
Intoduction to Rings

All rings in this note are commutative.

1. Basic Definitions and Examples

Ring

(R, ·,+) R : set

· : multiplication (it can be non-commutative)

+ : addition

Definition: A ring R is a set together with two binary operations + and · (called addition and
multiplication) satisfying the following axioms:

(i) (R, +) forms an abelian group. 0 is the identity for this group, and the inverse of the ring element
a will be denoted by −a,

(ii) (R, ·) forms a semi group (associative multiplication: (a · b) · c = a · (b · c) for all a, b, c ∈ R).
It may not have the identity, and if it does then the identity is 1, and has no inverse in general,

(iii) the distributive law a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

Definition: If (R/{0}, ·) has an identity and forms a group then R is a division ring (or skew field),
the ring is an abelian group. If (R, ·) is commutative then R is a field.

Definition: Let R be a ring

(1) A nonzero element a of R is called a zero divisor if there is a nonzero element b in R such that
either ab = 0 or ba = 0.

(2) A commutative ring with identity 1 6= 0 is called an integral domain if R has no zero-divisor.

H (Hamilton Quaternions) =L{a+ bi + cj + dk : a, b, c, d ∈ R}

∼=L
{[

y z
z y

]
: y, z ∈ C

}
i2 = j2 = k2 = ijk = −1 4 dimensional vector space over R

Examples:

Division ring:
1



2

Q8 = {1,−1, i,−i, j,−j,k,−k} i2 = j2 = k2 = ijk = −1 is a group of order 8
Quaternions D4 � Q8

i · ijk = −jk = i(−1) = −i

jk = i

−k = ji

−ki = j(−1) = −j

ki = j

k2 · i = −1 · i = −i = kj

Fields: C,Q,R,Zp

Division ring: H
Integral domain: R[x],Z
Rings: Zn for n not prime, CG - group algebras Z× Z, Matn×n(C)

Definition: Algebra is a special kind of ring. A is a ring which contains a field F ⊆ A and A is a
vector space over F .

A ∼= LF {f1a1 + f2a2 + · · ·+ fnan : fi ∈ F and ai ∈ A}.

Example:

RQ8 = group algebra over R of Q8(not the same ring as H)

= LR{1, (−1), i, (−i), j, (−j),k, (−k)} dim 8 vector space over R

The group ring RQ8 is not a division ring, it is not isomorphic to H, and has zero divisors.

2. Ring Homomorphisms and Quotient Rings

Lemma: For G be a finite group, CG ∼= End(CG).
Sketch of a proof: For x ∈ CG, φx(g) = gx

φx : CG→ CG
=⇒ φ : CG→ End(CG)

Definition: Let R and T be rings.

(1) A ring homomorphism is a map φ : R → T which preserves multiplication and addition
structures

φ(r1 +R r2) = φ(r1) +T φ(r2) for all r1, r2 ∈ R
φ(r1 ·R r2) = φ(r1) ·T φ(r2) for all r1, r2 ∈ R

(2) A bijective ring homomorphism is called an isomorphism.

Proposition: Let R and T be rings and let φ : R→ T be a homomorphism.

(1) ker(φ)⊆ R is an ideal of R.

(2) img(φ)⊆ T is a subring of T .

Theorem: (The First Isomorphism Theorem for Rings) If φ : R → T is a homomorphism of rings,
then the kernel of φ is an ideal of R, the image of φ is a subring of S and R/kerφ is isomorphic as a
ring to φ(R) (img(φ)∼= R/ker(φ)).
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3. Properties of Ideals

Definition: Let A be any subset of the ring R. Let (A) denote the smallest ideal of R containing A,
called the ideal generated by A.

The left ideal generated by A, such that A an anbelian group (written additively):

{ra : r ∈ R and a ∈ A} ⊆ A
similarly, the right ideal generated by A:

{ar : r ∈ R and a ∈ A} ⊆ A
and the (two-sided) ideal generated by A:

{rar′ : r, r′ ∈ R and a ∈ A} ⊆ A.


