
Trees, codes, information and entropy

1. Codes and English

A code is an alphabet or a list of words which are used in place of another alphabet or
group of letters. All of our encryption systems are examples codes whose purpose is to hide
the meaning of a message from an unintended listener.

Code books which give a list of words or numbers which are used in place of words or
phrases to hide the meaning have been common method of encryption. The security of a
code of this type is obviously dependent on the security of the codebook.

However, codes are used for many other reasons. For example we use common abbrevia-
tions (e.g IMHO, LMAO, NSA and CIA) as a code for either a phrase or a name. Pictures
and text are often digitized to be stored in a computer and this is a code for the informa-
tion that it represents. Radio and television signals are encoded into a signal which can
be broadcast or transmitted by cable. Codes are commonly used with text because our
usual alphabet or system of letters is not appropriate for storage or transfer of information
and so they are encoded in order to store the information and decoded when that data is
retreived.

For instance, when the telegraph was invented around 1836, it crudely allowed the trans-
mission of on and off signals. The transmission of long and short pulses over a wire was a
breakthrough for its time, but the technology did not allow for a lot of variations of signals.
An agreed upon system distinguished between short (a dot) and long (a dash) ‘on’ signals.
The ‘off’ then represented separators either between dots and dashes, or there was a longer
pause between groups of dots and dashes. The groups of dots and dashes were a code which
represented letters, numbers or symbols.

Morse code is named after one of the inventors of the telegraph, Samuel Morse, an
American artist. The code is chosen so that common letters like E, T , A, I, N require a
small number of pulses, but it is not necessarily optimal.

A •− B − • • • C − •− • D − • • E • F • •− •
G −− • H • • • • I • • J •−−− K − •− L •− • •
M −− N − • O −−− P •−− • Q −− •− R •− •
S • • • T − U • •− V • • •− W •−− X − • •−
Y − •−− Z −− • •

This code requires that we put a pause in between the letter that we send. If not, it
would be impossible to distinguish between the code for O, MT, TM and TTT because
they are all represented by three dashes.

In computer languages, there are codes which are used to represent characters and digits
with 0s and 1s. The standard code used in most languages today is known as American
Standard Code for Information Interchange (ASCII). The computer represents each letter
internally as a sequence of 8 bits (a byte). The standard ASCII table has only 128 characters
(note 128 = 27 and 28 = 256) so letters are generally represented by a 0 plus 7 other bits,

1



2

although extensions of the ASCII code usually represent 256 or more characters and take
advantage of all 8 bits in a byte. This standard ASCII table for alpha-numeric characters
handles only the standard roman alphabet, but there are other versions of this table for
other languages. The upper case letters A through Z are represented by the numbers 65
through 90 and the lowercase alphabet are represented by 97 through 122. Often this code
is given in hexadecimal or (as I have done in the table below) binary.

A 01000001 B 01000010 C 01000011 D 01000100 E 01000101 F 01000110
G 01000111 H 01001000 I 01001001 J 01001010 K 01001011 L 01001100
M 01001101 N 01001110 O 01001111 P 01010000 Q 01010001 R 01010010
S 01010011 T 01010100 U 01010101 V 01010110 W 01010111 X 01011000
Y 01011001 Z 01011010

There is a lot of redundancy in this code as a way of representing letters with binary
digits because they all begin with 010. Even if we threw the first three bits away, a more
efficient code for representing the alphabet would take into account that some letters are
more frequent than others and so E and T would have a shorter code than Q, X and Z.

2. Codes and binary trees

We call a binary code comma-free if no prefix of the code of a letter is the code of another
letter. Morse code is not comma-free, but the ASCII code is because the prefix of any of
the codes of a letter is not a code for another letter.

A complete binary tree is a data structure consisting of nodes and each node is either a
label or has two pointers (a left and a right) each which point to another node. One node
at the top of the tree is referred to as the root of the tree. The nodes which contain a label
are called the leaves of the tree.

If we have a binary tree with labels S = {`1, `2, . . . , `r} then we can make a comma-free
code for S by assigning a binary word to each label `i by following the branches from the
root to the leaf labeled by `i and recording a 1 for each left branch that we follow and a 0
for each right branch.



3

For instance in the example we have a binary tree with labels {A,B,C,D,E, F}. From
the root to E we must take two left branches and so the code for the letter E will be 11.
From the root to the branch labeled B we take a left and then a right pointer so the code
for B will be 10. Similarly the code for A is 011, for D is 0101, the code for F is 0100, the
code for C is 00.

Notice that in order for a label to have a word which is the prefix of the word of another
label it must be that the label has at least one child, but this doesn’t happen in our trees
since only the leaves are labeled.

Proposition 1. If h1, h2, . . . , hr are the heights of the leaves `1, `2, . . . , `r of a complete
binary tree, then

r∑
i=1

1

2hi
= 1 .

Proof: We prove this by induction on the number of leaves in the tree. Assume that the
sum of 1/2h

′
i is equal to 1 for all sets of heights h′i of a complete binary tree with less than

r leaves.
Say that the left branch of the root has the labels `i1 , `i2 , . . . , `id and the right branch of

the tree has the labels `id+1
, `id+2

, . . . , `ir . The left branch of this tree is a complete binary
tree with heights of labels equal to hi1 − 1, hi2 − 1, . . . , h`id − 1, hence

d∑
k=1

1

2hik
−1 = 1.

The right branch of this tree is also a complete binary tree with heights equal to

hid+1
− 1, hid+2

− 1, . . . , hir − 1

so
r∑

j=d+1

1

2hij
−1 = 1.

Therefore

r∑
i=1

1

2hi
=

d∑
k=1

1

2hik

+

r∑
j=d+1

1

2hij

=
1

2

d∑
k=1

1

2hik
−1 +

1

2

r∑
j=d+1

1

2hij
−1

=
1

2
+

1

2
= 1

3. The relationship between entropy and information

Say that we have a file with characters `1, `2, . . . , `r which are generated at random with
respective probabilities p1, p2, . . . , pr. If we encode these characters with a comma-free code
of respective lengths h1, h2, . . . , hr, then the expected number of bits that will be required
on average per letter is equal to

p1h1 + p2h2 + · · ·+ prhr .



4

This quantity is the expected value of the random variable representing the lengths of the
code which occur with the probability that the letters are generated.

When we introduced the notion of entropy, we declared it to be the amount of information
in the outcome of a random variable. We should expect this to be related to the expected
number of bits per letter. This connection between a numerical quantity associated and
what we refer to as the ‘information’ in a random variable is because of the following
theorem.

Theorem 2. Given a comma-free code with respective codes lengths h1, h2, . . . , hr which
occur with probabilities p1, p2, . . . , pr, the expected number of bits per letter is greater than
or equal to the entropy of the random variable =

∑r
i=1 pilog2(1/pi).

Proof: We can assume that our comma-free code comes from the code of a complete
tree. If not then we can shorten the code by deleting unused leaves. Set qi = 1

2hi
, then∑r

i=1 qi =
∑r

i=1
1

2hi
= 1 by Proposition 1 and hi = log2(1/qi). Recall that we have

previously shown that for any two finite sets of probabilities such that
∑

i pi =
∑

i qi = 1
that we have ∑

i

pilog2(qi) ≤
∑
i

pilog2(pi)

and hence ∑
i

pilog2(1/qi) ≥
∑
i

pilog2(1/pi) .

The expected number of bits per letter is equal to

p1h1 + p2h2 + · · ·+ prhr = p1log2(1/q1) + p2log2(1/q2) + · · ·+ prlog2(1/qr)

≥ p1log2(1/p1) + p2log2(1/p2) + · · ·+ prlog2(1/pr)

= entropy

In other words this theorem says that the entropy is a lower bound for the number of
bits per letter for a given code. The question is, is it possible to find a code which gives
an expected number of bits per letter equal to the entropy? In general, the answer to this
question is ‘no,’ but it is possible to construct a code where the expected number of bits
per letter is within one of the entropy.

4. Trees from heights

A simple way of constructing this code is to place the alphabet `1, `2, . . . , `r which occur
with probabilities p1, p2, . . . , pr at heights hi = dlog2(1/pi)e and then order these leaves
from left to right from the largest height to the smallest. Next, create a tree by grouping
pairs of nodes at a given height together to create a branch. If there aren’t two nodes at
a given height, then the node and all branches attached to it are lowered. This process is
not unique because it only specifies that any sets of pairs of nodes are joined. But what is
true is that every node will finish with height less than or equal to hi.

For example if we have letters A,B,C,D,E, F which occur with probability 1/24, 5/24,
1/12, 1/12, 5/24, 3/8 then we can place these letters at respective heights 5, 3, 4, 4, 3, 2. I
will construct this tree in a sequence of steps starting with the following picture.



5

The first step will be to move the node at level 5 to level 4 since there is nothing to pair
it with.

Next group the C and D together because they are on the same level and close to each
other (alternatively, we could switch the A and B and then group A and C or A and D
together).

Next since the A is all by itself, we can lower it to level 3.

Next, because they are close together, group the A and B node together and the CD
node with the E.



6

Next, we choose to group the branch with CDE and the node labeled with F together
(this choice is arbitrary, we could choose to group the branch with AB and CDE or with
AB and F together). When we do this, the branch with AB is left on a level by itself and
so the branch is lowered a level.

Finally with two nodes on level 1, they can be joined to make a complete tree. The result
is a tree from heights.

If we make a tree from heights it is always the case that expected number of bits per
letter will be within 1 of the entropy.

Theorem 3. Let p1, p2, p3, . . . , pr be the respective probabilities of a random variable X
with outcomes of letters `1, `2, . . . , `r. Say that random words are generated by repeatedly
recording the outcomes of this random variable. If the letters are encoded using a tree from
heights with respective code lengths h1, h2, . . . , hr, then

p1h1 + p2h2 + · · ·+ prhr ≤ H(X) + 1.

Proof. The key to this theorem is noticing that since the heights hi are from a tree from
heights, it must be that hi ≤ dlog2(1/pi)e. Therefore, the expected number of bits per



7

letter is equal to

p1h1 + p2h2 + · · ·+ prhr ≤ p1dlog2(1/p1)e+ p2dlog2(1/p2)e+ · · ·+ prdlog2(1/pr)e
≤ p1(log2(1/p1) + 1) + p2(log2(1/p2) + 1) + · · ·+ pr(log2(1/pr) + 1)

= (p1log2(1/p1) + p2log2(1/p2) + · · ·+ prlog2(1/pr)) + 1

= H(X) + 1

�

Consider for example the tree from heights that we created above. The expected number
of bits per letter is equal to

2 · 1

24
+ 2 · 5

24
+ 4 · 1

12
+ 4 · 1

12
+ 3 · 5

24
+ 2 · 3

8
≈ 2.54

while the entropy of the random variable with those probabilities is

1

24
log2(24) +

5

24
log2(

24

5
) +

1

12
log2(12) +

1

12
log2(12) +

5

24
log2(

24

5
) +

3

8
log2(

8

3
) ≈ 2.26 .

5. The Huffman tree

It turns out that there is an algorithm for producing the ‘best’ tree possible with the
shortest expected number of bits per letter. Like the tree from heights, the code is not (in
general) unique, but in this case the expected number of bits per letter is minimized and
is as close to the entropy as possible. The only way of getting a shorter number of bits per
letter is to encode more than one letter at a time.

The Huffman tree by starting off with labels `1, `2, . . . , `r with respective probabilities
p1, p2, . . . , pr and then grouping the pair of nodes together with the smallest two probabili-
ties and creating a new node with two branches and associating the sum of the probabilities
to this new node.

Lets create the Huffman tree from the labels A, B, C, D, E, F with the same respective
probabilities 1/24, 5/24, 1/12, 1/12, 5/24, 3/8 as in our last example. We will see that
the expected number of bits per letter from this new code is better than the one that we
created using the method of the tree from heights but (again) larger than the entropy.

To start, we list the probabilities with a common denominator of 24 so they can be easily
compared. Since we don’t need the denominators we give them respective weight 1, 5, 2,
2, 5, 9.

We then group the two nodes with the smallest weight (with 1 and 2) and we give that
new node weight 3 = 1 + 2.



8

We then group the two nodes with the smallest weight which are now 2 and 3 and give
that node a weight 5 = 2 + 3.

Since there are now three nodes of weight 5, we have a choice. Since it doesn’t matter
we will group the rightmost two nodes with weight 5 together and give it weight 10 = 5+5.

Next we group the node of weight 9 with the node of weight 5 and give it weight 14 = 9+5.
It is often the case that branches will cross over and the last step will be to reorder the
nodes to straighten them out.

Since there are only two nodes which are left to be grouped, the last step is to connect
them.



9

Although it is not absolutely necessary, we can then redraw the tree to avoid crossing
branches.

Using the probabilities from before we calculate that the expected number of binary
registers using this code is equal to

4 · 1

24
+ 4 · 2

24
+ 3 · 2

24
+ 2 · 5

24
+ 2 · 5

24
+ 2 · 9

24
≈ 2.33

Again, notice that this is slightly less than the expected number of bits per letter from
than the tree from heights, but slightly larger than the entropy.

This is summarized in the following theorem:

Theorem 4. (see [1] for proof) If the Huffman encoding for a set of probabilities p1, p2, . . . , pr
has heights h1, h2, . . . , hr, then for any other encoding with heights h′1, h

′
2, . . . , h

′
r,

p1h1 + p2h2 + · · ·+ prhr ≤ p1h
′
1 + p2h

′
2 + · · ·+ prh

′
r.

[1] D.A. Huffman, A Method for the Construction of Minimum-Redundancy Codes, Pro-
ceedings of the I.R.E., September 1952, pp. 1098–1102.

Exercises:

(1) Say that the letters A,B,C and D are generated randomly and occur with proba-
bilities 1/16, 3/16, 5/16, 7/16 respectively.
(a) Draw the Huffman tree which has the minimum expected code length.
(b) For each branch of this tree, assume that if the branch is towards the letter A

it is labelled with 1 and other branches labelled with 0. What word does the
message 10111011111011110 correspond to?

(c) What is the expected number of bits needed to encode a letter on average using
this code?

(d) Now encode letters two at a time. Draw the tree with the minimum expected
code length using the encoding of letters two at at time.

(e) What is the expected number of bits per letter needed to encode on average
using this code?



10

(2) A random procedure for choosing a three letter word is determined from the charts
below and the outcome is a random variable X. The first letter is chosen with
probability given by the first table, the second and third letters are chosen using
the table below where the entries represent the the number of times the second
letter appears (in the column) given the previous letter (in the row).

a 4
s 2
d 1
f 3

a s d f
a 5 0 2 3
s 2 4 4 0
d 1 5 3 1
f 6 1 1 2

(a) Find H(X| the third letter is ‘f’)
(b) Encode the set of three letter words that end in an ‘f’ by using a Huffman tree

with one word per leaf of the tree.
(c) What is the expected number of bits required to store a single word using this

coding scheme?


