
THE EUCLIDEAN ALGORITHM

We are to find the greatest common divisor (gcd) of 1905 and 11205. We proceed as follows

11205 = 5× 1905 + 1680 (1)
1905 = 1× 1680 + 225 (2)
1680 = 7× 225 + 105 (3)
225 = 2× 105 + 15 (4)
105 = 7× 15 + 0 (5)

More precisely, at the kth step of the process we have

Rk−2 = Dk Rk−1 + Rk

Then at the (k + 1)st step we divide Rk−1 by Rk and obtain a new remainder Rk+1, that is

Rk−1 = Dk+1 Rk + Rk+1

This process stops when Rk+1 = 0. The conclusion that can be drawn from equations (1)–(5) is
that the gcd of 11205 and 1905 is 15. The reasoning is as follows:

(5) ⇒ 15 divides 105
(4) ⇒ 15 divides 225
(3) ⇒ 15 divides 1680
(2) ⇒ 15 divides 1905
(1) ⇒ 15 divides 11205

Thus 15 is a common divisor of 11205 and 1905. Conversely, suppose d is any divisor of these two
numbers. Reversing the argument, we get

(1) ⇒ d divides 1680
(2) ⇒ d divides 225
(3) ⇒ d divides 105
(4) ⇒ d divides 15

and thus 15 must be the greastest common divisor of these two numbers. Actually equations (1)-(5)
give a bit more. Indeed we can write

15 = 225− 2× 105 = 225− 2(1680− 7× 225)
= −2× 1680 + 15× 225 = −2× 1680 + 15(1905− 1680)
= 15× 1905− 17× 1680 = 15× 1905− 17(11205− 5× 1905)

So finally we get

15 = −17× 11205 + 100× 1905 (6)
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The point is that our equations (1)-(5) give us constants h (=-17) and k (=100) such that we have

15 = h× 11205 + k × 1905

More generally, given two integers a and b, the process illustrated above, usually referred to as
the Euclidean Algorithm, yields not only the greatest common divisor of a and b, call it d for a
moment, but it also yields two constants h and k such that

d = h a + k b (7)

Remark 1.
Note that equation (6) may also be written in the form

15 = (−17 + 1905)11205 + (100− 11205)1905 = 1888× 11205− 11105× 1905

More generally, assuming that a ≥ b > 0, by adding c b to h and subtracting c a from k (for a
suitable choice of c) we can always rewrite (7) in the form

d = s a− t b

with 0 ≤ s ≤ b− 1 and 0 ≤ t ≤ a− 1. The reason for this is that we can certainly choose c so that
s = h + c b satisfies the first of these inequalities, this done we get (setting t = k − ca)

t b = s a− d < b a

and this gives the second inequality.

Remark 2.
It is customary to denote the gcd of two numbers a and b by the symbol (a, b). We should note
that if

d = (a, b) (8)

then we have as well
1 =

(a

d
,
b

d

)
(9)

The reason for this is very simple. Indeed, the condition in (8) by the Euclidean algorithm, implies
that

d = h a + k b (10)

moreover since d is a divisor of both a and b we can write a = d a′ and b = d b′. Substituting this
in (10) gives

d = h d a′ + k d b′

cancelling the common factor d yields
1 = ha′ + kb′

and this clearly implies that the gcd of a′ and b′ is equal to 1 as asserted.

We should mention that two numbers a and b with (a, b) = 1 are said to be “relatively prime”.
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SOLUTIONS TO LINEAR CONGRUENCE EQUATIONS

Our aim is now to show how to solve equations of the form

a x ≡ b (mod m) (11)

where a, b and m are given and x is unknown. Equation (11) simply means that for some integer
p we have

a x = b + p m (12)

or better
b = a x− p m

Now clearly this implies that the gcd of a and m must divide b. So unless this is the case, equation
(11) cannot possibly have any solutions. This given, let d = (a, m) and set a = d a′, b = d b′, and
m = d m′. Substituting this in (12) gives

d a′ x = d b′ + p dm′

cancelling the common factor we finally get

a′ x = b′ + p m′ (13)

that is a′ x ≡ b′ (mod m′). Now, by Remark 2, we deduce that (a′, m′) = 1. In other words, when
(a, m) divides b, we may conclude that equation (11) can be reduced (by dividing out (a, m)) to one
of the same form for which a and m are relatively prime. Moreover note that if x is any solution
of (13) then the expression

x + i m′ for i = 1, 2, . . . , d− 1

gives d distinct solutions of (11). We therefore are left to solve (11) when (a, m) = 1. However, in
this case we have a very nice result, namely:

Theorem 1 Let (a, m) = 1 and let h, k be derived from the Euclidean Algorithm so that we have

1 = h a + k m (14)

then the equation
a x ≡ b (mod m) (15)

has the unique solution
x ≡ h b (mod m) (16)

Proof
Multiplying (15) by h we derive

h ax ≡ (1− k m) x ≡ h b (mod m)

or, which is the same
x ≡ h b (mod m)
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This shows that the solution of (15), if it exists, must be given by (16) as asserted. Conversely,
substituting this value of x in (16) (and using (14) again) we get

a x ≡ a h b ≡ (1− km) b ≡ b (mod m).

Thus (16) does indeed give a solution. This completes the proof.

Remark 3.
Note that we may have

a x ≡ a y (mod m) (17)

without necessarily having
x ≡ y (mod m)

For instance,
2× 5 ≡ 2× 2 (mod 6)

yet we do not have
5 ≡ 2 (mod 6)

The reason for this is that we cannot “cancel” common factors in modular arithmetic, since our
“numbers” do not always have “inverses”. Nevertheless, in case (a, m) = 1 then cancellation is
possible in (17). Indeed, in this case we are able to find an integer a′ such that

a a′ ≡ 1 (mod m) (18)

this integer is precisely the solution of the equation

a x ≡ 1 (mod m)

which we now know how to solve. Using this integer we deduce from (17) that

a′ a x ≡ a′ a y (mod m)

that is (using (18))
x ≡ y (mod m)

which is precisely what we wanted to conclude.

We can see then that the integer h in the expression

1 = h a + k m,

given by the Euclidean Algorithm, is precisely the (mod m) “inverse” of a.

Example
Let us suppose we are given to solve the equation

127 x ≡ 22 (mod 747) (19)
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Note that since we do have 15 = (11205, 1905), upon division by 15 we get as well that 1 =
(747, 127). So this equation can be solved. In fact, upon dividing (6) by 15 we get

1 = 100× 127− 17× 747

and thus the solution of (19) is given by

x ≡ 100× 22 ≡ 2200 ≡ 706 (mod 747)

and indeed we see that

127× 706 ≡ 120× 747 + 22 ≡ 22 (mod 747)

THE CHINESE REMAINDER THEOREM

The following result is very useful in those situations where we need to reduce congruence equations
with composit modulus to equations with prime modulus.

Theorem 2 . If m1, m2, . . . ,mk are relatively prime then the system of congruences

x ≡ ai (mod mi) i = 1, 2, . . . , k (20)

has a unique solution modulo
m = m1 m2 · · ·mk

Proof. Set
Mi = m/mi

Now clearly mi and Mi have no common factor. Thus using the Euclidean algorithm we can
construct xi, pi so that

1 = xi Mi + pi mi

Note then that (20) gives

x = 1 x = (xi Mi + pi mi) ai

≡ xi Mi ai (mod mi)

Note that for any i we have as well

xi Mi ai ≡ (xi Mi + pi mi) ai (mod mi)

Thus we see that the expression

x ≡
k∑

i=1

xiMiai (mod m) (21)
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should be the common solution of the equations in (20). And this is easily verified. Uniqueness of
the solution follows immediately from the fact that the multiple condition

x ≡ 0 (mod mi) i = 1, 2, . . . , k

when the mi are relatively prime, is equivalent to the single condition

x ≡ 0 (mod m).

Exercises:

1. Find the greatest common divisors of

(a) 3108 and 3948

(b) 1147 and 2491

2. Use the Euclidean Algorithm to find h and k in

(a, b) = ha + kb

for both pairs a, b given in problem 1.

3. Use the Euclidean Algorithm to solve the equations

(a) 19x ≡ 25 (mod 221)

(b) 1147x ≡ 455 (mod 2491)

4. Find a common solution (mod 5423) to the equations

x ≡ 5 (mod 11)
x ≡ 12 (mod 17)
x ≡ 23 (mod 29)
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