Polynomial Rings

All rings in this note are commutative.

1. POLYNOMIALS IN SEVERAL VARIABLES OVER A FIELD AND GRÖBNER BASES

If $f \in \langle f_1, f_2, \cdots, f_m \rangle$ and $f = a_1 f_1 + a_2 f_2 + \cdots + a_m f_m$ then $I' = \langle z f_1 - z_1, z f_2 - z_2, \cdots, z f_m - z_m \rangle \subset \mathbb{C}[x_1, x_2, \cdots, x_n, \underbrace{z, z_1, z_2 \cdots, z_m}_{\text{dummy variables}}]$

reduce $_{I'}(zf) = a_1 z_1 + a_2 z_2 + \dots + a_m z_m$

 $LT(a_1z_1 + a_2z_2 + \dots + a_mz_m) < LT(zf)$

and we have chosen our ideals so that

$$f = a_1 f_1 + a_2 f_2 + \dots + a_m f_m$$

There was an example last time where $f_1 = x^3y - xy^2 + 1$, $f_2 = x^2y^2 - y^3 - 1$ and we saw that reducing $x + y \pmod{\langle f_1 - z_1, f_2 - z_2 \rangle}$ isn't good enough to tell us how to write x + y in terms of f_1 and f_2 because

$$x_{(1,0,0,0)} + y_{(0,1,0,0)} = yz_1 - xz_2 \pmod{I'}$$

but LT(x+y) = x and $LT(yz_1 - xz_2) = xz_2$ and $x < xz_1$ so x + y is the smallest element of its class. However the following example fixes that.

Example:

Choose the lexicographic ordering x > y on F[x, y] and consider the ideal I generated by $f_1 = x^3y - xy^2 + 1$ and $f_2 = x^2y^2 - y^3 - 1$. We know that $x + y \in \langle f_1, f_2 \rangle$, but we wish to find a_1 and a_2 such that $x + y = a_1f_1 + a_2f_2$.

To find the a_1 and a_2 so that x + y can be written in terms of $G = \{f_1, f_2\}$ as $x + y = a_1f_1 + a_2f_2$ we reduce z(x + y) modulo the ideal $\langle zf_1 - z_1, zf_2 - z_2 \rangle$ and we find that it is equivalent to $yz_1 - xz_2$. In this case LT(z(x + y)) = xz and $LT(yz_1 - xz_2) = xz_2$ and $xz > xz_2$ so then $yz_1 - xz_2$ is the smallest element of the class where $I' = \langle zf_1 - z_1, zf_2 - z_2 \rangle$ so we have $z(x + y) + I' = yz_1 - xz_2 + I'$. This shows that $x + y = yf_1 - xf_2$. We can check this by calculating explicitly that $y(x^3y - xy^2 + 1) - x(x^2y^2 - y^3 - 1) = x + y$.

Theorem: Fix a monomial ordering on $R = F[x_1, \dots, x_n]$ and suppose $\{g_1, \dots, g_m\}$ and $\{g_{\sigma(1)}, \dots, g_{\sigma(m)}\}$ be Gröbner basis for the nonzero ideal I in R. Let $f_I, f_{I'} \in I$ and r, r' be the quotient remainder where division algorithm with two Gröbner basis can be written uniquely in the form

$$f = f_I + r = f_{I'} + r'$$
$$r - r' = f_{I'} - f_I \in I$$

with none of the monomials in r - r' are divisible by any of the leading terms $LT(g_i)$ but $LT(r - r') \in LT(\langle g_1, \dots, g_m \rangle)$ and the only way this can happen is if r - r' = 0. r is unique representative of the coset such that none of the monomials of r are divisible by $LT(g_i)$.

Corollary: If I is an ideal in the polynomial ring $F[x_1, x_2, \dots, x_n]$ over a field F then I is finitely generated.

Theorem: If g_1, g_2, \dots, g_m are any set of elements of I such that

$$LT(I) = \langle LT(g_1), LT(g_2), \cdots, LT(g_m) \rangle$$

then $I = \langle g_1, g_2, \cdots, g_m \rangle$.

 $\mathbf{2}$

Sketch of proof: Let $f \in I$, then $f = f_I + r$ where r is remainder after polynomial division. $\implies f \in I$ and $f_I \in I$ then $f - f_I = r \in I \implies LT(r) \in LT(I) = \langle LT(g_1), LT(g_2), \cdots, LT(g_m) \rangle$ $\implies LT(r)$ id an alg com of the $LT(g_i)$ and a monomial but this is impossible unless LT(r) = 0because none of the monomials of r are divisible by $LT(g_i)$.

Proposition: Fix a monomial ordering on $R = F[x_1, \dots, x_n]$ and let I be a nonzero ideal in R. I has a Gröbner basis.

Sketch of proof: Take LT(I) and find a finite list of generators

 $LT(h_1), \cdots, LT(h_k)$ for some list of elements of the ring $R: h_1, \cdots, h_k$.

This list exists because R is Noetherian. The list h_1, \dots, h_k generates I and is the Gröbner basis.

Exercise: Given $f \in \langle g_1, g_2, \dots, g_m \rangle$ does there exist a polynomial $p(z_1, \dots, z_m)$ with coefficient in the ring where g_1, g_2, \dots, g_m live such that $p(g_1, g_2, \dots, g_m) = f$ if not, find r in the polynomial ring such that

$$p(g_1, g_2, \cdots, g_m) = f - r.$$