
Euclidean Domains, Principal Ideal Domains,
and Unique Factorization Domains

All rings in this note are commutative.

1. Euclidean Domains

Definition: Integral Domain is a ring with no zero divisors (except 0).

Definition: Any function N : R→ Z+ ∪ 0 with N(0) = 0 is called a norm on the integral domain R.
If N(a) > 0 for a 6= 0 define N to be a positive norm.

Definition: Euclidean Domain is an integral domain with a division algorithm that is ∀a, b ∈ R such
that b 6= 0 there is a norm on R N : R→ Z+ with

a = qb+ r and r = 0 or N(r) < N(b).

The element q is called the quotient and the element r the remainder of the division.

Examples

(1) Fields are Euclidean Domains where any norm will satisfy the condition, e.g., N(a) = 0 for all
a.

(2) The integers Z are a Euclidean Domain with norm given by N(a) = |a|.

(3) the ring Z of polynomials with integer coefficients is not a Euclidean Domain (for any choice
of norm).

Examples on Sage

(1) Z2[x]/(1 + x+ x2)

sage: IntegerModRing(2)

Ring of integers modulo 2

sage: R1 = IntegerModRing(2)

sage: R1[’x’]

Univariate Polynomial Ring in x over Ring of integers modulo 2 (using NTL)

sage: R1[’x,y,z’]

Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 2

sage: R2 = R1[’x’]

sage: R2.gens()

(x,)

sage: R2.gen()

x

sage: x = R2.gen()

sage: R2.ideal(1+x+x^2)

Principal ideal (x^2 + x + 1) of Univariate Polynomial Ring in x over Ring

of integers modulo 2 (using NTL)

sage: I1 = R2.ideal(1+x+x^2)

sage: R2.quotient(I1)

Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 2

with modulus x^2 + x + 1

sage: R3 = R2.quotient(I1)

sage: R3.gens()

(xbar,)
1
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sage: one = R3.one()

sage: one

1

sage: 1

1

sage: one == 1

True

sage: 1.parent()

Integer Ring

sage: one.parent()

Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 2

with modulus x^2 + x + 1

sage: R3.gens()

(xbar,)

sage: xbar = R3.gen()

sage: [[y*z for y in [0,one,xbar,one+xbar]] for z in [0,one,xbar,

....: one+xbar]]

[[0, 0, 0, 0],

[0, 1, xbar, xbar + 1],

[0, xbar, xbar + 1, 1],

[0, xbar + 1, 1, xbar]]

sage: [[y+z for y in [0,one,xbar,one+xbar]] for z in [0,one,xbar,

....: one+xbar]]

[[0, 1, xbar, xbar + 1],

[1, 0, xbar + 1, xbar],

[xbar, xbar + 1, 0, 1],

[xbar + 1, xbar, 1, 0]]

sage: I1.is_maximal()

True

sage: R3.is_field()

True

(2) R[x]/(1 + x2) ∼= C

sage: R4 = RR[’x’]

sage: R4

Univariate Polynomial Ring in x over Real Field with 53 bits of precision

sage: R4 = QQ[’x’]

sage: R4

Univariate Polynomial Ring in x over Rational Field

sage: R4 = RR[’x’]

sage: CC

Complex Field with 53 bits of precision

sage: R4

Univariate Polynomial Ring in x over Real Field with 53 bits of precision

sage: x = R4.gen()

sage: R4.quotient(R4.ideal(1+x^2))

Univariate Quotient Polynomial Ring in xbar over Real Field with 53 bits of

precision with modulus x^2 + 1.00000000000000

sage: R5 = R4.quotient(R4.ideal(1+x^2))

sage: R5.is_field()

True

sage: xbar = R5.gen()

sage: (3+2*xbar)*(3/13-2/13*xbar)

1.00000000000000
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sage: _.parent()

Univariate Quotient Polynomial Ring in xbar over Real Field with 53 bits of

precision with modulus x^2 + 1.00000000000000

sage: (3+2*xbar)*(3/13-2/13*xbar)==R5.one()

True\\

Example (Euclidean Algorithm)

gcd(18, 30)

30 = 1 · 18 + 12

18 = 1 · 12 + 6

12 = 2 · 6
so 6 is the gcd(18, 30)

6 = 18− 1 · 12

12 = 30− 18

}
=⇒ 6 = −1 · 30 + 2 · 18

so 6 ∈ (18, 30) = (6)

Now generalize this to Euclidean Domain, this shows that every Euclidean Domain is a Principal Ideal
Domain.

2. Principal Ideal Domains

Definition: A Principal Ideal Domain (P.I.D.) is an integral domain in which every ideal is principal.

Examples

(1) The polynomial ring R[x] is a Euclidean Domain (or a Principal Ideal Domain).

(2) There are integral domains that are not Euclidean Domain, e.g., Z[x].

(3) If F is a field, F[x] is a Euclidean Domain.

(4) For x3 + 1 and x2 + 2x+ 1 in Q[x], show (x3 + 1, x2 + 2x+ 1) = x+ 1

x3 + 1 = x(x2 + 2x+ 1)− 2x2 − x+ 1

x2 + 2x+ 1 = −1

2
(−2x2 − x+ 1) +

3

2
x+

3

2

−2x2 − x+ 1 = −4

3
x

(
3

2
x+

3

2

)
+ x+ 1

Exercise: Compute gcd(2, x).

Definition:

(1) An ideal P ⊆ R is a prime ideal if 1 6∈ P (i.e., P 6= R) and if ab ∈ P then either a ∈ P or
b ∈ P .

(2) An ideal M in an arbitrary ring R is called a maximal ideal if M 6= R and the only ideals
containing I are I and R

Theorem: Assume R is commutative with identity 1.

(1) The ideal I is a maximal ideal if and only if the quotient ring R/I is a field.

(2) The ideal I is a prime ideal in R if and only if the quotient ring R/I is an integral domain.
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(3) Every maximal ideal of R is a prime ideal.

Sketch of a proof:

(1) There are two things to be shown here.
⇒ If I is a maximal ideal of R, then every non-zero element of R/I is a unit. A
strategy for doing this is as follows: if a ∈ R does not belong to I (so a+ I is not the
zero element in R/I), then the fact that I is maximal as an ideal of R means that the
only ideal of R that contains both I and the element a is R itself. In particular the
only ideal of R that contains both I and the element a contains the identity element
of R.
⇐ If R/I is a field (i.e. if every non-zero element of R/I is a unit), then I is a
maximal ideal of R. A useful strategy for doing this is to suppose that J is an ideal
of R properly containing I, and try to show that J must be equal to R.

(2) As mentioned in class, this follows by translating notion of prime ideal into the lan-
guage of quotients.
rs ∈ I ⇐⇒ (r + I)(s+ I) = I =⇒ r ∈ I or s ∈ I =⇒ r + I = I or s+ I = I

(3) I is maximal ideal =⇒ R/I is a field =⇒ R/I is an Ideal Domain =⇒ I is prime if
we follwed (2).

Proposition: If R is a Principal Ideal Domain then I is prime ideal ⇐⇒ I is maximal ideal.

Sketch of a proof: Just need to show ”=⇒”.
Assume I = (p) ⊆ (m) maximal ( R then p = rm =⇒ m ∈ (p) or r ∈ (p).
If m ∈ (p) then (m) = (p).
If r ∈ (p) then (m) = R (not possible).

Corollary: R is a field ⇐⇒ R[x] is a Principal Ideal Domain.

Sketch of a proof: We discussed ”=⇒” as an example since R field =⇒ R[x] is a Euclidean Domain
=⇒ R[x] is a Principal Ideal Domain.
”⇐=” because (x) is prime =⇒ (x) is max =⇒ R[x]/(x) ∼= R is field.

3. Unique Factorization Domains

Definition: Let R be an integral domain.

(1) Suppose r ∈ R is nonzero and is not a unit. The r is called irreducible in R if whenever r = ab
with a, b ∈ R, at least one of a or b must be a unit in R. Otherwise, r is said to be reducible.

(2) The nonzero element p ∈ R is called prime in R if the ideal (p) generated by p is a prime ideal.

Note: irreducible and prime are not the same.

Examples

R = Z[i
√

5] is not a Principal Ideal Domain.

γ = 2 + i
√

5 is an irreducible element.
γ(2− i

√
5) = 9 so 9 ∈ (γ) but 9 = 3 · 3 and 3 6∈ (γ)

Proposition: In an integral domain a prime element, p, is always irreducible.

Sketch of a proof: p = ab =⇒ a ∈ (p), a = rp =⇒ p = prb =⇒ b
(since either a∈(p) or b∈(p))

unit.

Proposition: In a Principal Ideal Domain a nonzero element, p, is prime if and only if it is irreducible.
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Sketch of a proof: ⇐= if r is irreducible (want to show (r) is a prime ideal).
(r) is contained in some maximal ideal (m)⇐= r = ma with m not a unit therefore a is a unit and
(r) = (m).
(r) is maximal ideals we know maximal are prime ideals.


