Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains

All rings in this note are commutative.

1. Euclidean Domains

Definition: *Integral Domain* is a ring with no zero divisors (except 0).

Definition: Any function \(N : R \to \mathbb{Z}^+ \cup 0 \) with \(N(0) = 0 \) is called a *norm* on the integral domain \(R \). If \(N(a) > 0 \) for \(a \neq 0 \) define \(N \) to be a *positive norm*.

Definition: *Euclidean Domain* is an integral domain with a division algorithm that is \(\forall a, b \in R \) such that \(b \neq 0 \) there is a norm on \(R \) \(N : R \to \mathbb{Z}^+ \) with

\[
a = qb + r \quad \text{and} \quad r = 0 \text{ or } N(r) < N(b).
\]

The element \(q \) is called the *quotient* and the element \(r \) the *remainder* of the division.

Examples

1. Fields are Euclidean Domains where any norm will satisfy the condition, e.g., \(N(a) = 0 \) for all \(a \).
2. The integers \(\mathbb{Z} \) are a Euclidean Domain with norm given by \(N(a) = |a| \).
3. The ring \(\mathbb{Z} \) of polynomials with integer coefficients is not a Euclidean Domain (for any choice of norm).

Examples on Sage

1. \(\mathbb{Z}_2[x]/(1 + x + x^2) \)

```
sage: IntegerModRing(2)
Ring of integers modulo 2
sage: R1 = IntegerModRing(2)
sage: R1['x']
Univariate Polynomial Ring in x over Ring of integers modulo 2 (using NTL)
sage: R2 = R1['x']
sage: R2 gens()
(x,)
sage: R2 gen()
x
sage: x = R2 gen()
sage: R2 ideal(1+x+x^2)
Principal ideal (x^2 + x + 1) of Univariate Polynomial Ring in x over Ring of integers modulo 2 (using NTL)
sage: I1 = R2 ideal(1+x+x^2)
sage: R2 quotient(I1)
Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 2
sage: R3 = R2 quotient(I1)
sage: R3 gens()
(xbar,)
```
sage: one = R3.one()
sage: one
1
sage: 1
1
sage: one == 1
True
sage: 1.parent()
Integer Ring
sage: one.parent()
Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 2
with modulus x^2 + x + 1
sage: R3.gens()
(xbar,)
sage: xbar = R3.gen()
sage: [[y*z for y in [0,one,xbar,one+xbar]] for z in [0,one,xbar,....: one+xbar]]
[[0, 0, 0, 0],
 [0, 1, xbar, xbar + 1],
 [0, xbar, xbar + 1, 1],
 [0, xbar + 1, 1, xbar]]
sage: [[y+z for y in [0,one,xbar,one+xbar]] for z in [0,one,xbar,....: one+xbar]]
[[0, 1, xbar, xbar + 1],
 [1, 0, xbar + 1, xbar],
 [xbar, xbar + 1, 0, 1],
 [xbar + 1, xbar, 1, 0]]
sage: I1.is_maximal()
True
sage: R3.is_field()
True

(2) \(\mathbb{R}[x]/(1 + x^2) \cong \mathbb{C} \)

sage: R4 = RR['x']
sage: R4
Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: R4 = QQ['x']
sage: R4
Univariate Polynomial Ring in x over Rational Field
sage: R4 = RR['x']
sage: CC
Complex Field with 53 bits of precision
sage: R4
Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: x = R4.gen()
sage: R4.quotient(R4.ideal(1+x^2))
Univariate Quotient Polynomial Ring in xbar over Real Field with 53 bits of
precision with modulus x^2 + 1.00000000000000
sage: R5 = R4.quotient(R4.ideal(1+x^2))
sage: R5.is_field()
True
sage: xbar = R5.gen()
sage: (3+2*xbar)*(3/13-2/13*xbar)
1.00000000000000
Example (Euclidean Algorithm)

\[\text{gcd}(18, 30)\]

\[
\begin{align*}
30 &= 1 \cdot 18 + 12 \\
18 &= 1 \cdot 12 + 6 \\
12 &= 2 \cdot 6
\end{align*}
\]

so 6 is the gcd(18, 30)

\[
\begin{align*}
6 &= 18 - 1 \cdot 12 \\
12 &= 30 - 18
\end{align*}
\] \[\Rightarrow 6 = -1 \cdot 30 + 2 \cdot 18 \]

so 6 \in (18, 30) = (6)

Now generalize this to Euclidean Domain, this shows that every Euclidean Domain is a Principal Ideal Domain.

2. Principal Ideal Domains

Definition: A Principal Ideal Domain (P.I.D.) is an integral domain in which every ideal is principal.

Examples

(1) The polynomial ring \(\mathbb{R}[x] \) is a Euclidean Domain (or a Principal Ideal Domain).

(2) There are integral domains that are not Euclidean Domain, e.g., \(\mathbb{Z}[x] \).

(3) If \(F \) is a field, \(F[x] \) is a Euclidean Domain.

(4) For \(x^3 + 1 \) and \(x^2 + 2x + 1 \) in \(\mathbb{Q}[x] \), show \((x^3 + 1, x^2 + 2x + 1) = x + 1 \)

\[
\begin{align*}
x^3 + 1 &= x(x^2 + 2x + 1) - 2x^2 - x + 1 \\
x^2 + 2x + 1 &= -\frac{1}{2}(-2x^2 - x + 1) + \frac{3}{2}x + \frac{3}{2} \\
-2x^2 - x + 1 &= -\frac{4}{3}x\left(\frac{3}{2}x + \frac{3}{2}\right) + x + 1
\end{align*}
\]

Exercise: Compute \(\text{gcd}(2, x) \).

Definition:

(1) An ideal \(P \subseteq R \) is a prime ideal if \(1 \not\in P \) (i.e., \(P \neq R \)) and if \(ab \in P \) then either \(a \in P \) or \(b \in P \).

(2) An ideal \(M \) in an arbitrary ring \(R \) is called a maximal ideal if \(M \neq R \) and the only ideals containing \(I \) are \(I \) and \(R \).

Theorem: Assume \(R \) is commutative with identity 1.

(1) The ideal \(I \) is a maximal ideal if and only if the quotient ring \(R/I \) is a field.

(2) The ideal \(I \) is a prime ideal in \(R \) if and only if the quotient ring \(R/I \) is an integral domain.
Every maximal ideal of R is a prime ideal.

Sketch of a proof:

1. There are two things to be shown here.

 \Rightarrow If I is a maximal ideal of R, then every non-zero element of R/I is a unit. A strategy for doing this is as follows: if $a \in R$ does not belong to I (so $a + I$ is not the zero element in R/I), then the fact that I is maximal as an ideal of R means that the only ideal of R that contains both I and the element a is R itself. In particular the only ideal of R that contains both I and the element a contains the identity element of R.

 \Leftarrow If R/I is a field (i.e. if every non-zero element of R/I is a unit), then I is a maximal ideal of R. A useful strategy for doing this is to suppose that J is an ideal of R properly containing I, and try to show that J must be equal to R.

2. As mentioned in class, this follows by translating notion of prime ideal into the language of quotients.

 $rs \in I \iff (r + I)(s + I) = I \implies r \in I$ or $s \in I \implies r + I = I$ or $s + I = I$

3. I is maximal ideal $\implies R/I$ is a field $\implies R/I$ is an Ideal Domain $\implies I$ is prime if we followed (2).

Proposition: If R is a Principal Ideal Domain then I is prime ideal $\iff I$ is maximal ideal.

Sketch of a proof: Just need to show "\Rightarrow".

Assume $I = (p) \subseteq (m)$ maximal $\subseteq R$ then $p = rm \implies m \in (p)$ or $r \in (p)$.

If $m \in (p)$ then $(m) = (p)$.

If $r \in (p)$ then $(m) = R$ (not possible).

Corollary: R is a field $\iff R[x]$ is a Principal Ideal Domain.

Sketch of a proof: We discussed "\Rightarrow" as an example since R field $\implies R[x]$ is a Euclidean Domain $\implies R[x]$ is a Principal Ideal Domain.

"\Leftarrow" because (x) is prime $\implies (x)$ is max $\implies R[x]/(x) \cong R$ is field.

3. Unique Factorization Domains

Definition: Let R be an integral domain.

1. Suppose $r \in R$ is nonzero and is not a unit. The r is called *irreducible* in R if whenever $r = ab$ with $a, b \in R$, at least one of a or b must be a unit in R. Otherwise, r is said to be *reducible*.

2. The nonzero element $p \in R$ is called *prime* in R if the ideal (p) generated by p is a prime ideal.

Note: irreducible and prime are not the same.

Examples

$R = \mathbb{Z}[i\sqrt{5}]$ is not a Principal Ideal Domain.

$\gamma = 2 + i\sqrt{5}$ is an irreducible element.

$\gamma(2 - i\sqrt{5}) = 9$ so $9 \in (\gamma)$ but $9 = 3 \cdot 3$ and $3 \notin (\gamma)$

Proposition: In an integral domain a prime element, p, is always irreducible.

Sketch of a proof: $p = ab \implies a \in (p), a = rp \implies p = prb \implies b$ unit.

(since either $a \in (p)$ or $b \in (p)$)

Proposition: In a Principal Ideal Domain a nonzero element, p, is prime if and only if it is irreducible.
Sketch of a proof: if r is irreducible (want to show (r) is a prime ideal).
(r) is contained in some maximal ideal $(m) \iff r = ma$ with m not a unit therefore a is a unit and $(r) = (m)$.
(r) is maximal ideals we know maximal are prime ideals.