j}
$$

Proof.

$$
P\left(C=c_{j}\right)=\sum_{i=1}^{N} P\left(M=m_{i}\right) \sum_{E_{k_{s}}\left(m_{i}\right)=c_{j}} P\left(K=k_{s}\right)
$$

But if there is only one key k_{s} yielding $E_{k_{s}}(m i)=c_{j}$ then the inner sum reduces to a single term, and if all keys are equally likely then $P\left(K=k_{s}\right)=1 / S$

$$
P\left(C=c_{j}\right)=\sum_{i=1}^{N} P\left(M=m_{i}\right) \frac{1}{S}=\frac{1}{S}
$$

Theorem

Perfect secrecy is achieved when
1 All keys are equally likely
2 For each pair $\left(m_{i}, c_{j}\right)$ there is a unique key, k_{s}, such that

$$
E_{k_{s}}\left(m_{i}\right)=c_{j}
$$

On the other hand

$$
\begin{aligned}
P\left(M=m_{i}, C=c_{j}\right) & =\sum_{E_{k_{s}}\left(m_{i}\right)=c_{j}} P\left(M=m_{i}\right) P\left(K=k_{s}\right) \\
& =P\left(M=m_{i}\right) \frac{1}{S} \\
& =P\left(M=m_{i}\right) P\left(C=c_{j}\right)
\end{aligned}
$$

Latin Squares

$$
\# \text { of Keys }=\# \text { of Ciphers }=\# \text { of Plaintexts }
$$

$\left[\begin{array}{c|cccc} & m_{1} & m_{2} & m_{3} & m_{4} \\ \hline k_{1} & 1 & 2 & 3 & 4 \\ k_{2} & 2 & 3 & 4 & 1 \\ k_{3} & 3 & 4 & 1 & 2 \\ k_{4} & 4 & 1 & 2 & 3\end{array}\right]$

A latin square is an $n \times n$ array where the integers 1 through n appear exactly once in each row and column.

Latin Squares

$$
\# \text { of Keys }=\# \text { of Ciphers }=\# \text { of Plaintexts }
$$

$\left[\right.$| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| k_{1} | m_{1} | m_{2} | m_{3} | m_{4} |
| k_{2} | 2 | 2 | 3 | 4 |
| k_{3} | 3 | 4 | 4 | 1 |
| k_{4} | 4 | 1 | 2 | 3 |$]$

A latin square is an $n \times n$ array where the integers 1 through n appear exactly once in each row and column.

One Time Pad

A "one time pad system" is one in which we encrypt a message with N letters by means of N random integer keys

$$
k_{1}, k_{2}, \ldots, k_{N}
$$

in the range $0 \ldots 25$ with each of these possibilities equally likely. The $i^{\text {th }}$ letter of the message is encrypted by the Caesar substitution $C_{k_{i}}$ (in other words the $i^{\text {th }}$ letter is Caesar k_{i}-shifted). The vector

$$
\left(k_{1}, k_{2}, \ldots, k_{N}\right)
$$

is called the key stream.

Theorem

The one time pad system achieves perfect secrecy.
Proof. It is easy to see that given any cipher

$$
c=Y_{1} Y_{2} \ldots Y_{N}
$$

and message

$$
m=X_{1} X_{2} \cdots X_{N}
$$

there is one and only one key stream

$$
\left(k_{1}, k_{2}, \ldots, k_{N}\right)
$$

such that

$$
Y_{i}=X_{i}+k_{i} \quad \bmod 26
$$

Since all keys are equally likely we have the conditions of the previous theorem are satisfied.

