
Polynomial Rings

All rings in this note are commutative.

1. Polynomials in Several Variables over a Field and Gröbner Bases

If f ∈ 〈f1, f2, · · · , fm〉 and f = a1f1 + a2f2 + · · ·+ amfm then

I ′ = 〈zf1 − z1, zf2 − z2, · · · , zfm − zm〉 ⊂ C[x1, x2, · · · , xn, z, z1, z2 · · · , zm︸ ︷︷ ︸
dummy variables

]

reduce I′(zf) = a1z1 + a2z2 + · · ·+ amzm

LT (a1z1 + a2z2 + · · ·+ amzm) < LT (zf)

and we have chosen our ideals so that

f = a1f1 + a2f2 + · · ·+ amfm .

There was an example last time where f1 = x3y−xy2+1, f2 = x2y2−y3−1 and we saw that reducing
x + y (mod 〈f1 − z1, f2 − z2〉) isn’t good enough to tell us how to write x + y in terms of f1 and f2
because

x
(1,0,0,0)

+ y
(0,1,0,0)

= yz1
(0,1,1,0)

− xz2
(1,0,0,1)

(mod I ′)

but LT (x+ y) = x and LT (yz1 − xz2) = xz2 and x < xz1 so x+ y is the smallest element of its class.
However the following example fixes that.

Example:

Choose the lexicographic ordering x > y on F [x, y] and consider the ideal I generated by f1 =
x3y − xy2 + 1 and f2 = x2y2 − y3 − 1. We know that x + y ∈ 〈f1, f2〉, but we wish to find a1 and
a2 such that x + y = a1f1 + a2f2.

To find the a1 and a2 so that x+y can be written in terms of G = {f1, f2} as x+y = a1f1+a2f2 we
reduce z(x+ y) modulo the ideal 〈zf1− z1, zf2− z2〉 and we find that it is equivalent to yz1− xz2.
In this case LT (z(x + y)) = xz and LT (yz1 − xz2) = xz2 and xz > xz2 so then yz1 − xz2 is
the smallest element of the class where I ′ = 〈zf1 − z1, zf2 − z2〉 so we have z(x + y) + I ′ =
yz1− xz2 + I ′. This shows that x+ y = yf1− xf2. We can check this by calculating explicitly that
y(x3y − xy2 + 1)− x(x2y2 − y3 − 1) = x + y.

Theorem: Fix a monomial ordering on R = F [x1, · · · , xn] and suppose {g1, · · · , gm} and {gσ(1), · · · , gσ(m)}
be Gröbner basis for the nonzero ideal I in R. Let fI , fI′ ∈ I and r, r′ be the quotient remainder
where division algorithm with two Gröbner basis can be written uniquely in the form

f = fI + r = fI′ + r′

r − r′ = fI′ − fI ∈ I

with none of the monomials in r− r′ are divisible by any of the leading terms LT (gi) but LT (r− r′) ∈
LT (〈g1, · · · , gm〉) and the only way this can happen is if r − r′ = 0. r is unique representative of the
coset such that none of the monomials of r are divisible by LT (gi).

Corollary: If I is an ideal in the polynomial ring F [x1, x2, · · · , xn] over a field F then I is finitely
generated.

Theorem: If g1, g2, · · · , gm are any set of elements of I such that

LT (I) = 〈LT (g1), LT (g2), · · · , LT (gm)〉
then I = 〈g1, g2, · · · , gm〉.
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Sketch of proof: Let f ∈ I, then f = fI + r where r is remainder after polynomial division.
=⇒ f ∈ I and fI ∈ I then f − fI = r ∈ I =⇒ LT (r) ∈ LT (I) = 〈LT (g1), LT (g2), · · · , LT (gm)〉
=⇒ LT (r) id an alg com of the LT (gi) and a monomial but this is impossible unless LT (r) = 0
because none of the monomials of r are divisible by LT (gi).

Proposition: Fix a monomial ordering on R = F [x1, · · · , xn] and let I be a nonzero ideal in R. I
has a Gröbner basis.

Sketch of proof: Take LT (I) and find a finite list of generators

LT (h1), · · · , LT (hk) for some list of elements of the ring R : h1, · · · , hk.
This list exists because R is Noetherian. The list h1, · · · , hk generates I and is the Gröbner basis.

Exercise: Given f ∈ 〈g1, g2, · · · , gm〉 does there exist a polynomial p(z1, · · · , zm) with coefficient in
the ring where g1, g2, · · · , gm live such that p(g1, g2, · · · , gm) = f if not, find r in the polynomial ring
such that

p(g1, g2, · · · , gm) = f − r.


