DETAIL OF *p*-GROUP PROOF

MIKE ZABROCKI

On Sept 29, I was trying to prove the theorem below and there was one detail that I was missing. I wrote 'exercise' on that point and moved on. Here is the proof with that detail filled in.

Theorem 1. Given a p-group G and an $H \leq G$, then $H \neq N_G(H)$.

Proof. We had to choose a $K \leq G$ and maximal such that $K \leq H$ and G/K is non-trivial (and we know there is at least one because $K = \{1\}$ has this property). If $H \leq G$ (that is, K = H), then (the detail that I was missing in class was that) $N_G(H) = G \neq H$ and this shows the theorem.

Now consider subgroup Z' of G corresponding to Z(G/K) by the 4^{th} isomorphism theorem. So pick an element $z \in Z'$ (or $zK \in Z(G/K)$) and since $hzK = hK \cdot_{G/K} zK =$ $zK \cdot_{G/K} hK = zhK$, so $z^{-1}hz \in hK \subset hH = H$, hence $z \in N_G(H)$ and $Z' \subseteq N_G(H)$. Either $Z' \neq H$ and $N_G(H) \neq H$, or Z' = H. In the latter case, a similar argument¹ shows that $H \leq G$.

 ${}^{1}\forall g\in G,\,hgK=hK\cdot_{G/K}gK=gK\cdot_{G/K}hK=ghK\text{ and }g{}^{-1}hg\in hK\subset hH=H\text{ and }H\trianglelefteq G$