A BASIC INEQUALITY

MIKE ZABROCKI

There is an inequality that we will use repeatedly in this class that follows from a single picture.

Assume that we have points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ which lie on a curve which is convex up. If our curve is $y=F(x)$ then the points on the curve will be $\left(x_{1}, F\left(x_{1}\right)\right),\left(x_{2}, F\left(x_{2}\right)\right), \ldots,\left(x_{n}, F\left(x_{n}\right)\right)$. Also assume that we have weights $m_{1}, m_{2}, \ldots, m_{n}$ with $m_{i} \geq 0$ such that $\sum_{i=1}^{n} m_{i}=1$. In the picture below I have drawn these points on an example of such a curve. I connected the points together to form a shape and because I have assumed that $y=F(x)$ is convex up then the connected points forms a convex polygon.

Now let $\left(X_{g}, Y_{g}\right)$ be the weighted average of all of these points with respect to the weights m_{i} (the center of gravity), that is

$$
X_{g}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}=\sum_{i=1}^{n} m_{i} x_{i}
$$

and

$$
Y_{g}=m_{1} F\left(x_{1}\right)+m_{2} F\left(x_{2}\right)+\cdots+m_{n} F\left(x_{n}\right)=\sum_{i=1}^{n} m_{i} F\left(x_{i}\right) .
$$

I have drawn approximately where $\left(X_{g}, Y_{g}\right)$ will be if all of the $m_{i}=1 / n$ and this point represented the true center of gravity, but it is possible to choose weights in such a way that $\left(X_{g}, Y_{g}\right)$ is almost anywhere within the convex region connecting the points. The important thing to note is that the point $\left(X_{g}, Y_{g}\right)$ will always lie within the polygon traced out by the blue lines as long as the $m_{i} \geq 0$ and $\sum_{i=1}^{n} m_{i}=1$.

Since the point $\left(X_{g}, Y_{g}\right)$ is in the interior of the region and the point $\left(X_{g}, F\left(X_{g}\right)\right)$ is on the curve, we can conclude that $\left(X_{g}, Y_{g}\right)$ is above $\left(X_{g}, F\left(X_{g}\right)\right)$ and hence

$$
Y_{g} \geq F\left(X_{g}\right)
$$

that is, we know that

$$
Y_{g}=\sum_{i=1}^{n} m_{i} F\left(x_{i}\right) \geq F\left(\sum_{i=1}^{n} m_{i} x_{i}\right)=F\left(X_{g}\right) .
$$

Note that there is an analogous that you can derive if $F(x)$ happens to be concave down. Alternatively, if you have an $F(x)$ which is concave down, then $-F(x)$ is concave up.

We are going to use this result now to show another inequality involving two sets of probabilities that sum to 1 . Take $p_{1}, p_{2}, \ldots, p_{n}$ as one set and $q_{1}, q_{2}, \ldots, q_{n}$ such that $q_{i} \neq 0$. Now we apply the inequality that we just derived with $x_{i}=p_{i} / q_{i}$ and $m_{i}=q_{i}$. We will also take $F(x)=x \log _{b}(x)$. Notice that since

$$
F^{\prime \prime}(x)=\frac{1}{\ln (b) x}
$$

then $F(x)$ is concave up for $x>0$.
For our X_{g} we obtain

$$
X_{g}=\sum_{i=1}^{n} m_{i} x_{i}=\sum_{i=1}^{n} q_{i}\left(p_{i} / q_{i}\right)=\sum_{i=1}^{n} p_{i}=1
$$

and so $F\left(X_{g}\right)=1 \log _{b}(1)=0$.
For our Y_{g} we have

$$
Y_{g}=\sum_{i=1}^{n} m_{i} x_{i} \log _{b}\left(x_{i}\right)=\sum_{i=1}^{n} q_{i}\left(p_{i} / q_{i}\right) \log _{b}\left(p_{i} / q_{i}\right)=\sum_{i=1}^{n} p_{i}\left(\log _{b}\left(p_{i}\right)-\log _{b}\left(q_{i}\right)\right) .
$$

Our inequality says that

$$
\sum_{i=1}^{n} p_{i}\left(\log _{b}\left(p_{i}\right)-\log _{b}\left(q_{i}\right)\right) \geq 0
$$

or, by rearranging terms,

$$
\sum_{i=1}^{n} p_{i} \log _{b}\left(p_{i}\right) \geq \sum_{i=1}^{n} p_{i} \log _{b}\left(q_{i}\right)
$$

Exercises:

(1) For $n>0$, take values $a_{i}>0$ and probabilities p_{i} such that $\sum_{i=1}^{n} p_{i}=1$. Show one of the two inequalities holds (hint: $\exp (x)$ is a concave up function).

$$
a_{1}^{p_{1}} a_{2}^{p_{2}} \cdots a_{n}^{p_{n}} \quad \leq \text { or } \geq \quad p_{1} a_{1}+p_{2} a_{2}+\cdots+p_{n} a_{n}
$$

(2) Use the convex/concave identity discussed in class to prove for all $a, b>0$,

$$
\frac{1}{\sqrt[6]{2}} \sqrt{a^{2}+b^{2}} \leq \sqrt[3]{a^{3}+b^{3}}
$$

Show precisely how you use the identity.
(3) Using the convex inequality, prove for $n \geq 1$ that

$$
\sum_{i=0}^{n-1} \sqrt{3 i^{2}+3 i+1} \leq n^{2}
$$

Hint: if $f(x)=\sqrt{x}$, then $f^{\prime \prime}(x)=-1 / 4 x^{-3 / 2}$. Also $3 a^{2}+3 a+1=(a+1)^{3}-a^{3}$.
(4) Use either the convex or concave inequality to derive an inequality of the form

$$
\frac{1}{n}(\sqrt{1}+\sqrt{2}+\cdots+\sqrt{n}) \leq c \sqrt{n+1}
$$

for some appropriate value of c which does not depend on n. That is, choose some values $x_{1}, x_{2}, \ldots, x_{k}$ and weights $m_{1}, m_{2}, \ldots, m_{k}$ where $\sum_{i} m_{i}=1$ and an appropriate function $f(x)$ (state clearly if your function is concave up or down) to see how the left and right hand side of the expressions above compare. You may need the identity that $\sum_{i=1}^{n} i=n(n+1) / 2$.

