THE EUCLIDEAN ALGORITHM

We are to find the greatest common divisor (gcd) of 1905 and 11205. We proceed as follows

$$11205 = 5 \times 1905 + 1680 \tag{1}$$

$$1905 = 1 \times 1680 + 225 \tag{2}$$

$$1680 = 7 \times 225 + 105 \tag{3}$$

$$225 = 2 \times 105 + 15 \tag{4}$$

$$105 = 7 \times 15 + 0 \tag{5}$$

More precisely, at the k^{th} step of the process we have

$$R_{k-2} = D_k R_{k-1} + R_k$$

Then at the $(k+1)^{st}$ step we divide R_{k-1} by R_k and obtain a new remainder R_{k+1} , that is

$$R_{k-1} = D_{k+1} R_k + R_{k+1}$$

This process stops when $R_{k+1} = 0$. The conclusion that can be drawn from equations (1)–(5) is that the gcd of 11205 and 1905 is 15. The reasoning is as follows:

$$\begin{array}{rcl} (5) & \Rightarrow & 15 \text{ divides } 105 \\ (4) & \Rightarrow & 15 \text{ divides } 225 \\ (3) & \Rightarrow & 15 \text{ divides } 1680 \\ (2) & \Rightarrow & 15 \text{ divides } 1905 \\ (1) & \Rightarrow & 15 \text{ divides } 11205 \end{array}$$

Thus 15 is a common divisor of 11205 and 1905. Conversely, suppose d is any divisor of these two numbers. Reversing the argument, we get

 $\begin{array}{rcl} (1) & \Rightarrow & d \text{ divides } 1680 \\ (2) & \Rightarrow & d \text{ divides } 225 \\ (3) & \Rightarrow & d \text{ divides } 105 \\ (4) & \Rightarrow & d \text{ divides } 15 \end{array}$

and thus 15 must be the greastest common divisor of these two numbers. Actually equations (1)-(5) give a bit more. Indeed we can write

$$15 = 225 - 2 \times 105 = 225 - 2(1680 - 7 \times 225)$$

= $-2 \times 1680 + 15 \times 225 = -2 \times 1680 + 15(1905 - 1680)$
= $15 \times 1905 - 17 \times 1680 = 15 \times 1905 - 17(11205 - 5 \times 1905)$

So finally we get

$$15 = -17 \times 11205 + 100 \times 1905 \tag{6}$$

The point is that our equations (1)-(5) give us constants h = 17 and k = 100 such that we have

 $15 = h \times 11205 + k \times 1905$

More generally, given two integers a and b, the process illustrated above, usually referred to as the Euclidean Algorithm, yields not only the greatest common divisor of a and b, call it d for a moment, but it also yields two constants h and k such that

$$d = h a + k b \tag{7}$$

Remark 1.

Note that equation (6) may also be written in the form

$$15 = (-17 + 1905)11205 + (100 - 11205)1905 = 1888 \times 11205 - 11105 \times 1905$$

More generally, assuming that $a \ge b > 0$, by adding cb to h and subtracting ca from k (for a suitable choice of c) we can always rewrite (7) in the form

$$d = s \, a - t \, b$$

with $0 \le s \le b-1$ and $0 \le t \le a-1$. The reason for this is that we can certainly choose c so that s = h + cb satisfies the first of these inequalities, this done we get (setting t = k - ca)

$$t \, b = s \, a - d < b \, a$$

and this gives the second inequality.

Remark 2.

It is customary to denote the gcd of two numbers a and b by the symbol (a, b). We should note that if

$$d = (a, b) \tag{8}$$

then we have as well

$$1 = \left(\frac{a}{d}, \frac{b}{d}\right) \tag{9}$$

The reason for this is very simple. Indeed, the condition in (8) by the Euclidean algorithm, implies that

$$d = h a + k b \tag{10}$$

moreover since d is a divisor of both a and b we can write a = d a' and b = d b'. Substituting this in (10) gives

$$d = h \, d \, a' + k \, d \, b'$$

cancelling the common factor d yields

$$1 = ha' + kb'$$

and this clearly implies that the gcd of a' and b' is equal to 1 as asserted.

We should mention that two numbers a and b with (a, b) = 1 are said to be "relatively prime".

SOLUTIONS TO LINEAR CONGRUENCE EQUATIONS

Our aim is now to show how to solve equations of the form

$$a \, x \equiv b \pmod{m} \tag{11}$$

where a, b and m are given and x is unknown. Equation (11) simply means that for some integer p we have

$$a x = b + p m \tag{12}$$

or better

$$b = a x - p m$$

Now clearly this implies that the gcd of a and m must divide b. So unless this is the case, equation (11) cannot possibly have any solutions. This given, let d = (a, m) and set a = da', b = db', and m = dm'. Substituting this in (12) gives

$$d\,a'\,x = d\,b' + p\,d\,m'$$

cancelling the common factor we finally get

$$a' x = b' + p m' \tag{13}$$

that is $a' x \equiv b' \pmod{m'}$. Now, by Remark 2, we deduce that (a', m') = 1. In other words, when (a, m) divides b, we may conclude that equation (11) can be reduced (by dividing out (a, m)) to one of the same form for which a and m are relatively prime. Moreover note that if x is any solution of (13) then the expression

$$x + i m'$$
 for $i = 1, 2, \dots, d-1$

gives d distinct solutions of (11). We therefore are left to solve (11) when (a, m) = 1. However, in this case we have a very nice result, namely:

Theorem 1 Let (a,m) = 1 and let h, k be derived from the Euclidean Algorithm so that we have

$$1 = h a + k m \tag{14}$$

then the equation

$$a x \equiv b \pmod{m}$$
 (15)

has the unique solution

$$x \equiv h \ b \pmod{m} \tag{16}$$

Proof

Multiplying (15) by h we derive

$$h a x \equiv (1 - k m) x \equiv h b \pmod{m}$$

or, which is the same

$$x \equiv h b \pmod{m}$$

This shows that the solution of (15), if it exists, must be given by (16) as asserted. Conversely, substituting this value of x in (16) (and using (14) again) we get

$$a x \equiv a h b \equiv (1 - km) b \equiv b \pmod{m}.$$

Thus (16) does indeed give a solution. This completes the proof.

Remark 3.

Note that we may have

$$a \, x \equiv a \, y \pmod{m} \tag{17}$$

without necessarily having

 $x \equiv y \pmod{m}$

For instance,

 $2 \times 5 \equiv 2 \times 2 \pmod{6}$

yet we do not have

 $5 \equiv 2 \pmod{6}$

The reason for this is that we cannot "cancel" common factors in modular arithmetic, since our "numbers" do not always have "inverses". Nevertheless, in case (a, m) = 1 then cancellation is possible in (17). Indeed, in this case we are able to find an integer a' such that

$$a \, a' \equiv 1 \pmod{m} \tag{18}$$

this integer is precisely the solution of the equation

$$a x \equiv 1 \pmod{m}$$

which we now know how to solve. Using this integer we deduce from (17) that

$$a' a x \equiv a' a y \pmod{m}$$

that is (using (18))

 $x \equiv y \pmod{m}$

which is precisely what we wanted to conclude.

We can see then that the integer h in the expression

$$1 = h a + k m,$$

given by the Euclidean Algorithm, is precisely the $(\mod m)$ "inverse" of a.

Example

Let us suppose we are given to solve the equation

$$127 x \equiv 22 \pmod{747} \tag{19}$$

Note that since we do have 15 = (11205, 1905), upon division by 15 we get as well that 1 = (747, 127). So this equation can be solved. In fact, upon dividing (6) by 15 we get

$$1 = 100 \times 127 - 17 \times 747$$

and thus the solution of (19) is given by

$$x \equiv 100 \times 22 \equiv 2200 \equiv 706 \pmod{747}$$

and indeed we see that

$$127 \times 706 \equiv 120 \times 747 + 22 \equiv 22 \pmod{747}$$

THE CHINESE REMAINDER THEOREM

The following result is very useful in those situations where we need to reduce congruence equations with composit modulus to equations with prime modulus.

Theorem 2. If m_1, m_2, \ldots, m_k are relatively prime then the system of congruences

$$x \equiv a_i \pmod{m_i} \quad i = 1, 2, \dots, k \tag{20}$$

has a unique solution modulo

$$m = m_1 m_2 \cdots m_k$$

Proof. Set

$$M_i = m/m_i$$

Now clearly m_i and M_i have no common factor. Thus using the Euclidean algorithm we can construct x_i, p_i so that

$$1 = x_i M_i + p_i m_i$$

Note then that (20) gives

$$x = 1 x = (x_i M_i + p_i m_i) a_i$$

$$\equiv x_i M_i a_i \pmod{m_i}$$

Note that for any i we have as well

$$x_i M_i a_i \equiv (x_i M_i + p_i m_i) a_i \pmod{m_i}$$

Thus we see that the expression

$$x \equiv \sum_{i=1}^{k} x_i M_i a_i \pmod{m} \tag{21}$$

should be the common solution of the equations in (20). And this is easily verified. Uniqueness of the solution follows immediately from the fact that the multiple condition

$$x \equiv 0 \pmod{m_i}$$
 $i = 1, 2, \dots, k$

when the m_i are relatively prime, is equivalent to the single condition

 $x \equiv 0 \pmod{m}$.

Exercises:

- 1. Find the greatest common divisors of
 - (a) 3108 and 3948
 - (b) 1147 and 2491
- 2. Use the Euclidean Algorithm to find h and k in

$$(a,b) = ha + kb$$

for both pairs a, b given in problem 1.

- 3. Use the Euclidean Algorithm to solve the equations
 - (a) $19x \equiv 25 \pmod{221}$
 - (b) $1147x \equiv 455 \pmod{2491}$
- 4. Find a common solution (mod 5423) to the equations

$$x \equiv 5 \pmod{11}$$
$$x \equiv 12 \pmod{17}$$
$$x \equiv 23 \pmod{29}$$