PARCTICE FOR QUIZ 5 : MATH 4161
OPEN BOOK, OPEN NOTE, OPEN CALCULATOR, CLOSED FRIENDS, ENEMIES and INTERNET.
(1) In the following cryptogram, the Vernam system was used with key lengths 2 and 3 . Say that we are told that the letter A occurs in the plaintext in the $3^{r d}, 12^{t h}, 22^{n d}, 28^{t h}, 36^{t h}$ and $44^{t h}$ position. RUSJN XTDJP GEIAJ TUWTP OBTIG NGBRH XZYUH EIAXG IGXMD T
(a) Find a key of length 2 and one of length 3 which are used to decrypt the cyphertext.
(b) Two English words were used as the keys, what were they?
(2) The RSA system is used with $m=127 \cdot 13=1651$ and an encrypting exponent of 275 .
(a) What is the decrypting exponent?
(b) If the cyphertext message is 1389 , then what is the plaintext message?
(3) The integer $1960200=11^{2} \cdot 5^{2} \cdot 2^{3} \cdot 3^{4}$, find the value of the Euler-phi function $\phi(1960200)$. Use it to calculate

$$
7^{475217}(\bmod 1960200)
$$

(4) Calculate $17^{395}(\bmod 787)$. Hint: $\left(\frac{17}{787}\right)=-1$.
(5) In the RSA system a three letter word is encoded by $A \rightarrow 0, B \rightarrow 1, C \rightarrow 2$, etc. and the message is the first letter plus 26 times the second letter plus 26^{2} times the third letter. The message is encrypted with the public modulus of $m=3953=59 \cdot 67$ and an encypting exponent of 17 . The cyphertext in this case is 3319 .
(a) Find the decrypting key
(b) Find the message given the following powers of the cyphertext and convert that message back into a three letter word (hint: it is a product of two values in the table below)

n	5	13	388	463	644	2014	3131
$3319^{n}(\bmod 3953)$	753	2057	1701	3721	2150	1644	2364

(6) Say that I calculate

$$
345^{213288251} \equiv 401646933(\bmod 426576503)
$$

What does this calculation say about the primality of any of the integers in the equation?
(7) Find the Jacobi symbol $J(7,938457394589)$. Hint: 938457394589 is equivalent to $1(\bmod 4)$ and 1 $(\bmod 7)$.
(8) Find the solution to the equation

$$
2477 x \equiv 101(\bmod 3828)
$$

(9) Calculate

$$
27^{1277}(\bmod 3953)
$$

