PRACTICE FINAL

- (1) Show that a group of order $2001 = 3 \cdot 23 \cdot 29$ must contain a normal cyclic subgroup of index 3.
- (2) For $n \ge 3$, the dihedral group D_n of order 2n is given by $D_n = \langle a, b | a^n = b^2 = 1, ba = a^{-1}b \rangle$.
 - (a) What are the conjugacy classes of D_n ?
 - (b) When n is odd, how many Sylow 2-subgroup does D_n have?
 - (c) What are the composition factors of D_n ?
 - (d) How many irreducibles does D_n have? What are the dimensions?
- (3) For R a U.F.D., show that a non-zero element is prime if and only if it is irreducible.
- (4) For a ring R we say that $a \in R$ is right quasi-regular (r.q.r.) if a + x = ax has a solution $x = b \in R$. The unity is never r.q.r. and 0 is always r.q.r. Show the following:
 - (a) If a^2 is r.q.r., then a is r.q.r.
 - (b) If R is a division ring, then the unity is the only non-r.q.r elements of R.
 - (c) R is a division ring if and only if all elements of R but one are r.q.r.
- (5) Let $\phi: G \to Aut(M)$ be a representation of a finite group G and let χ be its associated character.
 - (a) Show that ¹/_{|G|} Σ_{g∈G} χ(g) is equal to the number of time the trivial representation appears in decomposition of φ into irreducibles.
 (b) Show that if ¹/_{|G|} Σ_{g∈G} ||χ(g)||² = 3, then φ is the direct sum of three distinct irreducible
 - representations.
- (6) Let R be a commutative ring with identity 1 and M a finitely generated left R-module.
 - (a) Show that for any $m \in M$, the set $Ann(m) = \{a \in R : am = 0\} \subseteq R$ is an ideal.
 - (b) Let $P = \{Ann(m) : 0 \neq m \in M\}$. Show that a maximal element of P must be a prime ideal.