Polynomial Rings

All rings in this note are commutative.

1. POLYNOMIAL RINGS OVER FIELDS

Corollary: F is a field if and only if F[x] is Principal Ideal Domain.

Sketch of a proof: \implies follows because if F is a field then F[x] is Euclidean Domain so gcd algorithm exists and every ideal is generated by gcd of all the generators $\implies F[x]$ is Principal Ideal Domain. $\Leftarrow F[x]$ is a Principal Ideal Domain then (x) is prime ideal.

(x) = polynomials in F[x] with 0 constant terms p(x)q(x) has constant term p(0)q(0)If p(x)q(x) has 0 constant term then p(0) = 0 or q(0) = 0 and hence $p(0) \in (x)$ or $q(0) \in (x)$. $\implies (x)$ is maximal $\implies F[x]/(x)$ is a field but $F[x]/(x) \cong F$

$$F[x] \xrightarrow{\phi} F$$
evaluate $p(x)$ at 0
$$F \cong F[x]/\ker\phi = F[x]/(x)$$

Proposition: The maximal ideals in F[x] are the ideals (f(x)) generated by irreducible polynomials of f(x). In particular, F[x]/(f(x)) is a field if and only if f(x) is irreducible.

2. Properties of Ideals

Proposition: Assume R is commutative with identity 1.

- (1) The ideal I is a maximal ideal if and only if the quotient ring R/I is a field.
- (2) The ideal I is a prime ideal in R if and only if the quotient ring R/I is an integral domain.

Sketch of a proof: I is prime ideal if and only if $I \neq R$ and whenever $ab \in I$, then either $a \in I$ or $b \in I$. R/I is an integral domain if (r+I)(s+I) = I then either r+I = I or s+I = I (where

R/I is an integral domain if (r+I)(s+I) = I then either r+I = I or s+I = I (where r+I = I means $\overline{r} = \overline{0} = \overline{I}$).

Assume I is prime ideal then

$$I = (r+I)(s+I) = \{(r+a)(s+b) : a, b \in I\}$$

 $\implies rs \in I \text{ because } rs + rb + as + ab \in I \text{ and } rb, as, ab \in I.$ $\implies r \in I \text{ or } s \in I \text{ because } I \text{ is prime ideal.}$ $\implies r + I = I \text{ or } s + I = I \implies R/I \text{ is an integral domain.}$ If R/I is an integral domain then for $a, b \in I$

$$ab + I = (a + I)(b + I) = I$$

since R/I is integral domain then either $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$.

Corollary: Every maximal ideal of R is a prime ideal.

Proposition: If R is a Principal Ideal Domain then I is prime ideal implies I is maximal ideal.

Definition: Let R be an integral domain. The nonzero element $p \in R$ is called *prime* in R if the ideal (p) generated by p is a prime ideal.

Propsition: If I is prime ideal and R is a prime then I = (p).

Sketch of a proof: I is contained in a maximal ideal $I = (p) \subseteq (m) \subsetneq R$ $(p \in (m) = \{bm : b \in R\})$. If p = am for some $a \in I$ then $am \in I$ so $a \in I$ or $m \in I = (p)$. If $m \in I$ then $I = (p) = (m)((m) \subseteq (p))$ so I is maximal ideal. If $a \in I$ then a = rp so $p = am = (rp)m \Longrightarrow p - p \cdot r \cdot m = p(1 - r \cdot m) = 0$ then 1 - rm = 0 or m is a unit. If m is a unit, then (m) = R. Contradiction! Conclude I is maximal ideal.

3. POLYNOMIALS IN SEVERAL VARIABLES OVER A FIELD

$$\underset{field}{F} \subseteq \underset{P.I.D.}{F[x]} \subseteq \underset{not \ a \ P.I.D.}{F[x,y]} \subseteq \underset{in \ general}{F[x,y,z]}$$

Example:

Ideals: $(0) \neq F$, (p(x)) and $(f_1(x, y), f_2(x, y), \dots f_n(x, y))$

Definition: A commutative ring *R* with 1 is called *Noetherian* if every ideal of *R* is finitely generated.

Theorem: (*Hilbert's Basis Theorem*) All monomial ideal in $F[x_1, \dots, x_n]$ are Noetherian if F is a field. If R is a Noetherian ring then so is the polynomial ring R[x].

Sketch of a proof: $p(x) = 1 \cdot x^n + a_{n-1} \cdot x^{n-1} + a_{n-2} \cdot x^{n-2} + \dots + a_0$ F[x]/(p(x)) can be thought of as a vector space over F has as basis $\{1, x, x^2, \dots, x^{n-1}\}$. If $g(x) \subseteq F[x]$ where g(x) = p(x)q(x)+r(x) such that $\deg(r(x)) < \deg(p(x)) \Longrightarrow g(x) \in r(x)+(p(x))$ g(x) + (p(x)) = r(x) + (p(x))

Example:

$$F[x]/(x) = \mathcal{L}_F\{1\}$$

$$\mathbb{Z}_2[x]/(x^2 + x + 1) = \{0, 1, x, x + 1\} = \mathcal{L}_2\{1, x\}$$

Example:

$$x^{3} + 1 = p(x)$$

$$F[x]/(x^{3} + 1) = \mathcal{L}_{F}\{1, x, x^{2}\}$$

$$x^{4} = x(x^{3} + 1) - x$$

$$x^{4} + (p(x)) = -x + (p(x))$$

There is no unique division algorithm when you work over polynomial rings with more variables

$$x^2 + y^2 - 1$$
 and $x^4 - y + 2$

 \implies Next best thing is to put an order on the monomials and cancel the *largest* terms.

Note that Hilbert's Basis Theorem shows how larger Noetherian rings may be built from existing ones in a manner analogous to the theorem given below.

Theorem: R is a Unique Factorization Domain if and only if R[x] is a Unique Factorization Domain.