F. FRANKLIN’S PROOF OF EULER’S PENTAGONAL NUMBER
THEOREM

ABSTRACT. The 18" century mathematician Leonard Euler discovered a simple formula
for the expansion of the infinite product [],»; 1 — ¢'. In 1881, one of the first American
mathematicians found an elegant combinatorial proof of this identity.

Proposition 1. (Euler’s pentagonal number theorem)
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There is a clever proof of this proposition that comes from one of the first American mathe-
maticians F. Franklin [4]. The proof uses a technique which is fairly ubiquitous in algebraic
combinatorics, to show that terms in a sum cancel associate a combinatorial object to each
term in the sum and then show that they cancel by producing a map which sends an element
with positive weight to a term with negative weight.

There are several other accounts of this proof: [2], [6], [7], [9].

We will need to talk about partitions as a combinatorial object. A is a partition if it is a
sequence A = (A1, Az, ..., Agny) With Ay > Ay > ... Ayn) where we use the notation /()) to
represent the number of parts of \. The symbol |A| will represent the size of the partition
so that |A| = Ay + Ao + -+ - 4 Agn). A is a strict partition if in addition Ay > Ay > -+ Agn).

There is a way of graphically representing a partition with rows of boxes. A partition
A = (A1, A2, ..., Agn)) is represented by a row of A; boxes below a row of A, boxes below
a row of A3 boxes etc. Each of these rows of cells will be left justified. For example the
partition (4,4,3,1,1) is represented by the following diagram:

SRR

Example 1. We note that the left hand side of this equation is the generating function for
all strict partitions (partitions where all parts are distinct) weighted with (—1)*™¢gl*. That
is,

(2) [[1-d= Y (~1)™g™

i>1 A strict
1
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This follows by observing that to determine the coefficient of ¢" by expansion of the product
on the left we have a contribution of (—1)FgM 2T+ for every sequence (A1, Mg, ..., \x)
such that A\; > A\;1; for 1 <14 < k. Below we expand the terms of this generating function
through degree 8. For example, a term of the form (—g*)(—¢?) is represented by the picture

Hto and we record the weight of +¢° just below the picture.
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Now we notice that all of the terms cancel except for the ones stated in the theorem, that is
we have

[[1-d=1-a-F+F+q+ -

i>1
In fact, we will show that one way of looking at this expression is to observe terms which
survive are those that correspond to the following pictures:
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From the image in this example one might think that the theorem would be better named the
trapazoidal number theorem. There is a reason that the numbers m(3m — 1)/2 are referred
to as pentagonal numbers and if m — —m then the pentagonal number is transformed to
— —m(—3m—1)/2 = m(3m+1)/2. Observe the picture below how a sequence of pentagons
have exactly m(3m — 1)/2 points in them (and this continues for m > 3).
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Proof. To show that this proposition holds we show that there is an involution ¢ on the strict
partitions A of n such that ¢(\) is also a partition of n and the length of ¢(\) will have length
either one smaller or one larger than that of \. This means that if the weight of a strict
partition is (—1)™ ¢l then the weight of () is —(—1)*M¢!M and so this term corresponding
to ¢(\) will cancel with the term corresponding to A. This involution will fail to ‘work’ for

the partitions of the form (2m —1,2m —2, ..., m) which are of size 2m? — (m+21)m = m(?’;”*l)
and (2m,2m — 1,...,m + 1) which are of size 2m? — (mgl)m = m(B?H).

For a strict partition A we will let r equal to the smallest part of A (r = Ay(»)) and let s equal
the number of parts which are consecutive at the beginning of the partition. In other words
s is the largest integer such that (A, Ao, ..., As) = (A, A —1,..., A0 — s+ 1).

If s # ¢(\) and r > s then we will let ¢(\) equal the partition (Ay — 1, 0 — 1,..., Ay —
L, Ast1, -5 Aen), ). That is, if the diagram for the partition looks something like the fol-
lowing where there is an X in each of the cells corresponding to r» and a dot in the cells
corresponding to s

[
[
[ ]

then ¢(\) will be the partition with the diagonal of s cells filled with a dot moved to the top

row of the partition.

¢(A) is still a strict partition and it has the property that the longest string of consecutive
parts at the beginning of the partition is greater than or equal to s.

If s # ¢(\) and r < s then we will let ¢(\) equal to the partition (A; + 1, A\ + 1,..., A\, +
L Arg1,- -, Ageny). For example, if our diagram is similar to the one below with the cells
marked with an x representing the row of size r and those marked with the - represent the
cells which correspond to the s consecutive parts at the beginning of the partition.

The partition corresponding to ¢(A) is then represented by the following picture.

0 -
[+
[TX

Notice that it is also possible that s = ¢(\) and we consider this case separately because we
need that r is at least 2 more cells than s does before we can move the s cells to the top row.
In this case if » > s+ 1 then we will remove the s cells along the diagonal and turn them
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into the shortest row so that ¢(A) = (A — 1, A2 —1,...,A\; — 1, s). For example we have the
picture on the left will be transformed to the one on the right.

If s = ¢(\) and r < s then it is still possible to move the shortest row of A to the first r
rows. We will set ¢(A) = (M + L, A+ 1,..., A + 1, A, ..., A1), this corresponds to the
case when we have a partition of the form of the one below.

'«|X1
Q)

A ¢(A)

If we describe what is happening to the diagram the map ¢ does one of two things, either it
removes the smallest row of 7 = Ay cells of the partition and places one cell more in each
of the first  rows (in the case that r < s or r = s and s < {(\)) or it removes one cell from
each of the first s rows and adds a row of size s to the top of the diagram (in the case that
r>s+1lorr=s+1and s </{()N)).

Observe that if the weight of A is (—1)“* then since ¢(\) has the same number of cells and
either one more or one less row than A then the weight of ¢(\) is the negative of the weight

of \.

Also observe for each of the 4 cases we have considered, ¢(¢(\)) is just A\. This implies we
can say that in the expansion of the expression >, _,....(—1)*»¢ the term corresponding

to the partition A will cancel with the term corresponding to the partition ¢(\) because the
then ¢(\) will also cancel with ¢(¢p(\)) = A.

There are two cases that we have not considered. These terms do not cancel. One is that
r = sand s = £(\) and so we have a partition of the form (2m—1,2m—2,...,m) and the other
is that r = s+ 1 and s = ¢(\) and this is a partition of the form (2m,2m—1,...,m+1). O

We encourage the reader to take a pencil and draw an arrow between the diagrams of the
strict partitions given in the example above to show that the involution works as expected.
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