
MA 187: RSA Bergeron April 30, 2009 1

Handout #17: RSA(∗)

In a classical cryptosystem, the decoding key dk is easily derived from the encoding key ek (if
not exactly the same). The idea behind a public key system is that it is “very hard” to compute
dk even if we know ek. The RSA cryptosystem is such a system based on number theory. It can be
described as follows.

To setup the system, each participant a (let us imagine that they are: Alice, Bob, . . .) does the
following:

1) Construct two secret large (100 digits) prime numbers: pa and qa.

2) Compute
na := pa qa,

ϕ(na) = (pa − 1) (qa − 1).

3) Choose at random in the set {2, . . . , na − 1} a integer ea such that

(ea, ϕ(na)) = 1.

4) Compute an inverse (fa mod ϕ(na)) of ea.

We will describe in the sequel how to do step 1). Step 2) is easy, Step 4) has already been described
in a previous handout, and to realize Step 3) we only need to choose ea at random and test if
(n, a) = 1, if not we just choose another ea and keep doing this until the select number passes the
test. It can be shown that after a “few” trials one will get a number that works.

After the initial setup, each participant “publishes” under his/her name the values na and ea.
Thus the name public key system, since everyone knows the encoding keys of the participants.

To send a message to b = Bob, a = Alice starts by translating her message into an integer m

by replacing each plaintext letter (including spaces and punctuation) by a number (a 7→ 10, b 7→
11, c 7→ 12, . . .). If needed the message is cut into pieces so that each piece corresponds to an integer
< nb. To be sure that only Bob will be able to decode her message, Alice encodes m in the following
manner

c := (meb mod nb)

We have seen that this computation can be done quite easily (and rapidly). As we will explain
below, to decode the cypher c, Bob need only do the following

m = (cfb mod nb)

Moreover, if Alice and Bob want to be sure that only Alice could have sent the message and only
Bob can decode it, then they can proceed as follows. Alice first starts to “encode” her message using
(∗)

Stands for: Rivest, Shamir, and Adleman.



MA 187: RSA Bergeron April 30, 2009 2

her secret key fb, and then goes on the encode the result using Bob’s public key eb. More precisely,

c := ((mfa mod na)eb mod nb)

To decode, Bob does the reverse steps:

m = ((cfb mod nb)ea mod na)

The fact that all this works hangs on the following theorem

Theorem (Euler-Fermat) If a is relatively prime to n then

aϕ(n) ≡ 1 (mod n).

Proof. We first observe that, for a relatively prime to n, the function

ma : {0, . . . , n− 1} −→ {0, . . . , n− 1}

such that
ma : b 7→ a b,

is a bijection (why ?). Now, let
{x1, x2, . . . , xϕ(n)}

be the set of all numbers between 1 and n that are relatively prime to n. Then

{a x1, a x2, . . . , a xϕ(n)} = {x1, x2, . . . , xϕ(n)}

since ma is a permutation.

The product of all the numbers in the first set is the product of all of the numbers in the second set.

x1x2 · · · xϕ(n) ≡ a x1a x2 · · · a xϕ(n) (mod n)

All of the xi’s have inverses so they can be canceled off of both sides of the equation. so we also
have:

1 ≡ a · a · · · a ≡ aϕ(n) (mod n).

To explain why decoding is possible in RSA, we need only observe that

Theorem. For m relatively prime to n, if

e f ≡ 1 (mod ϕ(n))



MA 187: RSA Bergeron April 30, 2009 3

then
(me)f ≡ m (mod n)

Proof. We have e f = q ϕ(n) + 1, hence

(me)f ≡ me f (mod n)

≡ mq ϕ(n)+1 (mod n)

≡ (mϕ(n))q m (mod n)

≡ 1q m (mod n)

≡ m (mod n)

The probability that the message is not relatively prime to na is so small (why ?) that we can always
suppose that this is the case.

The reason why RSA is considered to be “secure” when pa and qa are large enough (with
some more conditions on their properties), is because “factorization” of large integers (namely na)
is thought to be computationally infeasible. At the moment factoring algorithms are able to crack
numbers of up to 130 digits, so that our choice of size for p and q makes n a lot larger (200 digits).

We can rebuild f = fa out of n = p q and e = ea, if we know the value of ϕ(n). It is easy to see
that knowing ϕ(n), we can easily compute p and q since the equations

p q = n

(p− 1) (q − 1) = m

can be solved to get p and q, but even better, since

n + 1−m = p + q,

the roots of the polynomial

x2 − (n + 1−m) x + n = (x− p) (x− q)

are exactly p and q. Hence we can conclude in this case, that the knowledge of ϕ(n) = (p−1) (q−1)
is equivalent to the knowledge of the factorization of n = p q. It is believed (although not proved)
that breaking RSA is “polynomially equivalent” to factoring n.

Need for more Number Theory

As we have seen, to setup RSA, we need to be able to produce big prime numbers. Since
factorization is hard, we would like to do it some other way. We will achieve this by selecting a
number n at random, and then testing for its primality using a probabilistic approach due to Strassen
and Solovay. If n happens to be prime then it will pass of the test. On the other hand, if n is not



MA 187: RSA Bergeron April 30, 2009 4

a prime it will pass the test with probability less than (1/2)k, with k large (50). In doing so the
probability that we draw the wrong conclusion is less than 1 in 250 and these are odds which are
considerably smaller than those we do stake our lives upon daily!

To describe the primality test, we will need more number theory, and this will be presented in
an up coming handout.

Attacks on RSA

Learning the decryption exponent

It is interesting to note that if we know the decryption exponent f , then we can use it to factor
n rapidly. Hence to keep the system secure if f is revealed, we cannot simply choose another e, but
we need to build a new n. Knowing f , the procedure described below will factor n with probability
1/2, otherwise it will give the answer “try again”. The probability that it fails to factor after m

iteration is 1/2m, and if m is large enough (m ≥ 20) this becomes vanishingly small, so that we are
“sure” to get the factorization rapidly since each iteration is very fast.

We first recall that we have shown (handout #16) that, for a prime p, the congruence

x2 ≡ 1 (mod p)

has only two solutions and these are x ≡ ±1 (mod p). Thus if we know that n factors as the product
of the primes p and q, then

x2 ≡ 1 (mod n) ⇐⇒ x ≡ ±1 (mod p) and x ≡ ±1 (mod q)

and the resulting 4 solutions can be found using the Chinese Remainder Theorem. Two of these
are x ≡ ±1 (mod n), and the other two are negatives of one another. If x is a non trivial (6= ±)
solution, then

n | (x− 1) (x + 1)

and n divides neither factor on the right side. This implies that

(x + 1, n) = p or (x + 1, n) = q,

and the left side of each of these equation is easy to compute. Thus if we can find one of the 2
non trivial solutions of x2 ≡ 1 (mod n) (with only the knowledge of f), then we have succeeded in
factoring n.

1) Choose k at random between 1 and n− 1.

2) Compute x := (k, n).



MA 187: RSA Bergeron April 30, 2009 5

3) If 1 < x < n then x is a factor of n and it must be equal to p or q, so we are finished.

4) Write e f − 1 = 2s r, with r odd.

5) Compute m := kr (mod n).

6) If m ≡ 1 (mod n) then try again.

7) Find the least j (0 ≤ j ≤ s) such that m2j ≡ 1 (mod n), and set

x := m2j−1

thus x2 ≡ 1 (mod n).

8) If x ≡ −1 (mod n) then try again,

else (x + 1, n) is a factor of n and it must be equal to p or q, so we are finished.

Observe that step 7) is sure to succeed since

e f − 1 = 2s r ≡ 0 (mod n).

Bad protocol

If we know that Alice has decided to encrypt and send separately each letter of her message
to BOB using RSA (even with very large n and e) then it is easy to decrypt her message without
knowing Bob’s secret decryption key. We need only encrypt, using Bob’s public key, each plaintext
letter, and compare the cypher letters of Alice’s message to our table of cypher letters.

This observation can be adapted to attack RSA if we know which are the possible messages and
if the number of these is “small”. For instance sending a PIN of 4 digits with RSA is not secure if
the opponent knows that this is what you are sending.

Further attacks

A lot of research paper have been written on various weaknesses or strength of RSA, but the
system is still considered to be secure if some care is taken in setting it up.


