(1) At the beginning of the second round in DES R_{1} begins in the six bits 110110 and ends in the six bits 010010 . Moreover K_{2} begins in the 6 bits 110101 and ends in 011001 . What are the 6 input bits and the 4 output bits from the last (eighth) S-box of that round?
(2) A three letter message is encoded with a double Feistel cipher as given in the following diagram.

Input

The left and right bits correspond to integer values 0 through 7 (the normal binary ordering) which will be used in the function f. The input and output are uppercase and lowercase letters, the digits 0 through 9 and the punctuation . and, (64 characters in all) which are encoded with a 6 digit binary number given by the table below.

The key of this system are two numbers k_{1} and k_{2} which take on the values 0 through 7 . The function f is given by the following table:

$r \backslash k$	0	1	2	3	4	5	6	7
0	4	3	2	1	0	7	6	5
1	5	6	7	0	7	6	2	5
2	1	2	3	4	4	1	3	0
3	4	3	2	1	2	7	6	5
4	0	7	6	5	0	1	4	3
5	1	2	3	4	5	6	7	0
6	5	6	7	0	1	2	3	4
7	0	7	6	5	4	3	2	1

Three letters are encoded with $k_{1}=2$ and $k_{2}=5$. What is the plaintext if the ciphertext is $\ell 6 \mathrm{~h}$?
Hint: the answer is a common three letter word so it is likely you will know if you have the right answer at the end of the problem.

0	000000	1	000001	2	000010	3	000011	4	000100	5	000101	6	000110	7	000111
8	001000	9	001001	A	001010	B	001011	C	001100	D	001101	E	001110	F	001111
G	010000	H	010001	I	010010	J	010011	K	010100	L	010101	M	010110	N	010111
O	011000	P	011001	Q	011010	R	011011	S	011100	T	011101	U	011110	V	011111
W	100000	X	100001	Y	100010	Z	100011	.	100100	a	100101	b	100110	c	100111
d	101000	e	101001	f	101010	g	101011	h	101100	i	101101	j	101110	k	101111
ℓ	110000	m	110001	n	110010	o	110011	p	110100	q	110101	r	110110	s	110111
t	111000	u	111001	v	111010	w	111011	x	111100	y	111101	z	111110	,	111111

(3) Using the Knapsack encryption system with a public modulus of 137 and a public key of

$$
55-1-29-113-116-123
$$

the message $50,17,63,107,100,121$ was sent. Given that the first number of the private key is 1 , what was the message? The encoding for the letters is given on the previous page.
(4) The ElGamal system is used with modulus 79 and 39 as a primitive root. Bob publishes his public key as 33 . You may use the table of powers of $3(\bmod 79)$ below to complete the computation.
(a) What is Bob's secret key?
(b) Alice sends the message $(52,17),(57,14),(13,74)$. What three letter words does this message represent? Use the encoding $A \rightarrow 0, B \rightarrow 1, C \rightarrow 2$, etc.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
3^{k}	1	3	9	27	2	6	18	54	4	12	36	29	8	24	72	58	16	48
k	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
3^{k}	65	37	32	17	51	74	64	34	23	69	49	68	46	59	19	57	13	39
k	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
3^{k}	38	35	26	78	76	70	52	77	73	61	25	75	67	43	50	71	55	7
k	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
3^{k}	21	63	31	14	42	47	62	28	5	15	45	56	10	30	11	33	20	60
k	72	73	74	75	76	77												
3^{k}	22	66	40	41	44	53												

(5) Find all of the solutions to the following equations. You may use the table of powers of 3 (mod 79) on the previous page to help you.
(a) $33 x \equiv 10(\bmod 79)$
(b) $10^{33} \equiv x(\bmod 79)$
(c) $x^{11} \equiv 33(\bmod 79)$
(d) $x^{33} \equiv 10(\bmod 79)$
(e) Show that the equation

$$
x^{4}+14 x^{2}+43 \equiv 0(\bmod 79)
$$

has no solutions.
(6) The integer 4667875 factors into primes as $107 \cdot 349 \cdot 5^{3}$.
(a) Calculate $\phi(4667875)$
(b) Calculate

$$
7^{3688888}(\bmod 4667875)
$$

