## Knapsack System

## 1 Subset Sum

The Subset sum problem goes as follows. Let

$$
s_{1}, s_{2}, \ldots, s_{n}
$$

be $n$ positive integers called sizes, and let $T$ be another positive integer called target. The problem consists in finding (if possible) a $0-1$ vector

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

such that

$$
T=\sum_{i=1}^{n} x_{i} s_{i} .
$$

In general this problem has been shown to be "NP-complete". This is an important notion of theoretical computer science that implies (among a lot of other things) that there is no known polynomial-time algorithm that solves it.

However, some special cases of this problem are very easy to solve. This is the case for "superincreasing" sequences. A list of sizes is said to be superincreasing if for each $j$ from 2 to $n$, one has

$$
s_{j}>\sum_{i=1}^{j-1} s_{i} .
$$

To check if $T$ can be expressed as a subset sum of the $s_{i}$ 's, one can proceed as follows.
If $T>\sum_{i=1}^{n} s_{i}$ or $T<s_{1}$ then there is no solution.
Else find the largest $k$ such that $s_{k} \leq T$, set

$$
x_{k}:=1, \quad \text { and } \quad x_{j}:=0 \quad(\text { for } j>k) .
$$

and recursively find how $T-s_{k}$ can be expressed as a subset sum of the $s_{i}$ 's.

Example. Suppose that the chosen superincreasing sequence is

$$
2,5,9,21,45,103,215,450,946
$$

and $T=1643$. Then

$$
\begin{aligned}
T & =(T-946)+946 \\
& =(697)+946 \\
& =(697-450)+450+946 \\
& =(247)+450+946 \\
& =(247-215)+215+450+946 \\
& =(32)+215+450+946 \\
& =(32-21)+21+215+450+946 \\
& =(11)+21+215+450+946 \\
& =(11-9)+9+21+215+450+946 \\
& =(2)+9+21+215+450+946 \\
& =2+9+21+215+450+946
\end{aligned}
$$

It is easy to build a "random" superincreasing sequence as follows. For a fixed $k>1$, and $n$ being the intended length of the sequence,

If $n=1$ then choose $s_{1}$ at random between 1 and $k$.
Else recursively build a superincreasing sequence of length $n-1$, say

$$
\left(s_{1}, s_{2}, \ldots, s_{n-1}\right)
$$

and extend it by adding a last size $s_{n}=m+j$, where

$$
m=\sum_{i=1}^{n-1} s_{i},
$$

and $j$ is chosen at random between 1 and $k$.

## 2 Merkle-Hellman Knapsack Cryptosystem

To make a public key system out of the Knapsack (Subset sum) problem, one proceeds as follows.

1. Choose

$$
\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

a superincreasing list of integers with $n$ large, and choose $p$ be a large prime such that

$$
p>\sum_{i=1}^{n} s_{i} .
$$

2. Let $a$ be a random number between 1 and $p-1$, and set

$$
t_{i}:=a s_{i} \bmod \quad p .
$$

The vector $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{i}\right)$ is then made public. To encode a message $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (made of bits of 0 and 1 ), one sends the single number

$$
C:=\sum_{i=1}^{n} x_{t} t_{i} .
$$

To decode, we need only solve the subset sum problem for $M:=\left(a^{-1} C \bmod p\right)$, with the sequence $\mathbf{s}$ known to be superincreasing, since it is clear that

$$
M=\sum_{i=1}^{n} x_{t} s_{i} .
$$

## 3 Breaking

This system has been broken since the 1980's, but a variation is still not broken. The key to making it "unbreakable" resides in the choice of the transformation from $\mathbf{s}$ to $\mathbf{t}$. This transformation must make the resulting subset sum problem, for the new sizes (entries of $\mathbf{t}$ ), hard to solve.

## Exercises.

1. Decode 6665 knowing that $p=2003, a=1289$, and using the superincreasing sequence

$$
\mathbf{s}=(2,5,9,21,45,103,215,450,946) .
$$

2. Suppose we use a Knapsack encryption system with sequence

$$
s=\{1,4,11,23,48\}
$$

with modulus $m=101$ and multiplier $a=9$.
(a) Encrypt the message 10101
(b) Decrypt the message 76 .

