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12 October 18 lecture

Cauchy’s theorem may be used to simplify the discussion given towards the end of the September 29th

lecture. Recall that Cauchy’s theorem may be formulated in the following manner (see Fraleigh’s “A
First Course in Abstract Algebra”):

Cauchy’s theorem: Let p be a prime. Let G be a finite group and let p divide |G|. Then G has an
element of order p and, consequently, a subgroup of order p.

12.1 Elementary character theory

Characters are the essence of representations.

Once you know the behaviour of a character function, you know everything you need to know about the
representation.

Let G denote the multiplicative cyclic group {e, a, a2}. Using Maschke’s theorem, we have shown that:

V = L {e1, e2, e3}

= L {e1 + e2 + e3} ⊕L
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.

Now, let φ : G → GL3(C) denote the representation given by left-multiplication with respect to the
latter decomposition. We proceed to evaluate the expression φ(a) ∈ GL3(C). Left-multiplication by
a ∈ G does not affect the generating element e1 + e2 + e3 in the linear span of {e1 + e2 + e3}. Also, we
have that:
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Now evaluate the expression given below:
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.

We may thus evaluate φ(a) as follows.
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Observe the block matrix structure of the above matrix. Evaluate φ(a2) as follows.

Recall that two elements in the same conjugacy class will have the same character value.

G e a a2

tr(φ) 3 0 0

The submodule L {e1 + e2 + e3} is irreducible.

Question 12.1. Is the module L {−1
3
e1 +

2
3
e2 − 1

3
e3,−1

3
e1 − 1

3
e2 +

2
3
e3} irreducible?

Let χV = trφV .

Write V = W1 ⊕W2, with W1 = L {e1 + e2 + e3}, and:

W2 = L

{
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.

Now, consider the following character table:

G e a a2

χV = trφV 3 0 0
χW1 = trφW1 1 1 1
χW2 = trφW2 2 -1 -1

The above table nicely illustrates that

χV (g) = χW1(g) + χW2(g)

for all g ∈ G.

12.2 Characters of regular representations

Let G be a finite group, and let V = L {vg : g ∈ G} be such that h · vg = vhg for h ∈ G. Observe that:

dimV = |G| = χV (e) = tr


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1


|G|×|G|

= tr(I|G|).

Now, if g 6= e, we find that χV (g) is equal to the trace of a matrix of the form indicated below.
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Observe that g · ve = vg and g · vg1 = vgg1 .

χV (g) =
∑
h∈G

{ 1 if g · vh = vgh = vh,
0 otherwise.

The matrices in this case are permutation matrices.

This representation is called the left regular representation.

12.3 Illustrations and applications of character theory

Recall that if two characters are equal, then the corresponding representations are isomorphic.

For example, using character theory, it is easily seen that the left regular representation is isomorphic
to the right regular representation of a given group.

In the discrete Fourier transform, given data values a1, a2, . . ., a` associated to 0, 1, . . ., `− 1, we form
a correspondence 

a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · a`

 ∼=

c1 0 · · · 0
0 c2 · · · 0
...

... . . . ...
0 0 · · · c`


whereby an expression of the form ci represents the multiplicity of the ith irreducible representation of
C`, the multiplicative cyclic group of order `. We may decompose the former matrix with respect to the
irreducible representations.

Now, let G = D3 = {e, a, a2, b, ba, ba2} denote the dihedral group of order 6.

Now consider the vector space
V = L {ve, va, va2 , vb, vba, vba2}

spanned by a set indexed by the underlying set of G.
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We are going to act on this vector space indexed by elements elements D3, but our action is not going
to be left-multiplication. In particular, we are going to act on this vector space through conjugation:

g • vh = vghg−1 .

Now, observe that if we act on the vector space given above through conjugation, then L {ve} is an
invariant submodule.

Now, observe that V may be decomposed in the following manner:

V = L {ve, va, va2 , vb, vba, vba2}
= L {ve} ⊕L {va, va2} ⊕L {vb, vba, vba2}.

For an index i, let Wi denote the ith term in the above decomposition. Now, consider the following
character table, and recall that characters are constant on conjugacy classes.

e a a2 b ba ba2

χW1 1 1 1 1 1 1
χW2 2 2 2 0 0 0
χW3 3 0 0 1 1 1

Since bab−1 = a2, we have that a and a2 are conjugate.

Since a−2ba2 = ba, and since a · ba · a2 = ba2, we find that b, ba, and ba2 are all conjugate.

Observe that a · a · a−1 = a. So, when we act on a by χW2 and χW3 , they are fixed.

b • vb = vbbb−1 = vb

b • vba = vbbab−1 = vab = vba2

b • vba2 = vb(ba2)b−1 = vba.

With respect to the above equalities, we find that vb is the only fixed point. So, the corresponding trace
will be equal to 1, since vb is the only fixed point.

How do we automatically know that χW3
ba = 1? We know that χ(g) = hgh−1. The character is equal on

conjugacy classes. We thus obtain a character table of the following form.

e {a, a2} {b, ba, ba2}
χW1 1 1 1
χW2 2 2 0
χW3 3 0 1

12.4 A natural scalar product on characters

We define a scalar product 〈·, ·〉 on characters as follows:

〈χ, ψ〉 = 1

|G|
∑
g∈G

χ(g)ψ(g−1)

=
1

|G|
∑
g∈G

χ(g)ψ(g).
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We may assume without loss of generality that the matrices under consideration are all unitary: A−1 =
AT .

All representations are unitary because we assumed we are working over C in finite-dimensional vector
spaces and finite groups.

Intuitively, it is often easier to work with inverses instead of conjugates.

Theorem 12.2. If M and N are irreducible, then:

〈χM , χN〉 =

{
1 if M ∼= N ,
0 otherwise. (12.1)

For example, consider the vector space L {vb, vba, vba2}. Does the sum of the elements in the generating
set {vb, vba, vba2} give an irreducible representation?

Note: L {va + va2} is a submodule of L {va, va2}.

Also observe that L {vb + vba + vba2} is a submodule of L {vb, vba, vba2}.

There has to be an orthogonal complement to L {va+va2} and L {vb+vba+vba2}. If it has an orthogonal
complement, it has to break down into smaller ones.

〈χW1 , χW1〉 = 1

6

(
χW1(e)χW1(e−1) + χW1(a)χW1(a2) + · · ·

)
=

1

6
(1 + 1 + 1 + 1 + 1 + 1)

=
1

6
(6)

= 1.

Now, evaluate the expression 〈χW2 , χW2〉.

〈χW2 , χW2〉 = 1

6

(
22 + 22 + 22 + 0 + 0 + 0

)
=

12

6
= 2.

“Why” is 〈χW2 , χW2〉 equal to 2? What is this telling us? What does this represent?

Let X be a matrix of indeterminates: [xij]m×n = X. Let A be a representation corresponding to M ,
given a fixed basis, and let V be the representation corresponding to N .

So, A(g) is an m×m invertible matrix such that dim(M) = m, and B(g) is an n× n invertible matrix
with dim(N) = n. Define

Y =
1

|G|
∑
g∈G

A(G)XB(g−1),

where X = [xg]m×n. Similarly,

A(h)Y B(h−1) =
1

|G|
∑
g∈G

A(h)A(g)XB(g−1)B(h−1).
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Since A(h)Y = Y B(h), we have that Y is a G-homomorphism from M to N . This is true for any
indeterminate matrix X.

If this is a G-homomorphism from M to N and M and N are irreducibles, what can be said about Y ?

By Schur’s Lemma, since M and N are irreducible, Y = 0, or Y = cIdm×m and M = N .

If M 6∼= N , then Y = 0, and:
〈χM , χN〉 ?

= 0.

Look at the i, j entry of

Y =
1

|G|
∑
g∈G

m∑
k=1

n∑
`=1

Ai,k(g)Xk,`B`,j(g
−1) = 0.

In particular, this is true no matter what the indeterminates are. This is equal to 0 for any k, `.

0 =
1

|G|
∑
g∈G

Aik(g)B`,j(g
−1).

Since this is true for all indeterminate matrices X, if we fix values for X, we obtain the above equation.

〈χM , χN〉 = 1

|G|
∑
g∈G

χM(g)χN(g−1)

=
1

|G|
∑
g∈G

m∑
i=1

Aii(g)
n∑

j=1

Bjj(g
−1)

=
m∑
i=1

m∑
j=1

1

|G|
∑
g∈G

Aii(g)Bjj(g
−1)

= 0.

If M ∼= N , we can use essentially the same technique.

Now, let V = ⊕k
i=1V

⊕mi
i , where mi denotes the multiplicity of Vi in V .

Theorem 12.3. χV =
∑k

i=1miχ
Vi.

Theorem 12.4. 〈χV , χVi〉 =
∑k

j=1〈mjχ
Vj , χVi〉 = mi.

Theorem 12.5. 〈χV , χV 〉 =
∑k

j=1

∑k
i=1〈mjχ

Vj ,miχ
Vi〉 =

∑k
i=1m

2
i .

Theorem 12.6. The scalar product 〈χV , χV 〉 is equal to 1 iff exactly one expression of the form mi is
equal to 1 and all the others are equal to 0 iff V is irreducible.

Example 12.7. Recall that 〈χW2 , χW2〉 = 2, as above. Therefore, χW2 is not irreducible.

Theorem 12.8. If χM = χV , then M ∼= V , and:

〈χM , χVi〉 = mi =⇒M ∼= ⊕k
i=1V

⊕mi
i
∼= V.

Note that the converse also holds: the above theorem is biconditional.

We thus have that characters determine the representations.
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