Some computational problems in number theory

January 14, 2016

(1) Say that I have a 2x2 matrix of the form:

$$A = \begin{bmatrix} 3 & * \\ * & * \end{bmatrix}$$

I don't know the matrix itself, but I do know that $det(A) \equiv 17 \pmod{26}$ and I also know that

$$A \begin{bmatrix} 5 \\ 19 \end{bmatrix} \equiv \begin{bmatrix} 6 \\ 9 \end{bmatrix} \pmod{26}.$$

Find the matrix A.

 $\left(2\right)$ Calculate the Euler phi function of 864864. Use it to calculate

$$5^{207366} \pmod{864864}$$

(3) In divising the RSA system you choose a public modulus $m = 1081 = 23 \cdot 47$ and an encrypting exponent of 73. Find the decrypting exponent.

The next problem requires a computer

(4) Say that your public modulus is:

m = 9194050360213907115693366285304915215520274629853449561

= (9834710928479123480819)(934857203945872304958723049606019)

and nobody else knows how your number factors. You also publish your public key to be:

3487192837645198273462939

which you choose at random so that it is relatively prime to $\phi(m)$. I send you the message 6001342142960307577337651863901327138891060326454897797, what does it say?