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9.1 Sylow Theory

Let G be a group such that |G| = pnm, where p is prime and gcd(p,m) = 1. Let Sylp(G) denote the set
of all Sylow p-subgroups, and write np = |Sylp(G)|.

First Sylow Theorem: Sylow p-subgroups always exist, i.e., np ≥ 1.

Second Sylow Theorem: Sylow p-subgroups are all conjugate.

Third Sylow Theorem: np divides the order of G, and np = kp+ 1 for some k, so np ≡ 1(mod p).

Write in the details of the proofs of the above theorems given in the handout1.

What are some consequences of Sylow’s theorems? What are the main ideas behind the proofs of Sylow’s
theorems?

There are many different kinds of proofs of Sylow’s theorems.

The orbit-stabilizer theorem may be used to prove Sylow’s theorems. If G is a p-group and E is a G-set,
we may break E into orbits modulo p as follows:

|E| ≡ |FixG(E)|(mod p).

Using the above congruence, it can be shown that(
pnm

pn

)
≡ m(mod p)

if p is a prime and m is an integer such that p does not divide m. This is explained in the given handout.

To prove Sylow’s theorems, we can basically use the “same trick applied four different times”, i.e., using
the congruence |E| ≡ |FixG(E)|(mod p), as indicated in the following table.

Group Set Action
Sylow Thm. #1 G E = sets of cardinality pn Left multiplication
Sylow Thm. #2 S (a Sylow p-subgroup) G/S Left multiplication
Sylow Thm. #3 (pt. 1) G Sylp(G) Conjugation
Sylow Thm. #3 (pt. 2) S (a Sylow p-subgroup) Sylp(G) Conjugation

Question 9.1. Given a group G such that |G| = 24, is there a normal subgroup of index 3, i.e., of order
8?

1See http://garsia.math.yorku.ca/~zabrocki/math6121f16/documents/100616sylows.pdf.
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Our strategy for answering the above question is based upon elementary Sylow theory.

Observe that 24 = 23 · 3.

The positive divisors of 24 = 23 · 3 are the natural numbers in the following set: {1, 2, 3, 4, 6, 8, 12, 24}.

How many Sylow 2-subgroups are there?

Let n2 denote the number of Sylow 2-subgroups.

We know that n2 ≡ 1(mod2).

We also know that n2 ∈ {1, 2, 3, 4, 6, 8, 12, 24}.

We may thus deduce that n2 ∈ {1, 3}.

Observe that if n2 = 1, then the corresponding group must be normal, since it could not have any
distinct conjugates.

Is it true that there is no element of order 8 in S4? Perhaps this may be shown using a combinatorial
argument involving cycle notation for permutations.

Consider the classification of groups of order 8. Up to isomorphism, there are a total of 5 groups of
order 82:

(i) The cyclic group Z/8Z;

(ii) The group (Z/4Z)× (Z/2Z);

(iii) The group (Z/2Z)3. Using the Fundamental Theorem of Finitely-Generated Abelian Groups, it is
easily seen that there are only 3 abelian groups of order 8, up to isomorphism.

(iv) The dihedral group D8. Recall that D8
∼= (Z/4Z)o (Z/2Z);

(v) The quaternion group Q8. We have not previously defined this group in class. This group may
be defined using the following presentation:〈

i, j, k|i2 = j2 = k2 = ijk
〉
.

We also have not defined a presentation3 of a group in class, but the above definition may be
self-explanatory.

Remark 9.2. Sylow theory may be used to identify simple groups. Hölder’s program basically tells to
where to look for simple groups. Intuitively, Hölder’s program tells us to “ look for places where simple
groups could exist”. Sylow theory may be regarded as a tool for looking for where simple groups can
exist, or better yet, where they don’t exist.

As we previously discussed in class, there are 18 infinite families of simple groups, as well as 26 “random”
ones4.

2See https://en.wikipedia.org/wiki/List_of_small_groups.
3See http://groupprops.subwiki.org/wiki/Presentation_of_a_group.
4See https://en.wikipedia.org/wiki/List_of_finite_simple_groups.
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Remark 9.3. During the 1990s, a large variety of results in “scattered” mathematical literature essen-
tially “filled all the holes in the major program for finding simple groups”. This has been a very major
result in the history of mathematics.

Example 9.4. Let G be a group such that |G| = p · q, where p and q are primes, with p > q. We
know that np must divide the order |G| of G. We thus find that np ∈ {1, p, q, pq}. We also know that
np ≡ 1(mod p). So, we have that np 6= p. What else can we conclude?

Let G be a group such that |G| = 2013 = 3 · 11 · 61.

Could G be simple?

The divisors of the order ofG are precisely the elements in the following set: {1, 3, 11, 61, 33, 183, 671, 2013}.

We have that n3 ∈ {1, 61}, n11 ∈ {1}, and n61 ∈ {1}.

So G is definitely not simple, since there exists a normal subgroup H11 E G, where H11 is the Sylow
subgroup of order 11.

Can we find a composition series? Is it solvable? Observe that H11 cannot have nontrivial proper
subgroups, since it must be of the form Z/pZ.

Using the Jordan-Hölder theorem, we begin by considering the sequence H11/H11 E G/H11.

What can we say about G/H11? It will be a group of order 183 = 3·61. The divisors are: divisors(183) =
{1, 3, 61, 183}.

We thus observe that G/H11 has a normal Sylow 61-subgroup.

So we obtain a series of the following form: H61/H11 E G/H11.

By the Fourth Isomorphism Theorem, there exists a normal subgroup of G of order 671, H ′. We thus
obtain a subnormal series of the following form:

{1} / H11 / H
′ / G.

Is this a composition series? Can we go further?

What is G/H ′? This is a group of order 3.

Now observe that H ′/H11 must be of order 61. Could there be a nontrivial proper subgroup? No,
because H ′/H11

∼= Z/61Z.

Now consider the quotient group H11/{1}. Does there exists a nontrivial proper subgroup of this group?
No, because it is isomorphic to Z/11Z.

We may thus deduce that if |G| = 2013, then G is solvable, i.e., each quotient is abelian.

9.2 Illustrating composition factors with Cayley tables

In class, we discussed a colored Cayley table for the symmetric group S4 which was organized in order
for one to visualize the composition factors. A URL for a website containing this Cayley table is given
below:
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Is this Cayley table for S4 abelian? No, because it is not symmetric along the main diagonal.

Question 9.5. What else can we learn by looking at this Cayley table?

First of all, this Cayley table makes it clear that there exists a subgroup of index 2 which is normal.

That is, this Cayley table is colored in such a way that it is apparent that there exists a subgroup H E G
of order 12. The use of colors emphasizes that this subgroup is actually a normal subgroup of index
2. The use of colors also suggests that we may collapse elements in the cosets of H E G and thereby
collapse collections of colors in the corresponding Cayley table to produce a composition table of the
following form:

◦ H gH
H H gH
gH gH H

So, let H1 denote a subgroup of G = S4 of order 12. Consider a subnormal series of the following form:

H2 E H1 E G.

Now suppose that H2 E H1 is of order 4, with H1/H2
∼= Z/3Z. Use the Cayley table given in the above

website to visualize this subgroup.

Furthermore, suppose that H3 E H2 where H3 is a subgroup of order 2. We thus arrive at the following
subnormal series:

{1} E H3 E H2 E H1 E G.

Recall that a subnormal series of a group G is a sequence of the form

{e} = H0 E H1 E · · · E Hn = G.

Also recall that a subnormal series

{e} = H0 E H1 E · · · E Hn = G.

of a group G is a composition series if each factor group of the form Hi+1/Hi is simple, and that a
group G is said to be solvable if it has a composition series

{e} = H0 E H1 E · · · E Hn = G.

such that all factor groups of the form Hi+1/Hi are abelian. Returning to the subnormal series

{1} E H3 E H2 E H1 E G = S4

given above, we have that:

|G/H1| = 2

|H1/H2| = 3
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|H2/H3| = 2

|H3/{1}| = 2.

Therefore,

G/H1
∼= Z/2Z

H1/H2
∼= Z/3Z

H2/H3
∼= Z/2Z

H3/{1} ∼= H3
∼= Z/2Z.

We thus find that the symmetric group S4 is solvable, because it has a composition series

{1} E H3 E H2 E H1 E G = S4

such that all of the factor groups for this subnormal series are abelian.

Exercise 9.6. Is it possible to rearrange the multiplication table so that the composition factors are of
the form (Z2,Z2,Z3) or of the form (Z3,Z2,Z2)?

9.3 Introduction to representation theory

Recall that there is a correspondence between actions of a group G on a set X and homomorphisms to
the symmetric group on X:

G is a group acting on a set X ⇐⇒ homomorphism to symmetric group on X

We thus have that there is a correspondence between subgroups of SX and G-sets X.

Remark 9.7. Informally, we want to “ lift this idea, so that we’re not just acting on a set X, but we’re
acting on a vector space V .”

To describe a group G acting on a vector space V , we consider morphisms of the form

φ : G→ AutC(V )

such that φ(g) is a linear transformation, and

φ(g)φ(g′) = φ(g · g′),

and
φ(e) = id ∈ AutC(V ),

letting id denote the identity transformation in V .

In this case, V is referred to as a G-module (instead of a G-set).

Fix a basis B of V . Then every one of these linear transformations φ(g) corresponds to a matrix, as
suggested through the following commutative diagram5.

5See https://en.wikipedia.org/wiki/Commutative_diagram.
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AB(g) is a matrix with the property that:

AB(g) ◦ [~V ]B = [φ(g)(~v)]B.

Write B = {~b1,~b2, . . . ,~bn}. We thus have that AB(g) may be written in terms of column vectors as
follows:

AB(g) = [[φ(g)(~b1)]B, [φ(g)(~b2)]B, . . . , [φ(g)(~bn)]B].

For example, let G denote the multiplicative group such that the underlying set of G is {e, a, a2}.

Now, let V denote the linear span over C of the underlying set of G: LC{e, a, a2}.

Write B = {e, a, a2}. Define φ(a) ∈ AutC(V ) as follows:

φ(a)(e) = a

φ(a)(a) = a2

φ(a)(a2) = e.

Now compute [φ(a)(e)]B, [φ(a)(a)]B, and [φ(a)(a2)]B:

[φ(a)(e)]B = [a]B =

01
0


[φ(a)(a)]B = [a2]B =

00
1


[φ(a)(a2)]B = [e]B =

10
0

 .
Now compute the matrix AB(a) as follows:

AB(a) =

0 0 1
1 0 0
0 1 0

 .
For example, we have that

φ(a)(4e+ 3a− a2) = 4a+ 3a2 − e.
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Now take the vector corresponding to this, with respect to the basis B:−14
3

 .
Now observe that: 0 0 1

1 0 0
0 1 0

 4
3
−1

 =

−14
3

 .
This illustrates how to “turn a group into a matrix group”. Just as there is a correspondence between
subgroups of the symmetric group and orbits, there is a correspondence between representations and
subgroups of general linear groups.

Exercise 9.8. Do all of the exercises given in the given handout, which is available on the course
webpage. The total number of pages for your solutions to this handout should be at least 5 pages.

Example of a midterm problem: analyze groups of a given order using Sylow theory.
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