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1 MATH 6121 exercises

Exercise 1.1. If u⃗ ∈ Cn and Mu⃗ = 0⃗Cm , then show that T (L−1B (u⃗)) = 0⃗W .

Solution 1.2. Suppose that u⃗ ∈ Cn and Mu⃗ = 0⃗Cm , with M = C[T ]B. Let u⃗ be denoted as follows:

u⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
⋮
un

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cn.

Now, since M = C[T ]B, we have that:

M = [LC (T (b⃗1)) , LC (T (b⃗2)) , . . . , LC (T (b⃗n))] ,

letting B = {b⃗1, b⃗2, . . . , b⃗n}. Since Mu⃗ = 0⃗Cm , we have that:

LC (T (b⃗1))u1 +⋯ +LC (T (b⃗n))un = 0⃗Cm .

By linearity of LC and T , we have that:

LC (T (u1b⃗1 +⋯ + unb⃗n)) = 0⃗Cm .

Since LC is a linear isomorphism, from the above equality, we have that:

T (u1b⃗1 +⋯ + unb⃗n) = 0⃗W .

Equivalently, T (L−1B (u⃗)) = 0⃗W .

Exercise 1.3. Show that V ⊕W forms a vector space.

Solution 1.4. Given (v⃗, w⃗), (x⃗, y⃗) ∈ V ⊕W , we have that

(v⃗, w⃗) +⊕ (x⃗, y⃗) ∈ V ⊕W,

since +V is a binary operation on V and +W is a binary operation onW , with v⃗+V x⃗ ∈ V and w⃗+W y⃗ ∈W .

The commutativity of +⊕ is inherited from the commutativity of +V and +W in an obvious manner, as
indicated below.

(v⃗1, w⃗1) +⊕ (v⃗2, w⃗2) = (v⃗1 +V v⃗2, w⃗1 +W w⃗2)
= (v⃗2 +V v⃗1, w⃗2 +W w⃗1)
= (v⃗2, w⃗2) +⊕ (v⃗1, w⃗1).
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The associativity of +⊕ is inherited from the associativity of +V and +W in an obvious manner, as
indicated below.

(v⃗1, w⃗1) +⊕ ((v⃗2, w⃗2) +⊕ (v⃗3, w⃗3)) = (v⃗1, w⃗1) +⊕ (v⃗2 +V v⃗3, w⃗2 +W w⃗3)

= (v⃗1 +V (v⃗2 +V v⃗3), w⃗1 +W (w⃗2 +W w⃗3))
= ((v⃗1 +V v⃗2) +V v⃗3, (w⃗1 +W w⃗2) +W w⃗3)
= (v⃗1 +V v⃗2, w⃗1 +W w⃗2) +⊕ (v⃗3, w⃗3)

= ((v⃗1, w⃗1) +⊕ (v⃗2, w⃗2)) +⊕ (v⃗3, w⃗3).

Given (v⃗, w⃗) ∈ V ⊕W , we have that

(v⃗, w⃗) +⊕ (−v⃗,−w⃗) = (0⃗, 0⃗)

and
(v⃗, w⃗) +⊕ (0⃗, 0⃗) = (0⃗, 0⃗) +⊕ (v⃗, w⃗) = (v⃗, w⃗).

The domain of the operation ⋅⊕ is from the Cartesian product of the underlying field of V and W with
the direct sum V ⊕W . It is clear that the codomain of this operation is V ⊕W , since we have that

c ⋅⊕ (v⃗, w⃗) = (cv⃗, cw⃗) ∈ V ⊕W

since cv⃗ ∈ V and vw⃗ ∈ W . The properties concerning the operation ⋅⊕ given below show that V ⊕W
forms a vector space with respect to the operations +V ⊕W and ⋅V ⊕W .

(c + d) ⋅⊕ (v⃗, w⃗) = ((c + d) ⋅V v⃗, (c + d) ⋅W w⃗)
= (c ⋅V v⃗ + d ⋅V v⃗, c ⋅W w⃗ + d ⋅W w⃗)
= (c ⋅V v⃗, c ⋅W w⃗) +⊕ (d ⋅V v⃗, d ⋅W w⃗)
= c ⋅⊕ (v⃗, w⃗) +⊕ d ⋅⊕ (v⃗, w⃗) ,

c ⋅⊕ ((v⃗, w⃗) +⊕ (x⃗, y⃗)) = c ⋅⊕ (v⃗ +V x⃗, w⃗ +W y⃗)
= (c ⋅V (v⃗ +V x⃗) , c ⋅W (w⃗ +W y⃗))
= (c ⋅V v⃗ +V c ⋅V x⃗, c ⋅W w⃗ +W c ⋅W y⃗)
= (c ⋅V v⃗, c ⋅W w⃗) +⊕ (c ⋅V x⃗, c ⋅W y⃗)
= c ⋅⊕ (v⃗, w⃗) +⊕ c ⋅⊕ (x⃗, y⃗) ,

(cd) ⋅⊕ (v⃗, w⃗) = ((cd) ⋅V v⃗, (cd) ⋅W w⃗)
= (c ⋅V (d ⋅V v⃗) , c ⋅W (d ⋅W w⃗))
= c ⋅⊕ (d ⋅V v⃗, d ⋅W w⃗)
= c ⋅⊕ (d ⋅⊕ (v⃗, w⃗)) ,

1 ⋅⊕ (v⃗, w⃗) = (1 ⋅V v⃗,1 ⋅W w⃗)
= (v⃗, w⃗).

Exercise 1.5. Let dim(V ) = n, dim(W ) =m, dim(X) = r, and dim(Y ) = s. Prove that BX⊕Y [T⊕Q]BV ⊕W
is equal to the following (r + s) × (n +m) matrix.

n m

r
s

[ BX [T ]BV 0
0 BY [Q]BW

]
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Solution 1.6. By definition, the transition matrix

BX⊕Y [T ⊕Q]BV ⊕W

is equal to the following matrix:

[LBX⊕Y ((T ⊕Q)(v⃗1, 0⃗)), LBX⊕Y ((T ⊕Q)(v⃗2, 0⃗)), . . . , LBX⊕Y ((T ⊕Q)(v⃗n, 0⃗)),

LBX⊕Y ((T ⊕Q)(0⃗, w⃗1)), LBX⊕Y ((T ⊕Q)(0⃗, w⃗2)), . . . , LBX⊕Y ((T ⊕Q)(0⃗, w⃗m))].

The matrix in the upper-right r × n quadrant of

BX⊕Y [T ⊕Q]BV ⊕W

must be BX [T ]BV , because the first r entries in

LBX⊕Y ((T ⊕Q)(v⃗1, 0⃗))

must be the first r entries in LBX(T (v⃗i)) for all indices i, since BX⊕Y is given by the direct sum of the
bases BX and BY , i.e. BX⊕Y consists of expressions of the form (x⃗j, 0⃗) and (0⃗, y⃗k). Similarly, the last s
entries in

LBX⊕Y ((T ⊕Q)(v⃗i, 0⃗))
all must be 0 since Q(0⃗) = 0⃗. Symmetric arguments may be used to evaluate the remaining quadrants.

Exercise 1.7. Let V = R2, and let W = R2. With respect to the tensor product V ⊗W , show that:

(1,1) ⊗ (1,4) + (1,−2) ⊗ (−1,2) = 0 (1,0) ⊗ (1,0)+
6 (1,0) ⊗ (0,1)+
3 (0,1) ⊗ (1,0)+
0 (0,1) ⊗ (0,1) .

With respect to the direct sum V ⊕W , show that

((1,1) , (1,4)) + ((1,−2) , (−1,2)) = ((2,−1) , (0,6)) .

Solution 1.8. Recall that the tensor product M ⊗N of two modulues M and N over a ring R may
informally be defined as the set of expressions of the form m ⊗ n for m ∈M and n ∈ N , subject to the
following relations:

(i) x⊗ (y + y′) = x⊗ y + x⊗ y′;

(ii) (x + x′) ⊗ y = x⊗ y + x′ ⊗ y;

(iii) (x ⋅ r) ⊗ y = x⊗ (r ⋅ y).

Expand the expression
(1,1) ⊗ (1,4) + (1,−2) ⊗ (−1,2)

using the above relations as follows.

(1,1) ⊗ (1,4) + (1,−2) ⊗ (−1,2)
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= (1,0) ⊗ (1,4) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,4)
= (1,0) ⊗ (1,0) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,4) + (1,0) ⊗ (0,4)
= (1,0) ⊗ (1,0) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,4) + 4(1,0) ⊗ (0,1)
= (1,0) ⊗ (1,0) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + (0,1) ⊗ (0,4)
= (1,0) ⊗ (1,0) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + 4(0,1) ⊗ (0,1)
= (1,0) ⊗ (1,0) + (1,0) ⊗ (−1,2) + (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + 4(0,1) ⊗ (0,1)
+ (0,−2) ⊗ (−1,2)
= (1,0) ⊗ (1,0) − (1,0) ⊗ (1,−2) + (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + 4(0,1) ⊗ (0,1) − 2(0,1) ⊗ (−1,2)
= (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + 4(0,1) ⊗ (0,1) + 2(0,1) ⊗ (1,−2) + 2(1,0) ⊗ (0,1)
= (0,1) ⊗ (1,0) + 6(1,0) ⊗ (0,1) + 2(0,1) ⊗ (1,0)
= 3(0,1) ⊗ (1,0) + 6(1,0) ⊗ (0,1).

Using componentwise addition, we have that (1,1) + (1,−2) = (2,−1) and (1,4) + (−1,2) = (0,6), so
((1,1), (1,4)) + ((1,−2), (−1,2)) = ((2,−1), (0,6)).
Exercise 1.9. Let BV = {v⃗1, v⃗2, v⃗3} and BW = {w⃗1, w⃗2}. Let φ∶V → V be such that

φ (av⃗1 + bv⃗2 + cv⃗3) = cv⃗1 + 2av⃗2 − 3bv⃗3,

and let ψ∶W →W be such that

ψ (aw⃗1 + bw⃗2) = (a + 3b) w⃗1 + (4b − 2a) w⃗2.

Compute BV [φ]BV , BW [ψ]BW , and
BV ⊗W [φ⊗ ψ]BV ⊗W .

Note that BV ⊗W consists of six elements that have a specific order.

Solution 1.10. Begin by computing BV [φ]BV and BW [ψ]BW as follows.

BV [φ]BV = [LBV (φ(v⃗1)), LBV (φ(v⃗2)), LBV (φ(v⃗3))]

=
⎡⎢⎢⎢⎢⎢⎣

c 0 0
0 2a 0
0 0 −3b

⎤⎥⎥⎥⎥⎥⎦
,

BW [ψ]BW = [LBW (ψ(w⃗1)), LBW (ψ(w⃗2))]

= [a + 3b 0
0 4b − 2a

] .

The matrix
BV ⊗W [φ⊗ ψ]BV ⊗W

may be evaluated as the Kronecker product of BV [φ]BV and BW [ψ]BW . Write A = BV [φ]BV , and write
B = BW [ψ]BW . Also, let the entries of A be denoted as follows: A = [aij]1≤i,j≤3. Then the matrix

BV ⊗W [φ⊗ ψ]BV ⊗W
is equal to the Kronecker product of A and B, which is equal to the following matrix:

⎡⎢⎢⎢⎢⎢⎣

a1,1B a1,2B a1,3B
a2,1B a2,2B a2,3B
a3,1B a3,2B a3,3B

⎤⎥⎥⎥⎥⎥⎦
.
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Explicitly, we have that the matrix
BV ⊗W [φ⊗ ψ]BV ⊗W

is equal to the following matrix:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ac + 3bc 0 0 0 0 0
0 4bc − 2ac 0 0 0 0
0 0 2a2 + 6ab 0 0 0
0 0 0 8ab − 4a2 0 0
0 0 0 0 −3ab − 9b2 0
0 0 0 0 0 −12b2 + 6ab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Exercise 1.11. Prove that if φ∶G→H is a homomorphism, then im(φ) ≤H with respect to ○H , where
im(φ) = {φ(g) ∶ g ∈ G}.
Solution 1.12. Given a subset S of the underlying set of a group T , to prove that S forms a subgroup
of T , it suffices to prove that S is closed under the underlying binary operation of T and that S is closed
under inverses with respect to this operation. This property concerning subgroups is sometimes referred
to as the Two-Step Subgroup Test (see Joseph A. Gallian’s Contemporary Abstract Algebra).

So, let g1 and g2 be arbitrary elements in G, so that φ(g1) and φ(g2) are arbitrary elements in im(φ).
Since φ∶G→H is a homomorphism, we have that

φ(g1) ○H φ(g2) = φ(g1 ○G g2) ∈ im(φ),

thus proving that im(φ) is closed with respect to ○H . Similarly, we have that

(φ(g))−1 = φ(g−1) ∈ im(φ)

for g ∈ G, since
(φ(g))−1φ(g) = eH = φ(eG) = φ(g−1g) = φ(g−1)φ(g)

since a group homomorphism must map a group identity element to another group identity element,
since φ(eGg) = φ(g) = φ(eG)φ(g), and thus φ(eG) = eH from the equality φ(g) = φ(eG)φ(g).
Exercise 1.13. Prove that ker(φ) ⊴ G, where ker(φ) = {g ∈ G ∣ φ(g) = eH}.
Solution 1.14. We begin by proving that ker(φ) ≤ G, using the Two-Step Subgroup Test described
above.

Let g1, g2 ∈ G be such that φ(g1) = eH and φ(g2) = eH , so that g1 and g2 are arbitrary elements in the
kernel ker(φ) of the group homomorphism φ∶G→H. We thus have that

φ(g1) ○ φ(g2) = φ(g1 ○ g2) = eH ○ eH = eH ,

thus proving that g1 ○ g2 ∈ ker(φ). Similarly, since for g ∈ G we have that (φ(g))−1 = φ(g−1) as discussed
above, we have that

(φ(g))−1 = e−1H = eH
if g ∈ ker(φ) and thus φ(g−1) = eH if g ∈ ker(φ), thus proving that ker(φ) ≤ G.

Now, let k ∈ ker(φ), and let i ∈ G. It remains to prove that: iki−1 ∈ ker(φ). Equivalently, it remains to
prove that φ(iki−1) = eH . Using the fact that k ∈ ker(φ), we have that

φ(iki−1) = φ(i)φ(k)φ(i−1) = φ(i)φ(i−1) = φ(i ○ i−1) = φ(eG) = eH ,

thus proving that ker(φ) ⊴ G.
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Exercise 1.15. Prove Cayley’s theorem.

Solution 1.16. Let ψ denote the mapping which maps g ∈ G to the permutation in SG given by the
mapping h↦ g ● h, letting the codomain of ψ be equal to im(ψ).

First, we begin by proving that ψ is well-defined in the sense that for g ∈ G, ψ(g) is indeed an element
in the codomain of ψ. For g ∈ G, let σg denote the mapping σg ∶G→ G whereby

σg(h) = g ● h = g ○ h ∈ G

for all h ∈ G. The mapping σg must be injective, since

σg(h1) = σg(h2) Ô⇒ gh1 = gh2Ô⇒ h1 = h2,

and the mapping σg ∶G→ Gmust be surjective, since for k ∈ G, we have that: σg(g−1k) = g○g−1○k = k ∈ G,
thus proving that σg ∈ SG, and thus proving that σg is in the codomain of ψ.

Now let g1, g2 ∈ G, and let σg1 ∶G→ G and σg2 ∶G→ G be such that σg1(h) = g1h ∈ G and σg2(h) = g2h ∈ G
for all h ∈ G. Suppose that ψ(g1) = ψ(g2). That is, σg1 = σg2 . That is, g1h = g2h for all h ∈ G. Letting
h = e, we thus have that ψ(g1) = ψ(g2) Ô⇒ g1 = g2, thus proving that ψ is injective.

Since we constructed ψ so that the codomain of ψ is equal to the image of ψ, we have that ψ is surjective
by definition. Since ψ is bijective, it remains to prove that ψ is a group homomorphism.

Again let g1, g2 ∈ G. We thus have that ψ(g1g2) is the mapping σg1g2 ∶G → G which maps h to g1g2h.
But it is clear that the composition ψ(g1) ○ ψ(g2) maps h to g1(g2h) = g1g2h, thus proving that ψ is an
isomorphism.

Exercise 1.17. For all g1, g2 ∈ G, show that either g1H = g2H or g1H ∩ g2H = ∅.

Solution 1.18. Let g1, g2 ∈ G. Our strategy is to show that if g1H ∩ g2H is nonempty, then g1H = g2H.
We remark that we are using the logical equivalence whereby (¬p) → q ≡ q ∨ p.

Suppose that g1H ∩ g2H is nonempty. Note that we are letting H ≤ G. So there exists an element in
the following intersection:

{g1h ∶ h ∈H} ∩ {g2h ∶ h ∈H}.
We thus have that there exist elements h1 and h2 in H such that

g1h1 = g2h2 ∈ g1H ∩ g2H.

Therefore,
g1h1h

−1
2 = g2.

Writing h3 = h1h−12 ∈ H, we thus have that g1h3 = g2. We thus have that the left coset g2H is equal to
{g1h3h ∶ h ∈H}. But since the mapping from H to H which maps h ∈H to h3h is bijective (see previous
exercise), we have that

g2H = {g1h3h ∶ h ∈H} = {h1i ∶ i ∈H} = g1H
as desired.

Exercise 1.19. Show that the canonical mapping φg ∶H → gH is a bijection, so that, as a consequence,
we have that ∣gH ∣ = ∣H ∣. Another consequence of this result is that ∣H ∣ divides ∣G∣ (Lagrange’s theorem).

6



Solution 1.20. Let H ≤ G, and let g ∈ G, and let φg ∶H → gH be such that φg(h) = gh ∈ gH for all
h ∈H. We have that

φg(h1) = φg(h2) Ô⇒ gh1 = gh2Ô⇒ h1 = h2,
thus proving the injectivity of φg. Similarly, it is clear that φg is surjective, since for gh ∈ gH we have
that φg(h) = gh. We thus have that ∣gH ∣ = ∣H ∣ as desired.

We now use this result to prove Lagrange’s theorem. We have previously shown that two cosets g1H
and g2H are either disjoint or equal. Therefore, since g ∈ gH for all g ∈ G, we have that G may be
written as a disjoint union of cosets, say

G = g1H ∪ g2H ∪⋯ ∪ gnH

where n ∈ N. But since ∣gH ∣ = ∣H ∣ for g ∈ G, we have that ∣G∣ = n∣H ∣, thus proving Lagrange’s theorem.

Exercise 1.21. For g ∈ G, let order(g) denote the smallest n ∈ N such that gn = e. Show that order(g)
divides ∣G∣.

Solution 1.22. It is easily seen that the set

{1, g, g2, . . . , gorder(g)−1}

forms a cyclic subgroup of G. By Lagrange’s theorem, proven above, we have that the order of this
cyclic subgroup divides ∣G∣, and we thus have that order(g) divides ∣G∣ as desired.

Exercise 1.23. Prove that Stab(x) is a subgroup of G.

Solution 1.24. We again make use of the Two-Step Subgroup Test described above.

Let g1, g2 ∈ G be such that g1 ● x = x and g2 ● x = x, so that g1 and g2 are arbitrary elements in Stab(x).
Now consider the following expression: (g1g2) ● x. By definition of a group action, we have that

(g1g2) ● x = g1 ● (g2 ● x) = g1 ● x = x,

thus proving that Stab(x) is closed under the underlying binary operation of G. Letting g ∈ G be such
that g ● x = x, since (g−1g) ● x = e ● x = x by definition of a group action, we have that g−1 ● (g ● x) = x,
thus proving that g−1 ● x = x as desired, with Stab(x) ≤ G.

Exercise 1.25. Prove that a G-set X is a disjoint union of orbits.

Solution 1.26. Let x be a G-set, and let ●∶G ×X → X denote a group action. Let x, y ∈ X, so that
Orbit(x) and Orbit(y) are arbitrary orbits. Suppose that Orbit(x) ∩Orbit(y) ≠ ∅. Let

g1 ● x = g2 ● y ∈X

denote an element in the nonempty intersection Orbit(x) ∩Orbit(y). We thus have that

(g−12 g1) ● x = y.

Therefore,
Orbit(y) = {g ● (g−12 g1 ● x) ∣ g ∈ G}.

Equivalently,
Orbit(y) = {g(g−12 g1) ● x ∣ g ∈ G}.
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Since the mapping whereby g ↦ g(g−12 g1) is a permutation of G, we thus have that

Orbit(y) = {h ● x ∣ h ∈ G},

thus proving that two orbits are either equal or disjoint. Since x ∈ Orbit(x) for x ∈X, we thus have that
X may be written as a disjoint union of orbits.

Exercise 1.27. Show that the map

φx∶Orbit(x) → G/Stab(x)

given by the mapping
g ● x↦ gStab(x) ∈ G/Stab(x)

is a well-defined, bijective G-set homomorphism.

Solution 1.28. Suppose that g1 ● x = g2 ● x. Equivalently, g−12 g1 ● x = x. Therefore, g−12 g1 ∈ Stab(x),
so g1 ∈ g2Stab(x), so g1Stab(x) = g2Stab(x), since two given cosets must be disjoint or equal. We thus
have the mapping φx is well-defined in the sense that g1 ● x = g2 ● x implies that φx(g1 ● x) = φx(g2 ● x).

Letting g1, g2 ∈ G so that g1 ● x and g2 ● x are arbitrary elements in the domain of φx, we have that

φx(g1 ● x) = φx(g2 ● x) Ô⇒ g1Stab(x) = g2Stab(x).

We thus have that there exist elements g3, g4 ∈ Stab(x) such that

g1g3 = g2g4.

We thus have that
(g1g3) ● x = (g2g4) ● x,

which implies that
g1 ● x = g2 ● x,

thus proving the injectivity of φx. It is obvious that φx is surjective, since given a coset gStab(x) in the
codomain of φx, we have that φx(g) = gStab(x).

Since
φx((hg) ● x) = (hg)Stab(x) = h(gStab(x)) = hφx(g ● x),

we have that φx is a G-set homomorphism.

Exercise 1.29. Prove that if H ⊴ G, then G/H forms a group with respect to the operation ○G/H on
G/H whereby g1H ○G/H g2H = g1g2H for all g1, g2 ∈ G.

Solution 1.30. Assume that H ⊴ G. We begin by showing that the operation ○G/H = ○ is well-defined
in the sense that the expression g1H ○G/H g2H does not depend on the coset representatives of the cosets
g1H and g2H. So, suppose that g1H = g3H and g2H = g4H, letting g1, g2, g3, g4 ∈ G. To prove that the
operation ○G/H is well-defined, it thus remains to prove that:

g1g2H = g3g4H.

Since g1H = g3H, let g3 = g1h1, where h1 ∈H. Similarly, since g2H = g4H, let g4 = g2h2, with h2 ∈H. So,
it remains to prove that

g1g2H = g1h1g2h2H.
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But since H ⊴ G, we have that gH = Hg for all g ∈ G. Since h1g2 ∈ Hg2 = g2H, let h1g2 = g2h3, where
h3 ∈H. We thus have that

g1h1g2h2H = g1g2h3h2H.
But it is clear that

g1g2h3h2H = g1g2H
since the mapping h↦ h3h2h is a bijection on H. We thus have that

g3g4H = g1g2H
as desired, thus proving that ○G/H is well-defined.

Since ○G/H maps elements in (G/H)×(G/H) to G/H, we have that G/H is a binary operation on G/H.
So we have thus far shown that ○G/H is a well-defined binary operation on G/H.

The binary operation ○G/H = ○ inherits the associativity of the underlying binary operation of G in a
natural way:

g1H ○ (g2H ○ g3H) = g1H ○ ((g2g3)H)
= g1(g2g3)H
= (g1g2)g3H
= (g1g2)H ○ g3H
= (g1H ○ g2H) ○ g3H.

We have thus far shown that ○G/H is a well-defined associative binary operation on G/H.

Letting g ∈ G be arbitrary, and letting e = eG denote the identity element in G, we have that:

(eH)(gH) = (eg)H
= eH
= (ge)H
= (gH)(eH).

Again letting g ∈ G be arbitrary, we have that:

(gH)(g−1H) = (g ⋅ g−1)H
= eH
= (g−1g)H
= (g−1H)(gH).

We thus have that if H ⊴ G, then G/H forms a group under the operation ○G/H given above.

Exercise 1.31. Show that φ∶G→ G/H is a group homomorphism, where g ↦ gH, and ker(φ) =H.

Solution 1.32. Since ker(φ) ⊴ G as shown above, from our results given in the previous exercise, we
have that G/H is a group with respect to the binary operation ○G/H .

Now let g1, g2 ∈ G. We thus have that

φ(g1g2) = (g1g2)H = (g1H) ○G/H (g2H) = φ(g1) ○G/H φ(g2)
by definition of the well-defined group operation ○G/H .
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Exercise 1.33. If N is normal in G, then ∀g ∈ G ∃g′ ∈ G gN = Ng′.

Solution 1.34. Our strategy is to prove the following much stronger statement: “N is normal in G if
and only if ∀g ∈ G gN = Ng.”

We are using the following definition of the term normal subgroup given in class: “H is a normal subgroup
of G if ghg−1 ∈H for all g ∈ G and h ∈H, denoted by H ⊴ G.”

(Ô⇒) First suppose that N ⊴ G, i.e. with respect to the above definition. We thus have that hnh−1 ∈ N
for all h ∈ G and n ∈ N . Now consider the left coset gN , letting g ∈ G be arbitrary:

gN = {gn ∶ n ∈ N} .
Now, for gn ∈ gN , we have that gng−1 ∈ N by assumption that N ⊴ G, according to the above definition
of the term normal subgroup. So, letting g be “fixed” (and arbitrary), for each choice of an element
n ∈ N , we have that there exists a corresponding element n′ ∈ N such that gng−1 = n′. That is, for each
n ∈ N , we have that gn = n′g for some n′ ∈ N . So it is clear that

gN = {gn ∶ n ∈ N} = {n′g ∶ n′ ∈M ⊆ N} ⊆ Ng

for some subset M ⊆ N . Similarly, for each element ng in the right coset Ng, since g−1ng = n′′ for some
n′′ ∈ N by the above definition of the term normal subgroup, we have that ng = g(n′′), so it is clear that

Ng = {ng ∶ n ∈ N} = {g(n′′) ∶ n′′ ∈M ′ ⊆ N} ⊆ gN

for some subset M ′ ⊆ N . So since gN ⊆ Ng and gN ⊇ Ng, by mutual inclusion, we have that gN = Ng
as desired.

(⇐Ô) Conversely, suppose that ∀g ∈ G gN = Ng. So, let g ∈ G and n ∈ N be arbitrary. Since gN = Ng,
we have that there exists some element n′ ∈ N such that gn = (n′)g. Therefore, gng−1 = n′ ∈ N , as
desired.

Exercise 1.35. Let MG(A) = {g ∈ G ∣ gag−1 ∈ G for all a ∈ A}, then show that MG(A) is not a group
in general. Hint: Take G to be the group of permutations of the set of integers and show that for
A = {σ ∈ G ∶ σ(i) = i, for i < 0} that g(x) = x + 1 ∈MG(A), but g−1(x) = x − 1 /∈MG(A).

Solution 1.36. Let G denote the permutation group SZ of the set Z of all integers. Let

g = σ∶Z→ Z

denote the bijection whereby σ(z) = z + 1 for z ∈ Z. Let A denote the collection of all permutations in
τ ∈ G such that τ(z) = z if z < 0.

We claim that MG(A) does not form a subgroup of G in this case. Letting σ∶Z→ Z be as given above,
we have that σ ∈MG(A). But is it true that σ−1 is in MG(A)?

The mapping σ−1∶Z → Z is such that σ−1(z) = z − 1 for all z ∈ Z. We have that σ−1 ∈ G, but it is not
true that

∀a ∈ A σ−1a(σ−1)−1 ∈ A,
since for z < 0 and a ∈ A, we have that

σ−1aσ(z) = σa(z + 1),
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but since a ∈ A and z < 0, it is not necessarily true that “a(z + 1) = z + 1”, i.e. it is not necessarily true
“a(−1 + 1) = −1 + 1”, so it is not necessarily true that that

σ−1aσ(z) = a.

For example, if a ∈ A is such that
a(0) = 31415,

then we have that
σ−1aσ(−1) = σ−1a(0) = σ−1(31415) = 31414.

So we have shown that MG(A) is not necessarily closed under inverses with respect to the underlying
binary operation of G, thus proving that MG(A) is not a subgroup of G.

Exercise 1.37. Show that if G is finite then NG(A) =MG(A). Where does the proof fail if G is infinite?

Solution 1.38. The normalizer NG(A) of a subset A of a group G is almost always defined as

NG(A) = {g ∈ G ∣ gA = Ag}

or equivalently as
NG(A) = {g ∈ G ∣ gAg−1 = A}.

This appears to be the standard definition of the normalizer of a subset. Writing

MG(A) ∶= {g ∈ G ∣ gag−1 ∈ A for all a ∈ A},

we claim that if G is finite, then MG(A) = NG(A). So, suppose that G is finite. Letting g be in NG(A),
we have that gA = Ag. So for all a in A, we have that ga = (a′)g for some a′ in A. So, for all a in A,
gag−1 is in A. So, NG(A) is a subset of MG(A). Conversely, let g be in MG(A). So for all a in A, gag−1
is in A. So, for all a in A, ga = (a′′)g for some a′′ in A. This just shows that gA is contained in Ag. But
since G is finite, we know that ∣gA∣ = ∣Ag∣. This is easily seen bijectively. But since gA ⊆ Ag, and since
∣gA∣ = ∣Ag∣, and since G is finite, we may thus deduce that gA = Ag. But then g must be in NG(A), thus
completing our proof.

Now, observe that if G is infinite, it is still true that NG(A) ⊆ MG(A), since if g ∈ NG(A), ga = (a′)g
for some a′ in A, so gag−1 is in A for all a in A. But for the infinite group G, the above proof fails in
its latter part in the following sense. For g in MG(A), we have that: for all a in A, gag−1 is in A. So,
for all a in A, ga = (a′′)g for some a′′ in A. But this just shows that gA is contained in Ag. Using the
previous exercise, it is easily seen that it is not in general true that gA ⊆ Ag implies gA = Ag, given that
G is infinite. Since it is not in general true that gA ⊆ Ag implies gA = Ag, we thus have that g may or
may not be in NG(A), so MG(A) may or may not be contained in NG(A), given that G is infinite.

Exercise 1.39. Show that CG(A) ≤ NG(A) ≤ G.

Solution 1.40. We are using the definition of the normalizer of a subset whereby NG(A) = {g ∈ G ∣ gA =
Ag}. Since eA = Ae, we thus have that NG(A) is nonempty.

Now let g, h ∈ G be such that gA = Ag and hA = Ah so that g and h are arbitrary elements in NG(A).
Consider the expression ghA:

ghA = {gha ∶ a ∈ A} .
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Now, let a ∈ A be arbitrary, so that gha is an arbitrary element in ghA. Since hA = Ah, we have that

ha = a′h

for some a′ ∈ A, and we thus have that
gha = g(a′)h.

Since gA = Ag, we have that
ga′ = a′′g

for some a′′ ∈ A. Therefore,
gha = a′′gh ∈ Agh.

We thus have that
ghA ⊆ Agh.

An obvious symmetric argument may be used to prove the reverse inclusion

ghA ⊇ Agh.

We thus have that NG(A) is closed with respect to the underlying binary operation of G.

As above, let g ∈ NG(A) be arbitrary. We thus have that gA = Ag. Now let a ∈ A be arbitrary. So

ga = a′g

for some a′ ∈ A. Therefore,
ag−1 = g−1a′

for some a′ ∈ A. This shows that each element in Ag−1 is in g−1A. An obvious symmetric argument may
be used to prove the reverse inclusion whereby

Ag−1 ⊇ g−1A.

By the Two-Step Subgroup Test, we thus have that NG(A) ≤ G as desired.

Now recall that the centralizer CG(A) of A is given as follows:

CG(A) = {g ∈ G ∣ ∀a ∈ A ag = ga} .
Now let g ∈ G be such that ∀a ∈ A ag = ga, so that g is an arbitrary element in CG(A). Then it is clear
that

gA = {ga ∶ a ∈ a} = {ag ∶ a ∈ a} = Ag,
thus proving that CG(A) ⊆ NG(A). Also observe that CG(A) is nonempty ae = ea for a ∈ A.

Now let g, h ∈ CG(A) be arbitrary, and let a ∈ A be arbitrary. Since h ∈ CG(A), we have that

ha = ah,

and we thus have that
gha = gah
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Since g ∈ CG(A), from the equality gha = gah, we thus obtain the equality

(gh)a = a (gh) ,

thus proving that CG(A) is closed under the underlying binary operation of the subgroup NG(A).

Again let g ∈ CG(A) be arbitrary, and again let a ∈ A be arbitrary. From the equality

ga = ag

we obtain the equality
ag−1 = g−1a,

thus proving that CG(A) is closed with respect to inverses. We thus have that

CG(A) ≤ NG(A) ≤ G

as desired.

Exercise 1.41. State and prove the four isomorphism theorems for groups.

Solution 1.42. The First Isomorphism Theorem for groups may be formulated in the following manner.

The First Isomorphism Theorem: Let H and G be groups. Then for a morphism φ∶G → H, we have
that ker(φ) ⊴ G, and furthermore, we have that G/ker(φ) ≅ im(φ).

Proof: We have proven in a previous exercise that ker(φ) ⊴ G. As suggested in class, to prove the First
Isomorphism Theorem, one may use the canonical morphism

ψφ = ψ∶G/ker(φ) → im(φ)

given by the mapping gker(φ) ↦ φ(g) for a coset gker(φ) in the domain of ψ, with g ∈ G. To prove
the First Isomorphism Theorem using this canonical morphism, one must show that ψ is a well-defined,
bijective, group homomorphism.

Letting g ∈ G, so that gker(φ) is an arbitrary element in the domain of ψ, we have that

ψ(gker(φ)) = φ(g),

and φ(g) ∈ im(φ) since φ∶G → H. The mapping ψ is well-defined in the sense that ψ(d) is in the given
codomain of ψ for each element d in the comain of ψ. But we also must prove that ψ is well-defined in
the sense that an expression of the form ψ(d) does not depend on a given coset representative for an
element d in the domain of ψ.

So, let g, h ∈ G, so that gker(φ) and hker(φ) are elements in the domain G/ker(φ) of ψφ = ψ. Now,
suppose that gker(φ) = hker(φ). To prove that ψ is well-defined, it thus remains to prove that
ψ(gker(φ)) = ψ(hker(φ)).

Now, under the above assumption whereby gker(φ) = hker(φ), since e ∈ ker(φ), we may thus deduce
that

ge = hk
for some element k ∈ ker(φ). We thus have that

g = hk
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for some element k ∈ ker(φ). Now apply the morphism φ∶G→H to both sides of the equality g = hk:

g = hkÔ⇒ φ (g) = φ (hk)
Ô⇒ φ (g) = φ (h)φ (k)
Ô⇒ φ (g) = φ (h) e
Ô⇒ φ (g) = φ (h)
Ô⇒ ψ(gker(φ)) = ψ(hker(φ)).

So we have shown that
gker(φ) = hker(φ) Ô⇒ ψ(gker(φ)) = ψ(hker(φ))

for cosets gker(φ) and hker(φ) in the domain G/ker(φ) of ψφ = ψ, thus concluding our proof that ψ is
well-defined.

We claim that ψ is injective. Again letting g, h ∈ G, we have that:

ψ(gker(φ)) = ψ(hker(φ)) Ô⇒ φ(g) = φ(h)
Ô⇒ φ(g) (φ(h))−1 = eH = e
Ô⇒ φ(g)φ(h−1) = e
Ô⇒ φ(g ⋅ (h−1)) = e
Ô⇒ g ⋅ (h−1) ∈ ker(φ)
Ô⇒ ∃k ∈ ker(φ) g ⋅ (h−1) = k
Ô⇒ ∃k ∈ ker(φ) g = k ⋅ h.

Now, using the fact that ker(φ) is a normal subgroup, we have that (ker(φ))h = h (ker(φ)). Since there
exists an element k in ker(φ) such that g = k ⋅ h, and since (ker(φ))h = h (ker(φ)), we may deduce that
there exists an element ` ∈ ker(φ) such that g = h ⋅ `. So for m ∈ ker(φ) ⊴ G, we have that

g ⋅m = h ⋅ (` ⋅m) ∈ h (ker(φ)) ,

and we thus have that each element g ⋅ m in g (ker(φ)) is in h (ker(φ)), thus proving the following
inclusion:

gker(φ) ⊆ hker(φ).
We have already shown that:

ψ(gker(φ)) = ψ(hker(φ)) Ô⇒ ∃k ∈ ker(φ) g = k ⋅ h.

Under the assumption that ψ(gker(φ)) = ψ(hker(φ)), we thus have that there exists an element k−1 in
ker(φ) such that

h = k−1g.
Note that we are using the fact that ker(φ) forms a subgroup of the domain of φ in the sense that we
are using the fact that ker(φ) must be closed under inverses. From the equality

h = k−1g,

it is easily seen that
gker(φ) ⊇ hker(φ)
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by repeating the above argument which was used to prove that

(∃k ∈ ker(φ) g = k ⋅ h) Ô⇒ gker(φ) ⊆ hker(φ).

By mutual inclusion, we thus have that

ψ(gker(φ)) = ψ(hker(φ)) Ô⇒ gker(φ) = hker(φ),

thus proving the injectivity ψ.

So, we have thus far shown that ψ is a well-defined injective mapping from G/ker(φ) to im(φ). Now,
let g ∈ G, so that φ(g) is an arbitrary element in the codomain im(φ) of ψ. Since

ψ(gker(φ)) = φ(g) ∈ im(φ),

it is thus clear that ψ is surjective.

So, we have thus far shown that ψ is well-defined and bijective. It thus remains to prove that ψ is a group
homomorphism. Again let g, h ∈ G, so that the left cosets gker(φ) and hker(φ) are arbitrary elements in
the domain G/ker(φ) of ψφ = ψ. Now consider the evaluation of ψ at the product (gker(φ)) ⋅ (hker(φ)):

ψ ((gker(φ)) ⋅ (hker(φ))) = ψ ((g ⋅ h)ker(φ))
= φ(g ⋅ h)
= φ(g) ⋅ φ(h)
= ψ(gker(φ)) ⋅ ψ(hker(φ)).

We thus have that
ψφ = ψ∶G/ker(φ) → im(φ)

is a well-defined, bijective group homomorphism, thus proving that G/ker(φ) ≅ im(φ).

The Second Isomorphism Theorem may be formulated in the following manner:

The Second Isomorphism Theorem: Let G be a group, and let H,K ≤ G be such that H ≤ NG(K). Then
H ∩K ⊴H, and HK/K ≅H/(H ∩K).

Proof: We begin by defining a mapping
τ ∶H →HK/K

whereby h↦ hK for h ∈H.

We claim that τ is a group homomorphism. To show this, we begin be demonstrating that HK forms a
subgroup of G. Let h1, h2 ∈ H and let k1, k2 ∈ K, so that h1k1 and h2k2 are arbitrary elements in HK.
Consider the product

h1k1h2k2.

Now, since H ≤ NG(K), we have that hK = Kh for all h ∈ H. In particular, we have that k1h2 = h2k3
for some element k3 in K. We thus have that

h1k1h2k2 = h1 (k1h2)k2 = h1 (h2k3)k2 = (h1h2) (k3k2) ∈HK,

thus proving that the product HK is closed with respect to the underlying binary operation of G.
Similarly, since (h1k1)−1 = k−11 h−11 , and since hK =Kh for all h ∈H, we thus have that

k−11 h
−1
1 = h3k−11 ∈HK,
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thus effectively proving that HK ≤ G.

Moreover, we claim that K ⊴ HK. Consider the coset k1HK. But recall that hK = Kh for all h ∈ H.
Given an element

k1h1k2 ∈ k1HK
in the left coset k1HK, we have that

k1h1k2 = h1k3k2 = h1 (k3k2k−11 )k1 ∈HKk1

for some k3 ∈K, thus proving the inclusion whereby

k1HK ⊆HKk1.

Conversely, given an element
h1k2k1 ∈HKk1,

we have that
h1k2k1 = h1k3 = k4h1 = k1 (k−11 k4)h1 = k1k5h1 = k1h1k6 ∈ k1HK,

the proving the reverse inclusion whereby

k1HK ⊇HKk1.

We thus have that K ⊴HK as desired.

So, we have shown that the given codomain

cod(τ) =HK/K

of the mapping τ ∶H →HK/K forms a group, in the sense that K ⊴HK.

To prove that τ is a group homomorphism, begin by letting h1, h2 ∈H. Consider the expression τ(h1h2):

τ(h1h2) = (h1h2)K.

We have shown that K ⊴HK. We thus have that

τ(h1h2) = h1h2K = (h1K)(h2K) = τ(h1τ(h2)),

thus proving that τ is a group homomorphism.

Now consider the kernel of the group homomorphism τ ∶H →HK/K:

ker(τ) = {h1 ∈H ∶ τ(h1) =K}
= {h1 ∈H ∶ h1K =K} .

We claim that the above set is equal to H ∩K. Letting x ∈ H ∩K, we have that x ∈ H, and we have
that

xK =K
since x ∈K, thus proving the inclusion whereby:

H ∩K ⊆ ker(τ).
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Conversely, let h1 ∈ H be such that h1K = K. Since e ∈ K, we thus have that h1e = k for some k ∈ K,
and we thus have that h1 = k for some k ∈ K. So it is clear that h1 ∈ H ∩K, thus proving the desired
inclusion given below:

H ∩K ⊇ ker(τ).
We thus have that

ker(τ) =H ∩K,
as desired.

So, since
τ ∶H →HK/K

is a group homomorphism whereby
ker(τ) =H ∩K,

by the First Isomorphism Theorem, we thus have that:

H/ (H ∩K) ≅ im (τ) .

We claim that τ is surjective. To show this, let h1 ∈H and k1 ∈K, so that h1k1K is an arbitrary element
in the codomain

cod(τ) =HK/K
of τ . It is clear that h1k1K = h1K. We thus have that

τ(h1) = h1K = h1k1K ∈HK/K,

thus proving the surjectivity of τ . So, by the First Isomorphism Theorem, we thus have that

H/ (H ∩K) ≅HK/K

as desired.

The Third Isomorphism Theorem may be formulated in the following manner:

The Third Isomorphism Theorem: Let G be a group and let H,K ⊴ G, with H ⊴ K. Then K/H is
normal in G/H, and furthermore, we have that (G/H)/(K/H) ≅ G/K.

Proof: Define γ∶G/H → G/K so that
γ(gH) = gK

for each coset gH in the domain of γ. We begin by showing that γ is a well-defined group homomorphism.
To show that γ is well-defined, begin by letting g1, g2 ∈ G, and suppose that g1H = g2H. Let k1 ∈ K be
arbitrary, so that g1 ⋅ k1 is an arbitrary element in g1K. Since

g1 ⋅ e ⋅ k1 = g1 ⋅ k1,

and since g1H = g2H, we have that

g1 ⋅ k1 = g1 ⋅ e ⋅ k1 = g2 ⋅ h1 ⋅ k1 ∈ g2K

for some h1 ∈ H. An obvious symmetric argument shows that g1K ⊇ g2K. We thus have that γ is
well-defined in the sense that

g1H = g2H Ô⇒ γ(g1H) = γ(g2H).
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Letting g1 and g2 be as given above, since H,K ⊴ G

γ(g1H ⋅ g2H) = γ(g1g2H)
= g1g2K
= g1K ⋅ g2K
= γ(g1H) ⋅ γ(g2H).

We thus have that γ is a group homomorphism. We claim that the kernel of γ is K/H. If gH is in the
kernel of γ, where g ∈ G, then gK = eK = K. So g must be in K. That is, gH ∈ K/H since g ∈ K.
Conversely, given an element kH in K/H, we have that γ(kH) = kK = K, and we thus have that kH
is in ker(γ). We thus have that ker(γ) = K/H as desired. It is clear that γ is surjective, since for
gK ∈ G/K, we have that γ(gH) = gK, with gH ∈ G/H. So, by the first isomorphism theorem, we have
that

(G/H) /ker(γ) ≅ im(γ),
and we thus have that

(G/H) / (K/H) ≅ G/K,
as desired.

The Fourth Isomorphism Theorem may be formulated in the following manner:

The Fourth Isomorphism Theorem: Let G be a group and let H ⊴ G. Then the canonical projection
morphism π∶G→ G/H whereby

g ↦ gH

induces the bijections indicated below:

{K ∶H ⊴K ≤ G} ←→ {K ∶K ≤ G/H},
{K ∶H ⊴K ⊴ G} ←→ {K ∶K ⊴ G/H}.

Let
f ∶ {K ∶H ⊴K ≤ G} → {K ∶K ≤ G/H}

denote the mapping whereby

f(K) = π(K) = {kH ∶ k ∈K} =K/H

for a subgroup K of G such that H ⊴K. We claim that f is well-defined in the sense that f(K) is indeed
an element in the given codomain of f for K ∈ dom(f). Letting K ∈ dom(f), we have that H ⊴K ≤ G.
Since K ⊆ G, we have that K/H ⊆ G/H, and since H ⊴K, we have that K/H forms a group under the
operation ⋅ whereby k1H ⋅ k2H = (k1k2)H for k1, k2 ∈ K. But furthermore, since H ⊴ G, G/H forms a
group with respect to the operation ⋅ whereby g1H ⋅g2H = (g1g2)H for g1, g2 ∈ g, thus showing that K/H
is a subgroup of G/H.

Conversely, consider the mapping

f ′∶ {K ∶K ≤ G/H} → {K ∶H ⊴K ≤ G}

such that: given an element
K = {g1H,g2H, . . . , g∣K∣H} ≤ G/H
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in the domain of f ′, where g1, g2, . . . , g∣K∣ ∈ G, we have that

f ′ (K) =
∣K∣
⋃
i=1
giH = ⋃

k∈K
k.

We claim that f ′ is well-defined in the sense that f ′(K) ∈ cod(f ′) for K ∈ dom(f ′). Again let

K = {g1H,g2H, . . . , g∣K∣H} ≤ G/H

be an element in the domain of f ′. We thus have that f ′(K) consists precisely of all expressions of the
form gih where

i ∈ {1,2, . . . , ∣K ∣}

and h ∈ H. We thus have that f ′(K) ⊆ G. We know that K ≤ G/H, so gi1Hgi2H = gi1gi2H ∈ K for all
indices i1 and i2. So given elements h1, h2 ∈H, we have that

gi1h1gi2h2 = gi3h3

for some index i3 ∈ {1,2, . . . , ∣K ∣} and some element h3 ∈ H. We thus have that f ′(K) is closed under
the underlying binary operation of G. Similarly, given an index

i1 ∈ {1,2, . . . , ∣K ∣} ,

and letting h1 ∈H, since K ≤ G/H, we have that

(gi1H)−1 = gi2H ∈K

for some index
i2 ∈ {1,2, . . . , ∣K ∣} ,

so
gi1h1 = gi2h2

for some h2 ∈H, thus proving that f ′(K) ≤ G.

Since K ≤ G/H, we have that eH = H ∈ K. So it is clear that H ⊆ f ′(K) ≤ G. Since H ≤ G, we have
that H ≤ f ′(K) ≤ G. Given an element

gih ∈ g(K)
where i ∈ {1,2, . . . , ∣K ∣} and h ∈H, since H ⊴ G, we have that

(gih)H =H(gih),

so it is clear that H ⊴ f ′(K) ≤ G. We thus have that f ′(K) ∈ cod(f ′), as desired, thus proving that f ′
is well-defined.

Since
f ∶ {K ∶H ⊴K ≤ G} → {K ∶K ≤ G/H}

and
f ′∶ {K ∶K ≤ G/H} → {K ∶H ⊴K ≤ G}

19



are both well-defined, we may thus consider the composition

f ○ f ′∶ {K ∶K ≤ G/H} → {K ∶K ≤ G/H}.

Let K be an element in the domain of f ′. As above, write:

K = {g1H,g2H, . . . , g∣K∣H} ≤ G/H,

where g1, g2, . . . , g∣K∣ ∈ G. Now evaluate the expression (f ○ f ′)(K) in the following manner:

(f ○ f ′)(K) = f(f ′(K))

= f
⎛
⎝

∣K∣
⋃
i=1
giH

⎞
⎠

= π
⎛
⎝

∣K∣
⋃
i=1
giH

⎞
⎠

= π (g1H ⊎ g2H ⊎⋯ ⊎ g∣K∣H)

= π (g1H) ⊎ π (g2H) ⊎⋯ ⊎ π (g∣K∣H)

= π ({g1h ∶ h ∈H}) ⊎ π ({g2h ∶ h ∈H}) ⊎⋯ ⊎ π ({g∣K∣h ∶ h ∈H})

= {g1hH ∶ h ∈H} ⊎ {g2hH ∶ h ∈H} ⊎⋯ ⊎ {g∣K∣hH ∶ h ∈H}

= {g1H} ⊎ {g2H} ⊎⋯ ⊎ {g∣K∣H}

= {g1H,g2H, . . . , g∣K∣H}
=K.

Conversely, consider the composition

f ′ ○ f ∶ {K ∶H ⊴K ≤ G} → {K ∶H ⊴K ≤ G}.

Now, let K be such that H ⊴K ≤ G, those that K is an arbitrary element in the domain of the product
f ′ ○ f . Since H ⊴K, we have that K/H forms a group. Write

K/H = {k1H,k2H, . . . , knH}

letting n ∈ N. Now evaluate the expression (f ′ ○ f)(K) as follows.

(f ′ ○ f)(K) = f ′(f(K))
= f ′(π(K))
= f ′ ({kH ∶ k ∈K})
= f ′ ({k1H,k2H, . . . , knH})

=
n

⋃
i=1
kiH

=K.
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We thus have that f and f ′ are inverses of one another. This essentially proves that f is bijective, which
proves that

{K ∶H ⊴K ≤ G}
and

{K ∶K ≤ G/H}
are bijectively equivalent, as desired. More explicitly, for elements x1, x2 ∈ dom(f), we have that:

f (x1) = f (x2) Ô⇒ f ′(f (x1)) = f ′(f (x2))
Ô⇒ (f ′ ○ f)(x1) = (f ′ ○ f)(x2)
Ô⇒ x1 = x2.

We thus have that f is injective. Somewhat similarly, letting y ∈ cod(f), we have that:

y ∈ cod(f) Ô⇒ y ∈ dom(f ′)
Ô⇒ f ′(y) ∈ cod(f ′)
Ô⇒ f ′(y) ∈ dom(f)
Ô⇒ ∃z ∈ dom(f) z = f ′(y)
Ô⇒ ∃z ∈ dom(f) f(z) = f(f ′(y))
Ô⇒ ∃z ∈ dom(f) f(z) = (f ○ f ′)(y)
Ô⇒ ∃z ∈ dom(f) f(z) = y.

We thus have that f is surjective, as desired.

We apply a similar strategy to show that {K ∶H ⊴K ⊴ G} and {K ∶K ⊴ G/H} are bijectively equivalent.

We have already shown that

f ∶ {K ∶H ⊴K ≤ G} → {K ∶K ≤ G/H}

is bijective. Now, observe that the set
{K ∶H ⊴K ≤ G}

is contained in the set
{K ∶H ⊴K ⊴ G}.

Similarly, the set
{K ∶K ≤ G/H}

is contained in the set
{K ∶K ⊴ G/H}.

Now, let f denote the mapping obtained by restricting the domain of f to {K ∶ H ⊴ K ⊴ G}. Since f is
injective, we have that f is injective. Now, let K be such that H ⊴ K ⊴ G. Since H ⊴ K ≤ G, we have
that π(K) ≤ G/H, since f is well-defined. We claim that π(K) ⊴ G/H. We know that gK = Kg for all
g ∈ G. It remains to prove that

(gH){kH ∶ k ∈K} = {kH ∶ k ∈K}(gH)

for all g ∈ G. Since
(gH){kH ∶ k ∈K} = {gHkH ∶ k ∈K} = {(gk)H ∶ k ∈K},
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and since gK =Kg for all g ∈ G, we have that

(gH){kH ∶ k ∈K} = {(kg)H ∶ k ∈K} = {kHgH ∶ k ∈K} = {kH ∶ k ∈K}(gH),

thus proving that π(K) ⊴ G/H, as desired. So, we know that the mapping

f = f ∣
{K ∶H⊴K⊴G}

∶ {K ∶H ⊴K ⊴ G} → {K ∶K ≤ G/H}

obtained by restricting the domain of f to the subset

{K ∶H ⊴K ⊴ G} ⊆ {K ∶H ⊴K ≤ G}

is injective. But furthermore, we have shown that if K is such that H ⊴ K ⊴ G, then f(K) ⊴ G/H.
That is,

K ∈ dom(f) Ô⇒ f(K) ∈ {K ∶K ⊴ G/H}.
We thus have that the image of f is contained in {K ∶K ⊴ G/H}. Now let

g∶ {K ∶H ⊴K ⊴ G} → {K ∶K ⊴ G/H}

denote the mapping obtained by restricting the codomain of f to {K ∶ K ⊴ G/H}. Since f is injective,
we have that g is injective. We claim that g is also surjective. Let

{k1, k2, . . . , kn} ⊆ G

be such that
{k1H,k2H, . . . , knH} ⊴ G/H,

so that the collection {k1H,k2H, . . . , knH} is an arbitrary element in the codomain of g. Consider the
union

n

⋃
i=1
kiH ⊆ G.

Given two elements ki1h1 and ki2h2 in the above union, since

ki1Hki2H = ki1ki2H

we have that
ki1h1ki2h2 = ki1ki2h3 ∈

n

⋃
i=1
kiH

for some element h3 ∈ H. We thus have that ⋃ni=1 kiH is closed with respect to the underlying multi-
plicative binary operation of G. Similarly, since

(ki1H)−1 = ki4H

for some index i4, it is clear that
n

⋃
i=1
kiH ≤ G.

But since H is also a subgroup of G, it is clear that:

H ≤
n

⋃
i=1
kiH ≤ G.
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Since
{k1H,k2H, . . . , knH} ⊴ G/H,

we have that
gH{k1H,k2H, . . . , knH} = {k1H,k2H, . . . , knH}gH

for all g ∈ G. To prove that
n

⋃
i=1
kiH ⊴ G,

it remains to prove that

g
n

⋃
i=1
kiH = (

n

⋃
i=1
kiH) g

for all g ∈ G. Let g ∈ G be arbitrary. Letting gki1h1 be an arbitrary element in g⋃ni=1 kiH, since

gHki1H = ki2HgH = (ki2H)(Hg) = ki2Hg,

we have that

g
n

⋃
i=1
kiH ⊆ (

n

⋃
i=1
kiH) g,

and a symmetric argument may be used to prove the reverse inclusion. Similarly, it is clear that

H ⊴
n

⋃
i=1
kiH,

since ki1h1H =Hki1h1 since H ⊴ G. So, we have thus far shown that

H ⊴
n

⋃
i=1
kiH ⊴ G.

So, given that
{k1H,k2H, . . . , knH} ⊴ G/H,

we have that:
n

⋃
i=1
kiH ∈ dom(g).

Now evaluate the expression

g(
n

⋃
i=1
kiH)

as follows:

g(
n

⋃
i=1
kiH) = π (

n

⋃
i=1
kiH)

= {kihH ∶ i ∈ {1,2, . . . , n}, h ∈H}
= {kiH ∶ i ∈ {1,2, . . . , n}}
= {k1H,k2H, . . . , knH} ⊴ G/H.

We thus have that the mapping

g∶ {K ∶H ⊴K ⊴ G} → {K ∶K ⊴ G/H}

is bijective, thus completing our proof.
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Exercise 1.43. Recall that An is simple for n ≥ 5. However, it is not true that A4 is a simple group.
Prove that A4 is not a simple group using a counterexample, and write out all 12 elements in A4.

Solution 1.44. We defined the alternating group An using permutation matrices in class. This group
also may be defined as the group under composition consisting of all even permutations in Sn. With
respect to the definition of An given in class, we have that An consists precisely of the following 12
matrices:

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

We claim that there is a normal subgroup of A4 which is isomorphic to the Klein four-group C2 × C2.
Consider the following multiplication table.
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Let H denote the subset of A4 consisting of the matrices illustrated in the above multiplication table.
From the above multiplication table, it is clear that H forms a subgroup of A4, and that H is isomorphic
to the Klein four-group C2 ×C2.

Our strategy to prove that H ⊴ A4 is simply to use a “brute-force” computational approach, by com-
putationally verifying that aH = Ha for a ∈ A4. A Mathematica program which may be used for these
computations is illustrated below.

row1 = {1, 0, 0, 0} ;
row2 = {0, 1, 0, 0} ;
row3 = {0, 0, 1, 0} ;
row4 = {0, 0, 0, 1} ;
rowlist = {row1, row2, row3, row4} ;

permutation = Permutations[{1, 2, 3, 4}][[24]] ;

testmatrix1 = {rowlist[[permutation[[1]]]],
rowlist[[permutation[[2]]]], rowlist[[permutation[[3]]]],
rowlist[[permutation[[4]]]]} ;

groupelement1 = {rowlist[[1]], rowlist[[2]], rowlist[[3]],
rowlist[[4]]} ;

groupelement2 = {rowlist[[2]], rowlist[[1]], rowlist[[4]],
rowlist[[3]]} ;

groupelement3 = {rowlist[[3]], rowlist[[4]], rowlist[[1]],
rowlist[[2]]} ;

groupelement4 = {rowlist[[4]], rowlist[[3]], rowlist[[2]],
rowlist[[1]]} ;

Print[Sort[{testmatrix1.groupelement1 // MatrixForm,
testmatrix1.groupelement2 // MatrixForm,
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testmatrix1.groupelement3 // MatrixForm,
testmatrix1.groupelement4 // MatrixForm}]] ;

Print[Sort[{groupelement1.testmatrix1 // MatrixForm,
groupelement2.testmatrix1 // MatrixForm,
groupelement3.testmatrix1 // MatrixForm,
groupelement4.testmatrix1 // MatrixForm}]] ;

If[Signature[permutation] == 1,
Print[Sort[{testmatrix1.groupelement1, testmatrix1.groupelement2,
testmatrix1.groupelement3, testmatrix1.groupelement4}] ==
Sort[{groupelement1.testmatrix1, groupelement2.testmatrix1,
groupelement3.testmatrix1, groupelement4.testmatrix1}]] ;,
Print["The given permutation must be even."]]

Using the above program, we obtain the following computational results which show that ∀a ∈ A aH =
Ha.

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
=
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
=
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Exercise 1.45. Let G be a group, and suppose that there exists a nontrivial proper normal subgroup
N of G. So, there is a composition series for N and G/N , as illustrated below:

{1} =H0 ⊴H1 ⊴ ⋯ ⊴H` = N ⊴ H`+1 ⊴ H`+2 ⊴ ⋯ ⊴ G
↕ ↕ ↕ ↕

N/N ⊴ H`+1 ⊴ H`+2 ⊴ ⋯ ⊴ G/N

By the fourth isomorphism theorem, we have that there is a bijection between the set of expressions of
the form H`+i ⊴ G/N and the set of expressions of the form H`+i ⊴ G. If H`+i ⊴ G/N , then H`+i ⊴ G.
Check that since H`+i ⊴H`+i+1 then H`+i ⊴H`+i+1.

Solution 1.46. We know that the canonical projection morphism

π∶G→ G/N

whereby
g ↦ gN
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induces the bijection indicated below:

{K ∶ N ⊴K ⊴ G} ←→ {K ∶K ⊴ G/N}.

Now suppose that H`+i ⊴H`+i+1 ⊴ G/N . Write

H`+i = {g1N,g2N, . . . , gnN}.

Note that cosets of N must all be of the same cardinality. Write:

H`+i+1 = {h1N,h2N, . . . , hnN}.

We thus have that
H`+i =

n

⋃
i=1
giN

and
H`+i+1 =

n

⋃
i=1
hiN,

since the projection morphism π induces bijections according according to the Fourth Isomorphism
Theorem. Since

H`+i ⊴H`+i+1,

we have that
hiN{g1N,g2N, . . . , gnN} = {g1N,g2N, . . . , gnN}hiN

for all indices i. So, given an element

hi1n1 ∈ hi1N ⊆H`+i+1

and an element
gi2n2 ∈ gi2N ⊆H`+i,

we have that
hi1n1gi2n2 ∈ hi1n1H`+i,

i.e., hi1n1gi2n2 is an arbitrary element in hi1n1H`+i. But since

hiN{g1N,g2N, . . . , gnN} = {g1N,g2N, . . . , gnN}hiN

for all indices i, we have that
hi1n1gi2n2 = gi3n3hi1n4

for some index i3, and some elements n3, n4 ∈ N . Rewrite this equality as

hi1n1gi2n2 = gi3n3hi1n1n
−1
1 n4.

Since N ⊴ G, we have that
hi1n1gi2n2 = gi3n3n5hi1n1

for some n5 ∈ N , and we thus have that

(hi1n1)gi2n2 = gi3n6(hi1n1)
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for some n6 ∈ N . So, for an arbitrary element

hi1n1gi2n2 ∈ (hi1n1)H`+i,

we thus have that
(hi1n1)gi2n2 = gi3n6(hi1n1) ∈H`+i(hi1n1),

thus proving the inclusion whereby

(hi1n1)H`+i ⊆H`+i(hi1n1).

A symmetric argument may be used to prove the reverse inclusion, in order to prove that H`+i ⊴H`+i+1.

Exercise 1.47. State the Jordan-Hölder theorem, and write a sketch of a proof of this theorem, by
filling in the details of the proof sketch of this theorem given in class.

Solution 1.48. The Jordan-Hölder theorem states that any two composition series of a given group are
equivalent in the sense that they have the same composition length and the same composition factors,
up to permutation and isomorphism. Recall that a subnormal series of a group G is a finite sequence of
the following form:

{e} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G.
Recall that a subnormal series

{e} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G.
of a group G is a composition series if all the factor groups Hi+1/Hi are simple.

Letting G be a finite group, assume that there are two composition series for G:

{1} = N0 ⊴ N1 ⊴ ⋯ ⊴ Nk ⊴ Nk+1

=
G

=

{1} =M0 ⊴ M1 ⊴ ⋯ ⊴ M` ⊴ M`+1

We want to show that the above composition factors are permuted. We may assume without loss of
generality that M` ≠ Nk. To prove that the composition factors given by each of the above series are
permutations of each other, we make use of an inductive approach, illustrated by the following diagram.
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We need to verify that Nk ∩M` ⊴ Nk and that Nk ∩M` ⊴M`.

To verify this, we apply the Second Isomorphism Theorem.

Recall that the Second Isomorphism Theorem may be formulated in the following manner.

The Second Isomorphism Theorem: Let G be a group, and let H,K ≤ G be such that H ≤ NG(K). Then
H ∩K ⊴H, and HK/K ≅H/(H ∩K).

By the Second Isomorphism Theorem, since Nk,M` ≤ G, to prove that Nk ∩M` ⊴ Nk, it suffices to prove
that Nk ≤ NG(M`), i.e.,

Nk ≤ {g ∈ G ∶ gM` =M`g}.
But since M` ⊴ G, we have that

∀g ∈ G gM` =M`g,

and we thus have that
NG(M`) = {g ∈ G ∶ gM` =M`g} = G,

so since Nk ≤ G, we thus have that Nk ≤ NG(M`), as desired. An identical argument may be used to
prove that Nk ∩M` ⊴M`.

So, by the Second Isomorphism Theorem, we have that:

Nk/(Nk ∩M`) ≅ NkM`/M`.

We need to show that:

(i) NkM` forms a subgroup;

(ii) NkM` is normal in G; and

(iii) NkM` contains Nk and M`.

To show that NkM` forms a subgroup, we begin by letting n1, n2 ∈ Nk and m1,m2 ∈ M`, so that n1m1

and n2m2 are arbitrary elements in NkM`. Now consider the following expression:

n1m1n2m2.

Since Nk ⊴ G, we have that
m1Nk = Nkm1,

and we thus have that
n1n3m1m2 ∈ NkM`,

for some n3 ∈ Nk, thus proving that NkM` is closed with respect to the underlying binary operation of
G. Similarly, since

(n1m1)−1 =m−1
1 n

−1
1 ,

and since Nk ⊴ G, we have that
(n1m1)−1 = n4m

−1
1

for some n4 ∈ N , thus proving that NkM` is closed under inverses. We thus have that NkM` ≤ G, as
desired.
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Now, let g ∈ G be arbitrary. Again let n1 ∈ Nk and m1 ∈M`, and consider the following expression:

gn1m1 ∈ gNkM`.

Since Nk ⊴ G, we have that
gn1m1 = n2gm1.

Since M` ⊴ G, we have that
gn1m1 = n2m2g ∈ NkM`g

for some m2 ∈M`, thus proving the inclusion whereby

gNkM` ⊆ NkM`g.

A symmetric argument may be used to prove the reverse inclusion, in order to prove that NkM` ⊴ G. It
is obvious that the product NkM` contains both Nk and M`, since expressions of the form eNkm are in
NkM` for m ∈M`, and expressions of the form n ⋅ eM`

are in NkM` for n ∈ Nk.

Since NkM` ⊴ G, and since NkM` contains both Nk andM`, we thus arrive at the subnormal series given
below:

Nk ⊴ NkM` ⊴ G
M` ⊴ NkM` ⊴ G.

But recall that the subnormal series

{1} = N0 ⊴ N1 ⊴ ⋯ ⊴ Nk ⊴ Nk+1 = G

is, in fact, a composition series. We thus have that the quotient group G/Nk is simple. From the
subnormal series

Nk ⊴ NkM` ⊴ G,
we are thus lead to consider the following quotient groups: Nk/Nk, NkM`/Nk, and G/Nk. By the Fourth
Isomorphism Theorem, we know that there exists a bijection between normal subgroups of G containing
Nk and normal subgroups of G/Nk.

But G/Nk is simple. Since
NkM`/Nk ⊴ G/Nk,

we have that NkM`/Nk is either trivial or is equal to G/Nk. By the fourth isomorphism theorem, NkM`

is either equal to G or Nk. Since Nk ≠M` by assumption, we have that NkM` = G.

Using the Second Isomorphism Theorem, we have shown that

Nk/(Nk ∩M`) ≅ NkM`/M`.

We thus have that:
Nk/(Nk ∩M`) ≅ G/M`.

A symmetric argument shows that:
M`/(Nk ∩M`) ≅ G/Nk.

Inductively, this effectively completes our proof.
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Exercise 1.49. Prove that for abelian groups, the composition series is such that the quotient between
consecutive terms is given by a prime order.

Solution 1.50. Let G be an abelian group, and let x ∈ G. Let x ≠ e be of order n. If n is not prime
then xn/p is of order p. We thus have that there exists a subgroup of G of order p. Let

{⟨xn/p⟩} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G/⟨xn/p⟩

be a composition series for G/⟨xn/p⟩. Inductively, we may assume that the composition factors in the
above composition series are all of prime order. By the Fourth Isomorphism Theorem, we know that
there is a bijection of the form

{K ∶K ⊴ G/⟨xn/p⟩} ←→ {K ∶ ⟨xn/p⟩ ⊴K ⊴ G}

so there exists a composition series for G of the form

H0 ⊴H1 ⊴ ⋯ ⊴Hn = G.

But since H i+1/H i ≅ Hi+1/Hi for all indices i, we have that all of the composition factors in the above
composition series are all of prime order.

Exercise 1.51. There are 5 groups of order 8 = 23. Find all the possible composition series.

Solution 1.52. Recall that a subnormal series of a group G is a finite sequence of the form

{e} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G.

Recall that a subnormal series
{e} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G

is a composition series if each factor group of the form Hi+1/Hi is simple. Also recall that a group is
simple if it is nontrivial and has no proper nontrivial normal subgroups. Also recall that a finite simple
abelian group is necessarily isomorphic to Z/pZ for some prime p.

Begin by considering a composition series for Z/8Z. Given a subgroup H of Z/8Z, we have that
(Z/8Z)/H is simple if and only if it is of prime order. So it is clear that (Z/8Z)/H is simple if and only
if it is of order 2. We thus have that the latter part of a composition series for Z/8Z must be of the form

{0,2,4,6} ⊴ Z/8Z.

Similarly, since a finite simple abelian group must be isomorphic to a group of the form Z/pZ for a
prime p, we thus find that a composition series for Z/8Z must be of the following form:

{0} ⊴ {0,2} ⊴ {0,2,4,6} ⊴ Z/8Z.

Now consider a composition series for (Z/2Z)×(Z/4Z). Given a subgroup H of this group, we know that
((Z/2Z)× (Z/4Z))/H is simple if and only if it is of prime order. In particular, ((Z/2Z)× (Z/4Z))/H is
simple if and only if it is of order 2. Now observe that the direct product (Z/2Z)× (Z/4Z) has precisely
three subgroups of order 4:

{(0,0), (0,1), (0,2), (0,3)} ⊴ (Z/2Z) × (Z/4Z),
{(0,0), (1,1), (0,2), (1,3)} ⊴ (Z/2Z) × (Z/4Z),
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{(0,0), (0,2), (1,0), (1,2)} ⊴ (Z/2Z) × (Z/4Z).

We thus arrive at the following compositions series:

{(0,0)} ⊴ {(0,0), (0,2)} ⊴ {(0,0), (0,1), (0,2), (0,3)} ⊴ (Z/2Z) × (Z/4Z)
{(0,0)} ⊴ {(0,0), (0,2)} ⊴ {(0,0), (1,1), (0,2), (1,3)} ⊴ (Z/2Z) × (Z/4Z)
{(0,0)} ⊴ {(0,0), (0,2)} ⊴ {(0,0), (0,2), (1,0), (1,2)} ⊴ (Z/2Z) × (Z/4Z)
{(0,0)} ⊴ {(0,0), (1,0)} ⊴ {(0,0), (0,2), (1,0), (1,2)} ⊴ (Z/2Z) × (Z/4Z)
{(0,0)} ⊴ {(0,0), (1,2)} ⊴ {(0,0), (0,2), (1,0), (1,2)} ⊴ (Z/2Z) × (Z/4Z).

Now consider a composition series for (Z/2Z) × (Z/2Z) × (Z/2Z). There are several subgroups of order
4 of (Z/2Z) × (Z/2Z) × (Z/2Z), namely:

{(0,0,0), (0,0,1), (0,1,0), (0,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,0,1), (1,0,0), (1,0,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,0,1), (1,1,0), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,1,0), (1,0,0), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,1,0), (1,0,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (1,0,0), (0,1,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,1,1), (1,0,1), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)

We thus arrive at the following composition series:

{(0,0,0)} ⊴ {(0,0,0), (0,0,1)} ⊴ {(0,0,0), (0,0,1), (0,1,0), (0,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,0)} ⊴ {(0,0,0), (0,0,1), (0,1,0), (0,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,1)} ⊴ {(0,0,0), (0,0,1), (0,1,0), (0,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,0,1)} ⊴ {(0,0,0), (0,0,1), (1,0,0), (1,0,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,0)} ⊴ {(0,0,0), (0,0,1), (1,0,0), (1,0,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,1)} ⊴ {(0,0,0), (0,0,1), (1,0,0), (1,0,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,0,1)} ⊴ {(0,0,0), (0,0,1), (1,1,0), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,0)} ⊴ {(0,0,0), (0,0,1), (1,1,0), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,1)} ⊴ {(0,0,0), (0,0,1), (1,1,0), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,0)} ⊴ {(0,0,0), (0,1,0), (1,0,0), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,0)} ⊴ {(0,0,0), (0,1,0), (1,0,0), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,0)} ⊴ {(0,0,0), (0,1,0), (1,0,0), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,0)} ⊴ {(0,0,0), (0,1,0), (1,0,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,1)} ⊴ {(0,0,0), (0,1,0), (1,0,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,1)} ⊴ {(0,0,0), (0,1,0), (1,0,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,0)} ⊴ {(0,0,0), (1,0,0), (0,1,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,1)} ⊴ {(0,0,0), (1,0,0), (0,1,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,1)} ⊴ {(0,0,0), (1,0,0), (0,1,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,1)} ⊴ {(0,0,0), (0,1,1), (1,0,1), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
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{(0,0,0)} ⊴ {(0,0,0), (1,0,1)} ⊴ {(0,0,0), (0,1,1), (1,0,1), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,0)} ⊴ {(0,0,0), (0,1,1), (1,0,1), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z).

Now consider composition series for the following dihedral group:

D4 = {1, a, a2, a3, b, ba, ba2, ba3}.

It is easily seen that there are precisely three different subgroups of order 4 of D4, namely:

{1, a, a2, a3} ⊴D4

{1, a2, b, ba2} ⊴D4

{1, a2, ba, ba3} ⊴D4.

It is clear that the set {1, a, a2, a3} of rotational isometries forms a subgroup of D4. It may be less
clear as to why {1, a2, b, ba2} forms a subgroup, or why {1, a2, ba, ba3} forms a subgroup. To illustrate
why {1, a2, b, ba2} and {1, a2, ba, ba3} both form subgroups, we evaluate the Cayley tables for both
{1, a2, b, ba2} and {1, a2, ba, ba3}, using the dihedral relations whereby a4 = b2 = (ab)2 = 1. We remark
that from these relations, we have that ab = ba3, since:

b2 = (ab)2Ô⇒ bb = abab
Ô⇒ b = aba
Ô⇒ ba3 = ab.

○ 1 a2 b ba2

1 1 a2 b ba2

a2 a2 1 ba2 b
b b ba2 1 a2

ba2 ba2 b a2 1

Entries in the above Cayley table may be evaluated using dihedral relations in the manner illustrated
below.

a2b = aab
= a(ab)
= a(ba3)
= (ab)a3

= (ba3)a3

= ba6

= ba2.

a2ba2 = ba2a2

= b.

ba2ba2 = baabaa
= ba(ab)aa
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= ba(ba3)aa
= baba
= b(ab)a
= b(ba3)a
= b2a4

= 1.

○ 1 a2 ba ba3

1 1 a2 ba ba3

a2 a2 1 ba3 ba
ba ba ba3 1 a2

ba3 ba3 ba a2 1

Entries in the above Cayley table may be evaluated using dihedral relations in the manner illustrated
below.

a2ba = aaba
= a(ab)a
= a(ba3)a
= aba4

= ab
= ba3.

baba = b(ab)a
= b(ba3)a
= 1.

So, since {1, a, a2, a3}, {1, a2, b, ba2}, and {1, a2, ba, ba3} are the only subgroups of D4 of order 4, it is
easily seen that the only possible composition series for the dihedral group of order 8 are the subnormal
series given below:

{1} ⊴ {1, a2} ⊴ {1, a, a2, a3} ⊴D4

{1} ⊴ {1, a2} ⊴ {1, a2, b, ba2} ⊴D4

{1} ⊴ {1, b} ⊴ {1, a2, b, ba2} ⊴D4

{1} ⊴ {1, ba2} ⊴ {1, a2, b, ba2} ⊴D4

{1} ⊴ {1, a2} ⊴ {1, a2, ba, ba3} ⊴D4

{1} ⊴ {1, ba} ⊴ {1, a2, ba, ba3} ⊴D4

{1} ⊴ {1, ba3} ⊴ {1, a2, ba, ba3} ⊴D4.

So, it remains to consider composition series for the quaternion group. Recall that the quaternion group
is an 8-element group on the set

{1,−1, i,−i, j,−j, k,−k}
with a presentation of the following form:

⟨i, j, k ∣ i2 = j2 = k2 = ijk = −1⟩.
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It is known that there are precisely 3 subgroups of order 4 of Q8, namely the subgroups given below,
which are all isomorphic to the cyclic group Z/4Z1 It is also known that all of these subgroups of order
4 are normal.

{1, i,−1,−i} ⊴ Q8

{1, j,−1,−j} ⊴ Q8

{1, k,−1,−k} ⊴ Q8.

We thus find that the only composition series for the quaternion group are the following series:

{1} ⊴ {1,−1} ⊴ {1, i,−1,−i} ⊴ Q8

{1} ⊴ {1,−1} ⊴ {1, j,−1,−j} ⊴ Q8

{1} ⊴ {1,−1} ⊴ {1, k,−1,−k} ⊴ Q8.

Exercise 1.53. Let A and B be groups, and for b ∈ B, let φb be an automorphism of A, so that

φ∶B → Aut(A)

is a group homomorphism. Define A ⋊φ B as the set

{(a, b) ∶ a ∈ A, b ∈ B}

endowed with the binary operation ○A⋊φB on A ⋊φ B whereby

(a, b) ○A⋊φB (a′, b′) = (aφb(a′), b(b′))

for a, a′ ∈ A and b, b′ ∈ B. Show that A⋊B forms a group, and show that A⋊φB = A×B if φb(a) = a for
all b ∈ B, i.e. φb is the identity automorphism on A for all b ∈ B.

Solution 1.54. Let a1, a2 ∈ A and let b1, b2 ∈ B. By definition of the operation ○ = ○A⋊φB, we have that

(a, b) ○A⋊φB (a′, b′) = (aφb(a′), b(b′)),

and since
φb∶A→ A

must be an automorphism of A for b ∈ B, we thus find that

(a, b) ○A⋊φB (a′, b′) = (aφb(a′), b(b′)) ∈ {(a, b) ∶ a ∈ A, b ∈ B}

for a, a′ ∈ A and b, b′ ∈ B, thus proving that ○A⋊φB is a binary operation on {(a, b) ∶ a ∈ A, b ∈ B}.
We claim that this binary operation is associative. To prove this, begin by letting a1, a2, a3 ∈ A and
b1, b2, b3 ∈ B. Evaluate the product (a1, b1) ○ ((a2, b2) ○ (a3, b3)):

(a1, b1) ○ ((a2, b2) ○ (a3, b3)) = (a1, b1) ○ (a2φb2(a3), b2b3)
= (a1φb1(a2φb2(a3)), b1(b2b3)) .

Now evaluate the product ((a1, b1) ○ (a2, b2)) ○ (a3, b3):

((a1, b1) ○ (a2, b2)) ○ (a3, b3) = (a1φb1(a2), b1b2) ○ (a3, b3)
1See http://groupprops.subwiki.org/wiki/Subgroup_structure_of_quaternion_group.
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= (a1φb1(a2)φb1b2(a3), (b1b2)b3) .

Now recall that
φ∶B → Aut(A)

is a group homomorphism. Also observe that φb is a group homomorphism for all b ∈ B. We thus find
that the product (a1, b1) ○ ((a2, b2) ○ (a3, b3)) may be rewritten in the following manner, making use of
the associativity of the underlying binary operation of B:

(a1, b1) ○ ((a2, b2) ○ (a3, b3)) = (a1, b1) ○ (a2φb2(a3), b2b3)
= (a1φb1(a2φb2(a3)), b1(b2b3))
= (a1φb1(a2φb2(a3)), (b1b2)b3)
= (a1φb1(a2)φb1(φb2(a3)), (b1b2)b3)
= (a1φb1(a2)φb1b2(a3), (b1b2)b3) .

We thus find that
(a1, b1) ○ ((a2, b2) ○ (a3, b3)) = ((a1, b1) ○ (a2, b2)) ○ (a3, b3)

for a1, a2, a3 ∈ A and b1, b2, b3 ∈ B. We have thus far shown that the operation ○A⋊φB is an associative
binary operation on the set {(a, b) ∶ a ∈ A, b ∈ B}. In other words, we have that the collection of all
pairs of the form (a, b) for a ∈ A and b ∈ B forms a semigroup. Recall that a semigroup is an algebraic
structure consisting of a set together with an assocaitive binary operation 2.

Now, let eA and eB respectively denote the identity elements for A and B. Consider the ordered pair
(eA, eB) in the codomain of the binary operation ○ = ○A⋊φB. Letting a ∈ A and b ∈ B be artbirary, observe
that φb(eA) = eA since φb must be an automorphism of A. Also observe that since

φ∶B → Aut(A)

is a group homomorphism, we have that

φeB = id = idAut(A) = eAut(A),

letting
id = idAut(A) = eAut(A)∶A→ A

denote the identity automorphism on A whereby

id(a) = a

for all a ∈ A. We thus have that:

(eA, eB) ○ (a, b) = (eAφeB(a), eBb)
= (eAφeB(a), b)
= (eAid(a), b)
= (eAa, b)
= (a, b).

2See https://en.wikipedia.org/wiki/Semigroup.
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Similarly, we have that:

(a, b) ○ (eA, eB) = (aφb(eA), b ⋅ eB)
= (aφb(eA), b)
= (a ⋅ eA, b)
= (a, b).

We thus have that the identity axiom holds with respect to the semigroup obtained by endowing the set
{(a, b) ∶ a ∈ A, b ∈ B} with the binary operation ○ = ○A⋊φB. In other words, the set {(a, b) ∶ a ∈ A, b ∈ B}
forms a monoid with respect to this binary operation. Recall that a monoid is an algebraic structure
with a single associative binary operation and an identity element 3. Again letting a ∈ A and b ∈ B be
arbitrary, let a−1 and b−1 respectively denote the inverses of a and b. We claim that the right inverse of
(a, b) is (φb−1(a−1), b−1):

(a, b) ○ (φb−1(a−1), b−1) = (aφb(φb−1(a−1)), b ⋅ b−1)
= (aφb(φb−1(a−1)), eB)
= (aφb⋅b−1(a−1), eB)
= (aφeB(a−1), eB)
= (a ⋅ id(a−1), eB)
= (a ⋅ a−1, eB)
= (eA, eB).

Similarly, we find that the left inverse of (a, b) is also equal to (φb−1(a−1), b−1):

(φb−1(a−1), b−1) ○ (a, b) = (φb−1(a−1)φb−1(a), b−1b)
= (φb−1(a−1)φb−1(a), eB)
= (φb−1(a−1a), eB)
= (φb−1(eA), eB)
= (eA, eB).

We thus find that the monoid obtained by endowing the set {(a, b) ∶ a ∈ A, b ∈ B} with the operation ○
forms a group.

Exercise 1.55. Construct morphisms α and β such that the sequence

{1} Ð→ A
αÐÐÐ→ A ⋊φ B

βÐÐÐ→ B Ð→ {1} .

is an exact sequence.

Solution 1.56. Recall that a sequence

G0
f1ÐÐÐ→ G1

f2ÐÐÐ→ G2
f3ÐÐÐ→ ⋯ fnÐÐÐ→ Gn

of groups and group homomorphisms is said to be exact if the image of each homomorphism is equal to
the kernel of the next, i.e.,

im(fi) = ker(fi+1)
3See https://en.wikipedia.org/wiki/Monoid.
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for all indices i4. It is natural to consider the mapping

α∶A→ A ⋊φ B

whereby
α(a) = (a, eB)

for all a ∈ A. Letting a1, a2 ∈ A, we have that:

α(a1) ⋅ α(a2) = (a1, eB) ⋅ (a2, eB)
= (a1φeB(a2), eBeB)
= (a1φeB(a2), eB)
= (a1id(a2), eB)
= (a1a2, eB)
= α(a1a2).

We thus have that α is a group homomorphism in this case. Observe that the image im(α) of the
morphism

α∶A→ A ⋊φ B
is the set of all expressions of the form (a, eB) where a ∈ A. Now define

β∶A ⋊φ B → B

so that
β(a, b) = b

for all a ∈ A and b ∈ B. Letting a1, a2 ∈ A and b1, b2 ∈ B, we have that:

β((a1, b1) ⋅ (a2, b2)) = β((a1φb1(a2), b1b2))
= b1b2
= β(a1, b1) ⋅ β(a2, b2).

Now observe that the kernel ker(β) of the morphism β is precisely the set of all expressions in A ⋊φ B
of the form (a, eB) for a ∈ A. So, we have that im(α) = ker(β), thus establishing an exact sequence of
the desired form.

Exercise 1.57. Letting G be a group of prime power order, with ∣G∣ = pa, prove that if H ≤ G, then
NG(H) ≠H.

Solution 1.58. Find a proper normal subgroup K ◁G and K ⊴ H such that K is maximal and that
G/K is not trivial. Since

K ⊴H ≤ G,
we have that

H/K ≤ G/K.
Now, since G is of prime power order, we have that the quotient group G/K is also of prime power
order. So the center Z(G/K) of G/K is nontrivial. So there exists a non-identity element zK in the
center Z(G/K) of G/K, with z ∉K since zK ≠ eK.

4See https://en.wikipedia.org/wiki/Exact_sequence.
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Now, observe that for h ∈H, we have that hK ∈H/K. Since

H/K ≤ G/K,
we are thus lead to consider the product

(zK)(hK) ∈ G/K.
Since z is in the center of G/K, we have that:

zhK = (zK)(hK) = (hK)(zK) = hzK ∈ G/K.
So, since

zhK = hzK ∈ G/K,
we have that

hK = z−1hzK.
Therefore,

z−1hz ∈ hK ⊆ hH =H.
But recall that h ∈H is arbitrary. We thus find that

zhz−1 ∈H
for all h ∈H. Since G is finite, we have that NG(H) =MG(H). So, we have shown that z ∈ NG(H).

But furthermore, we claim that z cannot be in H. By way of contradiction, suppose that z ∈ H. We
thus have that z ∉K and z ∈H. We claim that this contradicts the maximality of K.

To show this, let L denote the smallest subgroup of G containing z and containing the elements in
K. Since z ∉ K, we have that K ⊊ L. We have that L ≤ G by definition of L. Using the fact that
zK ∈ Z(G/K) together with the fact that K◁G, it is easily seen that each element in L must be of the
form znk for some k ∈K and some power zn of z. Letting g ∈ G, consider the coset Lg. Let znkg be an
element in this coset. But then this element is equal to

zngk′

for some k′ ∈K, and this element is equal to

gznk′′

for some k′′ ∈K, since powers of zK are also in the center of G/K. So we have shown that

(znk)g = g(znk′′)
for some element k′′ ∈K, thus proving the inclusion whereby

Lg ⊆ gL.
A symmetric argument may be used to prove the reverse inclusion. A similar argument may be used to
prove that L ⊴H. Observe that H < G. But since z ∈H by assumption, and since

K ≤H < G,
we have that

L ≤H < G,
which also shows that G/L is nontrivial. But this contradicts the maximality of K, thus proving that z
cannot be in H.
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Exercise 1.59. Illustrate Sylow’s theorems using the Sylow p-subgroups of S3.

Solution 1.60. The Sylow 2-subgroups of S3 are given below:

{(1 2 3
1 2 3

) ,(1 2 3
2 1 3

)} ≤ S3

{(1 2 3
1 2 3

) ,(1 2 3
1 3 2

)} ≤ S3

{(1 2 3
1 2 3

) ,(1 2 3
3 2 1

)} ≤ S3.

We thus have that n2 = 3. So, n2 ≥ 1, n2 divides the order ∣G∣ = 6 of G, and n2 ≡ 1(mod p). Also, all
Sylow 2-subgroups of S3 are conjugate, as illustrated below:

(1 2 3
2 3 1

){(1 2 3
1 2 3

) ,(1 2 3
2 1 3

)}(1 2 3
2 3 1

)
−1
= {(1 2 3

1 2 3
) ,(1 2 3

1 3 2
)}

(1 2 3
3 1 2

){(1 2 3
1 2 3

) ,(1 2 3
2 1 3

)}(1 2 3
3 1 2

)
−1
= {(1 2 3

1 2 3
) ,(1 2 3

3 2 1
)}

(1 2 3
2 3 1

){(1 2 3
1 2 3

) ,(1 2 3
1 3 2

)}(1 2 3
2 3 1

)
−1
= {(1 2 3

1 2 3
) ,(1 2 3

3 2 1
)} .

There is a unique Sylow 3-subgroup of S3, namely:

{(1 2 3
1 2 3

) ,(1 2 3
2 3 1

) ,(1 2 3
3 1 2

)} ≤ S3.

We thus have that n3 = 1. So n3 ≥ 1, n3 divides the order ∣G∣ = 6 of G, and n3 ≡ 1(mod3). Since there is
a unique Sylow 3-subgroup of S3, it is trivial that Sylow 3-subgroups of S3 are conjugate.

Exercise 1.61. Write in the details of the proofs of the Sylow theorems given in the handout5 from the
October 4th lecture

Solution 1.62. We begin with an expanded proof of the following result.

Proposition 1.63. Let G be a p-group acting on a (finite) set E. Then

∣E∣ ≡ ∣FixG(E)∣ (mod p) .

Proof. Since E is a G-set, we may write G as a disjoint union of orbits as follows, letting n ∈ N:

E = OrbitG(x1) ⊍OrbitG(x2) ⊍⋯ ⊍OrbitG(xn).

By the orbit-stabilizer theorem, we thus have that

∣E∣ =
n

∑
i=1

∣OrbitG(xi)∣ =
n

∑
i=1

∣G∣
∣StabG(xi)∣

.

5See http://garsia.math.yorku.ca/~zabrocki/math6121f16/documents/100616sylows.pdf.
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But since StabG(xi) is a subgroup of G, by Lagrange’s theorem, each expression of the form ∣G∣
∣StabG(xi)∣

must be of order pbi . Letting
●∶G ×E → E

denote the group action corresponding to the G-set E, recall that

Fix(g) = {x ∈ E ∶ g ● x = x}

for g ∈ G. Similarly, we define

FixG(E) = Fix(G) = {x ∈ E ∶ ∀g ∈ G g ● x = x}.

We claim that: Fix(G) = {xi ∶ 1 ≤ i ≤ n, bi = 0}. Equivalently: Fix(G) = {x ∈ E ∶ ∣G∣ = ∣StabG(x)∣}.
Equivalently:

Fix(G) = {x ∈ E ∶ G = StabG(x)} .
Our strategy to prove the above equality is to usemutual inclusion. Let y ∈ E be such that ∀g ∈ G g●y = y,
so that y ∈ Fix(G) is arbitrary. Given that ∀g ∈ G g ● y = y, consider the expression StabG(y). By
definition of the stabilizer of an element, we have that

Stab(y) = {g ∈ G ∶ g ● y = y},

but since ∀g ∈ G g ● y = y in this case, we have that Stab(y) = G. So, given y ∈ Fix(G), we thus have
that y ∈ {x ∈ E ∶ G = StabG(x)}, thus proving the desired inclusion whereby

Fix(G) ⊆ {x ∈ E ∶ G = StabG(x)}.

Conversely, let
y ∈ {x ∈ E ∶ G = StabG(x)}

be arbitrary. Since G = StabG(y), we have that G = {g ∈ G ∶ g ● y = y}, and we thus have that
∀g ∈ G g ● y = y. Since y ∈ E is such that ∀g ∈ G g ● y = y, we thus have that

y ∈ Fix(G) = {x ∈ E ∶ ∀g ∈ G g ● x = x} ,

thus proving that the reverse inclusion whereby

{x ∈ E ∶ G = StabG(x)} ⊆ Fix(G),

thus proving that Fix(G) = {xi ∶ 1 ≤ i ≤ n, bi = 0}.

Now, recall that

∣E∣ =
n

∑
i=1

∣G∣
∣StabG(xi)∣

,

by the orbit-stabilizer theorem. Rewrite this equality as follows:

∣E∣ =
n

∑
i=1

∣G∣
∣StabG(xi)∣

= ∑
1≤i≤n

∣StabG(xi)∣=∣G∣

∣G∣
∣StabG(xi)∣

+ ∑
1≤i≤n

∣StabG(xi)∣<∣G∣

∣G∣
∣StabG(xi)∣
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=
⎛
⎜⎜
⎝

∑
1≤i≤n

∣StabG(xi)∣=∣G∣

1

⎞
⎟⎟
⎠
+ ∑

1≤i≤n
∣StabG(xi)∣<∣G∣

∣G∣
∣StabG(xi)∣

=
⎛
⎜⎜
⎝

∑
1≤i≤n

StabG(xi)=G

1

⎞
⎟⎟
⎠
+ ∑

1≤i≤n
∣StabG(xi)∣<∣G∣

∣G∣
∣StabG(xi)∣

= ∣Fix(G)∣ + ∑
1≤i≤n

∣StabG(xi)∣<∣G∣

∣G∣
∣StabG(xi)∣

.

By Lagrange’s theorem, it is clear that each expression of the form

∣G∣
∣StabG(xi)∣

such that ∣StabG(xi)∣ < ∣G∣ vanishes modulo p, thus proving that

∣E∣ ≡ ∣Fix(G)∣ (mod p)

as desired.

Corollary 1.64. If p ∈ N is a prime, and m ∈ N is such that p does not divide m, then

(p
nm

pn
) ≡m (mod p) .

Proof. With respect to Proposition 1.63, let G be the cyclic group

Cpnm = Zpnm = Z/(pnm)Z.

Exercise: Prove that there exists a subgroup H ≤ G of order pn.

We begin by remarking that the result given in the above exercise follows immediately from the Fun-
damental Theorem of Cyclic Groups, which is formulated as follows in Joseph Gallian’s Contemporary
Abstract Algebra:

Fundamental Theorem of Cyclic Groups: “Every subgroup of a cyclic group is cyclic. Moreover, if
∣⟨a⟩∣ = n, then the order of any subgroup of ⟨a⟩ is a divisor of n; and, for each positive divisor k of n,
the group ⟨a⟩ has exactly one subgroup of order k – namely, ⟨an/k⟩.”

Letting 1 ∈ Z/(pnm)Z denote the coset 1+ (pnm)Z in the quotient group Z/(pnm)Z, we may thus write

⟨1⟩ = Zpnm.

Since pn divides pnm, by the Fundamental Theorem of Cyclic Groups, we thus have that the group ⟨1⟩ =
Zpnm has exactly one subgroup of order pn, namely ⟨m⟩. Without resorting to using the Fundamental
Theorem of Cyclic Groups, it is easily seen that ⟨m⟩ is a cyclic subgroup of ⟨m⟩ of order pn. In particular,
it is easily seen that

⟨m⟩ = {m,2m,3m, . . . , (pn − 1)m,0}
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since the expressions in
{m,2m,3m, . . . , (pn − 1),m}

do not vanish modulo pnm because p does not divide m by assumption, and since the elements in

⟨m⟩ = {m,2m,3m, . . . , (pn − 1),m,0}

must be pairwise unequal as is easily verified using our assumption that p does not divide m.

So, let H = ⟨m⟩. Let X be the set of subsets S ⊆ G such that ∣S∣ = pn. Note that ∣X ∣ = (pnm
pn

). Let H act
on X by left addition. Let

●∶H ×X →X

denote this action.

Exercise: Prove that S ∈ Fix(H) if and only if S is a left coset of H.

Suppose that S is a left coset of H. Let g ∈ G, and write S = {g + h ∶ h ∈ H}. Since H is a (normal)
subgroup of order pn, we have that g +H is also of order pn. We thus have that S ∈ X. Now let i ∈ H,
and consider the expression i ● S:

i ● S = i + S
= i + {g + h ∶ h ∈H}
= {i + g + h ∶ h ∈H}
= {g + i + h ∶ h ∈H}
= {g + j ∶ j ∈H}
= S.

We thus have that if S is a left coset of H, then S in the following set:

Fix(H) = {T ∈X ∶ ∀i ∈H i ● T = T}.

Conversely, suppose that:
S ∈ Fix(H) = {T ∈X ∶ ∀i ∈H i ● T = T}.

We thus have that:
∀i ∈H i ● S = S.

Therefore,
∀i ∈H i + S = S.

Write:
H = {h1, h2, . . . , hpn},

for the sake of convenience, and write:

S = {s1, s2, . . . , spn}.

Now let f ∶ {1,2, . . . , pn} → {1,2, . . . , pn} be a mapping defined as follows, using the fact that ∀i ∈H i+S =
S:

h1s1 = sf(1),
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h2s1 = sf(2),
⋯
hpns1 = sf(pn).

Letting i and j be elements in the domain of f , it is clear that f is injective, since:

f(i) = f(j) Ô⇒ sf(i) = sf(j)
Ô⇒ his1 = hjs1
Ô⇒ hi = hj
Ô⇒ i = j.

So, since f is an injective map from {1,2, . . . , pn} to {1,2, . . . , pn}, we may thus deduce that f is bijective.
Since f is bijective, it is thus clear that

s1 +H = S,
thus proving that S is a left coset of H.

So, we have shown that the set Fix(H) is precisely the set of left cosets of H. Now, by Lagrange’s
theorem, we have that the number of left cosets of H is m. So the above corollary thus follows from
Proposition 1.63.

Theorem 1.65. The center of a p-group G is nontrivial.

Proof. Let G act on itself by conjugation. In particular, let

●∶G ×G→ G

denote the action whereby
g ● h = ghg−1

for all g, h ∈ G. It is clear that ● is indeed a group action, since

e ● g = ege−1 = g

for g ∈ G, and since the following holds for g, h, i ∈ G:

(gh) ● i = (gh)i(gh)−1

= ghih−1g−1

= g(hih−1)g−1

= g(h ● i)g−1

= g ● (h ● i).

Exericse: Show that Fig(G) = Z(G) with respect to the conjugation action on G.

To show that Fix(G) = Z(G), rewrite the expression Fix(G) in the following manner:

Fix(G) = {i ∈ G ∶ ∀h ∈ G h ● i = i}
= {i ∈ G ∶ ∀h ∈ G hih−1 = i}
= {i ∈ G ∶ ∀h ∈ G hi = ih}
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= Z(G).

Now, by Proposition 1.63, we have that

∣G∣ ≡ ∣Fix(G)∣ (mod p),

and thus
∣G∣ ≡ ∣Z(G)∣ (mod p),

and thus
∣Z(G)∣ ≡ ∣G∣ (mod p).

We thus have that
∣Z(G)∣ ≡ 0(mod p),

thus proving that p divides the order of Z(G).

Theorem 1.66. (1st Sylow theorem): Sylow p-subgroups always exist.

Proof. Let X be the set of subsets of G of order pn and let G act on X by left multiplication. Let

●∶G ×X →X

denote the corresponding action whereby
g ● x = gx

for g ∈ G and x ∈ X. As above, let expressions of the form xi denote the representatives of the orbits.
Since ∣X ∣ = (pnm

pn
), as shown above, we have that ∣X ∣ ≡ m(mod p). So p does not divide ∣X ∣. So there

exists at least one expression of the form xi such that p does not divide ∣G∣
∣StabG(xi)∣ . Now, what is the order

of G? It should be clarified that the order ∣G∣ of G is such that p is a prime factor with multiplicity n of
∣G∣. Since the prime power pn divides ∣G∣ but pn+1 does not divide ∣G∣, and since ∣G∣

∣StabG(xi)∣ is a natural
number by Lagrange’s theorem, and since ∣G∣

∣StabG(xi)∣ is not divisible by p, we may deduce that pn divides
∣StabG(xi)∣. We remark that we are implicitly using the Fundamental Theorem of Arithmetic.

Exercise: Explain why ∣StabG(xi)∣ = ∣{zy ∶ z ∈ StabG(xi)}∣.

Letting y ∈ xi, to show that
∣StabG(xi)∣ = ∣{zy ∶ z ∈ StabG(xi)}∣ ,

begin by observing that StabG(xi) is a subgroup of G. Now consider the expression

{zy ∶ z ∈ StabG(xi)} .

It is clear that the above set is precisely the following right coset:

(StabG(xi)) y = {zy ∶ z ∈ StabG(xi)} .

From our previous proof of Lagrange’s theorem, which is available through the course webpage for
MATH 6121, we know that the order ∣StabG(xi)∣ of the subgroup StabG(xi) must be equal to the order
of the coset (StabG(xi)) y, thus proving that

∣StabG(xi)∣ = ∣{zy ∶ z ∈ StabG(xi)}∣ ,
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as desired.

Now by definition of the stabilizer of an element, we have that:

StabG(xi) = {g ∈ G ∶ g ● xi = xi} .

Denote xi as follows:
xi = {w1,w2, . . . ,wpn}.

Now, let z ∈ StabG(xi). We thus have that z ∈ G, and z ● xi = xi. Now consider the expression zy.
Since y ∈ xi, and since z ● xi = xi, we have that zy = y′ for some y′ ∈ xi. So, we have that the set of all
expressions of the form zy where z is in StabG(xi) is contained in xi. We thus have that

∣StabG(xi)∣ = ∣{zy ∶ z ∈ StabG(xi)}∣ ≤ ∣xi∣ ,

and we thus have that
∣StabG(xi)∣ ≤ pn.

But recall that we used Lagrange’s theorem to prove that pn divides the order of the subgroup StabG(xi).
We thus have that

∣StabG(xi)∣ ≥ pn,
thus proving that

∣StabG(xi)∣ = pn.
But recall that StabG(xi) forms a subgroup of G with respect to the underlying binary operation on G.
We thus have that StabG(xi) is a subgroup of G of order pn.

Recall that a finite group is a p-group iff its order is a power of p. Recall that a Sylow p-subgroup of G
is a maximal p-subgroup of G, i.e. a subgroup of G that is a p-group that is not a proper subgroup of
any other p-subgroup of G. As indicated above, the order ∣G∣ of G is such that p is a prime factor with
multiplicity n of ∣G∣. Therefore, since StabG(xi) is a subgroup of G of order pn, we have that StabG(xi)
must be a Sylow p-subgroup, because by Lagrange’s theorem, this subgroup cannot be properly contained
in any other p-subgroup of G, since the multiplicity of the prime factor p of ∣G∣ is n.

Theorem 1.67. (2nd Sylow theorem) All Sylow p-subgroups are conjugate to each other.

Proof. Let T and S be two subgroups of order pn. Observe that S ⊴ G. Let T act on the left cosets of
the quotient group G/S by left multiplication. Let

●∶T × (G/S) → G/S

denote the corresponding group action whereby

t ● (gS) = (tg)S

for t ∈ T and g ∈ G. Since T is a p-group, by Proposition 1.63, we have that

∣G/S∣ ≡ ∣FixT (G/S)∣ (mod p) .

Now recall that G is a p-group, such that the multiplicity of the prime p with respect to the prime
factorization of ∣G∣ is n. Since S is a Sylow p-subgroup, i.e., a maximal p-subgroup, it is clear that p

48



does not divide the order ∣G/S∣ of the quotient group G/S. We may thus deduce that FixT (G/S) is
nonempty. So, let gS ∈ FixT (G/S).

Exericse: Show that if gS ∈ FixT (G/S), then T ⊆ gSg−1.

To show that
gS ∈ FixT (G/S) Ô⇒ T ⊆ gSg−1,

begin by rewriting the expression FixT (G/S) as follows:

FixT (G/S) = {hS ∈ G/S ∶ ∀t ∈ T t ● (hS) = hS}.

We thus have that:
∀t ∈ T t ● (gS) = gS.

So, for each element t ∈ T , since tge = tg must be in gS, we have that the following holds: for each
element t ∈ T , there exists a corresponding element s = st in S such that tge = tg = gs. So, for each
element t ∈ T , there exists a corresponding element s = st in S such that t = gsg−1. We thus have that
T ⊆ gSg−1 as desired. But since T is a p-group of order pn, and since gSg−1 is of order pn, we thus have
that T = gSg−1 as desired.

Theorem 1.68. (3rd Sylow Theorem) Let np be the number of Sylow subgroups, then np divides the
order of G

Proof. Let G act on the set of all Sylow p-subgroups of G by conjugation. By the 2nd Sylow Theorem,
we know that there is a unique orbit with respect to this group action. So, letting S denote a fixed
Sylow p-subgroup, we have that OrbitG(S) consists precisely of all the Sylow p-subgroups of G. Now,
by the orbit-stabilizer theorem, we have that

np = ∣OrbitG(S)∣ =
∣G∣

∣StabG(S)∣
.

So, since
np ⋅ ∣StabG(S)∣ = ∣G∣ ,

we thus have that np divides the order of G, as desired.

Theorem 1.69. (4th Sylow Theorem) np ≡ 1(modp).

Proof. Let Sylp(G) denote the set of all Sylow p-subgroups of G, and let S ∈ Sylp(G). Let S act on
Sylp(G) by conjugation. By Proposition 1.63, we thus have that

np = ∣Sylp(G)∣ ≡ ∣FixS(Sylp(G))∣ (mod p) .

Exericse: Show that if P ∈ FixS(Sylp(G)), then S ⊆ NG(P ).

By definition of the normalizer of a subset, we have that:

NG(P ) = {g ∈ G ∶ gP = Pg} .

Assuming that P is in FixS(Sylp(G)), we have that

∀s ∈ S s ● P = P.
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Therefore, ∀s ∈ S sPs−1 = P. That is,
∀s ∈ S sP = Ps.

So, for each element s in S ≤ G, we have that sP = Ps. So it is clear that each element s in S must
necessarily be in NG(P ). This proves that S ⊆ NG(P ). Since S is a subgroup of G, and since NG(P ) ≤ G,
we thus have that:

S ≤ NG(P ) ≤ G.
Now, since S and P are both Sylow p-subgroups of NG(P ), by the first Sylow theorem, we have that
S = gPg−1 with g ∈ NG(P ), and we thus have that S = gPg−1 = P .

Exercise 1.70. Does S4 have a composition series with composition factors of the form (Z2,Z2,Z3)?
Does S4 have a composition series with composition factors of the form (Z3,Z2,Z2)?

Solution 1.71. As discussed on the course webpage, the SageMath input

[H.order() for H in SymmetricGroup(4).subgroups()]

produces the following integer sequence:

(1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,6,6,6,6,8,8,8,12,24).

We thus find that n2 = 3, meaning that a subgroup of S4 of order 8 cannot be a normal subgroup. This is
easily seen using Sylow theory in the following way: we know that Sylow p-subgroups are all conjugate,
so if there are multiple Sylow p-subgroups, i.e., if there are at least two distinct Sylow p-subgroups A
and B, we have that

gAg−1 = B
for some g ∈ G, which shows that

gA = Bg ≠ Ag,
which shows that A is not normal. So, as indicated on the course webpage, since n2 = 3, it is impossible
to have a composition series of S4 with composition factors of the form (Z2,Z2,Z3).

On the other hand, is it possible that S4 has a composition series with composition factors of the form
(Z3,Z2,Z2)? Begin by observing that A4 ⊴ S4, with S4/A4 ≅ Z2. It is easily seen that the only subgroup
of S4 of order 12 is A4

6. But it is also easily seen that A4 does not have any subgroup of order 67. We
thus find that it is impossible for S4 to have a composition series with composition factors of the form
(Z3,Z2,Z2).

Exercise 1.72. Show that the function [⋅, ⋅] constructed in the proof of Maschke’s theorem is a scalar
product.

Solution 1.73. Recall that a module is basically a “vector space over a ring”. A module is decomposable
if it can be written in the formM ≅W⊕V , whereW and V are proper nontrivial submodules ofM . Also
recall that a module is reducible if there exists a proper non-trivial submodule. According to Maschke’s
Theorem, over C, a module M is an irreducible module if and only if M is decomposable.

So, let M be a C-module, and let W be a proper non-trivial submodule. We want to find a submodule
V such that M ≅W ⊕ V .

6See http://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4.
7See http://groupprops.subwiki.org/wiki/Subgroup_structure_of_alternating_group:A4.
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Fix a basis B of M . Define the scalar product ⟨⋅, ⋅⟩ as follows:

⟨v⃗, u⃗⟩ = [v⃗]TB[u⃗]B.
Now, let

φ∶G→ Aut(M)
be a representation of the finite group G over a field F in which ∣G∣ is invertible. Define the mapping

[⋅, ⋅]∶M ×M → C

as follows:

[v⃗, u⃗] = 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗), φ(g)(u⃗)⟩.

We claim that this mapping is a scalar product. For the sake of clarity, let φ(g)(u⃗) and φ(g)(v⃗) be
denoted as follows:

[φ(g)(u⃗)]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ug1
ug2
⋯
ugn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[φ(g)(v⃗)]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg1
vg2
⋯
vgn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Now consider the expression [u⃗, v⃗].

[u⃗, v⃗] = 1

∣G∣ ∑g∈G
⟨φ(g)(u⃗), φ(g)(v⃗)⟩

= 1

∣G∣ ∑g∈G
⟨φ(g)(u⃗), φ(g)(v⃗)⟩

= 1

∣G∣ ∑g∈G
[φ(g)(u⃗)]TB[φ(g)(v⃗)]B

= 1

∣G∣ ∑g∈G
[ug1, u

g
2, . . . , u

g
n]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg1
vg2
⋯
vgn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 1

∣G∣ ∑g∈G
[ug1, u

g
2, . . . , u

g
n]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg1
vg2
⋯
vgn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 1

∣G∣ ∑g∈G
ug1v

g
1 + u

g
2v
g
2 +⋯ + ugnvgn

= 1

∣G∣ ∑g∈G
ug1v

g
1 + u

g
2v
g
2 +⋯ + ugnvgn
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= 1

∣G∣ ∑g∈G
vg1u

g
1 + v

g
2u

g
2 +⋯ + vgnugn

= 1

∣G∣ ∑g∈G
[vg1 , v

g
2 , . . . , v

g
n]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ug1
ug2
⋯
ugn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗), φ(g)(u⃗)⟩

= [v⃗, u⃗].

We thus find that the mapping
[⋅, ⋅]∶M ×M → C

satisfies the conjugate symmetry axiom. We claim that the linearity in the first argument of [⋅, ⋅] is
inherited from the linearity in the first argument of ⟨⋅, ⋅⟩ and the linearity of mappings of the form φg for
g ∈ G. This is illustrated below, letting a be a scalar, and letting v⃗1 and v⃗2 be elements in the module
M .

[av⃗, u⃗] = 1

∣G∣ ∑g∈G
⟨φ(g)(av⃗), φ(g)(u⃗)⟩

= 1

∣G∣ ∑g∈G
⟨aφ(g)(v⃗), φ(g)(u⃗)⟩

= 1

∣G∣ ∑g∈G
a⟨φ(g)(v⃗), φ(g)(u⃗)⟩

= a 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗), φ(g)(u⃗)⟩

= a[v⃗, u⃗].

[v⃗1 + v⃗2, u⃗] =
1

∣G∣ ∑g∈G
⟨φ(g)(v⃗1 + v⃗2), φ(g)(u⃗)⟩

= 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗1) + φ(g)(v⃗2), φ(g)(u⃗)⟩

= 1

∣G∣ ∑g∈G
(⟨φ(g)(v⃗1), φ(g)(u⃗)⟩ + ⟨φ(g)(v⃗2), φ(g)(u⃗)⟩)

= 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗1), φ(g)(u⃗)⟩ +

1

∣G∣ ∑g∈G
⟨φ(g)(v⃗2), φ(g)(u⃗)⟩

[v⃗1, u⃗] + [v⃗2, u⃗].

Since ⟨u⃗, u⃗⟩ ≥ 0, we find that
⟨φ(g)(u⃗), φ(g)(u⃗)⟩ ≥ 0

for g ∈ G, so it is clear that [u⃗, u⃗] ≥ 0. Similarly, we have that:

1

∣G∣ ∑g∈G
⟨φ(g)(u⃗), φ(g)(u⃗)⟩ = 0⇐⇒ ∑

g∈G
⟨φ(g)(u⃗), φ(g)(u⃗)⟩ = 0
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⇐⇒ ∀g ∈ G ⟨φ(g)(u⃗), φ(g)(u⃗)⟩ = 0

⇐⇒ ∀g ∈ G φ(g)(u⃗) = 0⃗M

⇐⇒ u⃗ = 0⃗M .

To show why the biconditional statement

∀g ∈ G φ(g)(u⃗) = 0⃗M ⇐⇒ u⃗ = 0⃗M ,

begin by assuming that ∀g ∈ G φ(g)(u⃗) = 0⃗M . In particular, letting e = eG denote the identity element
in G, we have that

φe(u⃗) = 0⃗M .

Since
φ∶G→ Aut(M)

is a group homomorphism, we have that φ must map the identity element e = eG of G to the identity
morphism

idM = id∶M →M

in the codomain of φ. So, in the case whereby

∀g ∈ G φ(g)(u⃗) = 0⃗M ,

we have that:

φe(u⃗) = 0⃗M Ô⇒ id(u⃗) = 0⃗M

Ô⇒ u⃗ = 0⃗M .

We thus find that the implication whereby

∀g ∈ G φ(g)(u⃗) = 0⃗M Ô⇒ u⃗ = 0⃗M

holds. Conversely, suppose that the equality u⃗ = 0⃗M holds. Since linear mappings map zero vectors to
zero vectors, and since φ(g) ∈ Aut(M) for all g ∈ G, we thus have that

u⃗ = 0⃗M Ô⇒ ∀g ∈ G φ(g)(u⃗) = 0⃗M

as desired.

Exercise 1.74. Prove that [φ(h)(v⃗), φ(h)(u⃗)] = [v⃗, u⃗].

Solution 1.75. By definition of the mapping

[⋅, ⋅] ⋅M ×M → C,

we have that:

[φ(h)(v⃗), φ(h)(u⃗)] = 1

∣G∣ ∑g∈G
⟨φ(g)(φ(h)(v⃗)), φ(g)(φ(h)(u⃗))⟩.

It is convenient to write φ(g) = φg and φ(h) = φh. We thus arrive at the following equality:
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[φh(v⃗), φh(u⃗)] =
1

∣G∣ ∑g∈G
⟨φg(φh(v⃗)), φg(φh(u⃗))⟩. (1.1)

But recall that the mapping
φ∶G→ Aut(V )

is a group homomorphism. We thus have that the equality given in (1.1) may be rewritten as follows:

[φh(v⃗), φh(u⃗)] =
1

∣G∣ ∑g∈G
⟨φg⋅h(v⃗), φg⋅h(u⃗)⟩.

But recall that the mapping on the underlying set of G whereby g ↦ g ⋅h for fixed h ∈ G is a permutation
of the underlying set of G. Therefore,

[φh(v⃗), φh(u⃗)] =
1

∣G∣ ∑g∈G
⟨φg⋅h(v⃗), φg⋅h(u⃗)⟩

= 1

∣G∣ ∑i∈G
⟨φi(v⃗), φi(u⃗)⟩

= [v⃗, u⃗] .

Exercise 1.76. Recall that for groups A and B and γ∶B → Aut(A), then the group A ⋊γ B is the set
of pairs {(a, b) ∶ a ∈ A, b ∈ B} with product (a, b) ⋅A⋊γB (a′, b′) = (aγb(a′), bb′). Find an example of p, q,
and γ such that Zp ⋊γ Zq is solvable but not abelian.

Solution 1.77. We begin by proving a useful preliminary result. We claim that given a finite group
G, if G has a subgroup H of index 2, then H must be normal in G. For fixed h1 and h2, the mappings
h ↦ h1 ⋅ h and h ↦ h ⋅ h2 on H are both permutations of H. So it is clear that hH = Hh for h ∈ H. But
we also know that the mappings g ↦ h1 ⋅ g and g ↦ g ⋅ h2 on G are both permutations of G. We may
thus deduce that the mappings g ↦ h1 ⋅ g and g ↦ g ⋅ h2 on G ∖H are both permutations of G ∖H. We
thus arrive at the following incomplete Cayley table, where mappings denoted using the symbol ρ or the
symbol µ are permutations of G ∖H, writing H = {h1, h2, . . . , hn} and G ∖H = {g1, g2, . . . , gn}, noting
that ∣H ∣ = ∣G ∖H ∣.

○ h1 h2 ⋯ hn g1 g2 ⋯ gn
h1 gρ11 gρ21 ⋯ gρn1
h2 gρ12 gρ22 ⋯ gρn2
⋮ ⋮ ⋮ ⋱ ⋮
hn gρ1n gρ2n ⋯ gρnn
g1 gµ11 gµ12 ⋯ gµ1n
g2 gµ21 gµ22 ⋯ gµ2n
⋮ ⋮ ⋮ ⋱ ⋮
gn gµn1 gµn2 ⋯ gµnn

But since
{gµi1 , gµi2 , . . . , gµin} = {gρi1 , gρi2 , . . . , gρin}

for all indices i, we thus find that
gH =Hg
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for all g ∈ G ∖H as desired.

Now, let p = 3, let q = 2, and define γ∶Z2 → Aut(Z3) so that γ0 is the identity automorphism on Z3, and
γ1 is the automorphism on Z3 mapping each element in Z3 to its inverse. As discussed in class, we have
that

Zp ⋊γ Zq = Z3 ⋊γ Z2 ≅D3 ≅ S3.

We adopt the notation indicated below for dihedral groups introduced in class:

D3 = {1, a, a2, b, ba, ba2}.

It is clear that the set {1, a, a2} forms a cyclic subgroup of D3 which is isomorphic to Z3. From the
preliminary result given towards the beginning of our present solution, since {1, a, a2} is a subgroup
of D3 of index 2, we have that this subgroup must in fact be a normal subgroup of D3. This is also
easily seen from a geometric perspective in the sense outlined as follows. Observe that the elements
in the cyclic subgroup {1, a, a2} are precisely the orientation-preserving isometries in D3. Recall that
the composition of two orientation-preserving isometries must be an orientation-preserving isometry.
Similarly, the composition of an orientation-preserving isometry and an orientation-reversing isometry,
or vice-versa, yields an orientation-reversing isometry. Finally, the composition of two orientation-
reversing isometries must yield an orientation-preserving isometry. It is thus seen that the rotation
subgroup {1, a, a2} must be the kernal of a homomorphism from D3 to Z2, thus showing that {1, a, a2}
forms a normal subgroup of D3, as desired.

We thus arrive at the subnormal series given below:

{1}◁ {1, a, a2}◁D3 ≅ Zp ⋊γ Zq.
Of course, the group

Z3 ⋊γ Z2 ≅D3 ≅ S3

is not abelian. But given the subnormal series

{1}◁ {1, a, a2}◁D3 ≅ Zp ⋊γ Zq,

and given that
D3/{1, a, a2} ≅ Z2

and
{1, a, a2}/{1} ≅ Z3,

we have that the above subnormal series is a composition series whose composition factors are abelian.
We thus have that Zp ⋊γ Zq is solvable but not abelian.

Exercise 1.78. Consider the following series:

Z0(G) ∶= {1},

Z1(G) = Z(G) = {g ∈ G ∣ ∀g ∈ G gx = xg} ⊴ G.
Then, we recall the map π∶G → G/Z1(G), and note that Z(G/Z1(G)) ⊴ G/Z1(G). Thus, we may use
the fourth isomorphism theorem to create Z2(G) as the group corresponding to Z(G/Z1(G)), and we
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have that Z1(G) ⊴ Z2(G), in general we have Zi(G) as the subgroup corresponding to Z(G/Zi−1(G)),
and Zi−1(G) ⊴ Zi(G) ⊴ G. Hence we have

Z0(G) ⊴ Z1(G) ⊴ Z2(G) ⊴ ⋯

which is called the Upper Central Series of G. If G is a nontrivial finite group then this series stabilizes
at some point.

Def: We say that G is nilpotent of index k if there exists an index k such that Zk(G) = G and Zk−1(G) ≠
G.

So, for G a finite group, show that all abelian groups are nilpotent, and that all nilpotent groups are
solvable. We note that the converse of each statement is not true.

Solution 1.79. So, let G be a finite group, and suppose that G is abelian. In this case, we have that:

Z0(G) ∶= {1}
Z1(G) = Z(G) = G ⊴ G.

We thus have that there exists an index i = 1 such that Zi(G) = G and Zi−1(G) ≠ G. We thus find that
non-trivial abelian groups are nilpotent of index 1.

Again letting G be a finite group, suppose that G is nilpotent of index k. Now recall that the Upper
Central Series

Z0(G) ⊴ Z1(G) ⊴ Z2(G) ⊴ ⋯
is defined so that for each index i, Zi(G) is the subgroup corresponding to Z(G/Zi−1(G)) with respect
to the fourth isomorphism theorem. Since

Zi−1(G)/Zi−1(G) ⊴ Z(G/Zi−1(G)) ⊴ G/Zi−1(G),

by the fourth isomorphism theorem, we have that there is a corresponding subgroup H whereby

Zi−1(G) ⊴H ⊴ G,

and this subgroup is given by the inverse image of Z(G/Zi−1(G)) with respect to the projection morphism
π.

Now, to prove that G is necessarily solvable, our strategy is to prove that

Zi+1/Zi(G) ⊆ Z(G/Zi(G))

for all indices i. So, let i be an arbitrary index. According to the Fourth Isomorphism Theorem, we
have that:

Zi(G) = ⋃Z(G/Zi−1(G)),
Zi+1(G) = ⋃Z(G/Zi(G)).

Now, to prove that each element in the quotient group Zi+1(G)/Zi(G) is in the center of G/Zi(G), we
begin by constructing an arbitrary element in the subgroup Zi+1(G). Let g1 ∈ G be such that the left
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coset g1Zi(G) ∈ G/Zi(G) is actually in the center Z(G/Zi(G)) of the quotient group G/Zi(G). Now,
let z1 be an arbitrary element in Zi+1(G), so that the product

g1z1 ∈ Zi+1(G)

is an arbitrary element in Zi+1(G). Now consider the left coset

g1z1Zi(G) ∈ Zi+1(G)/Zi(G).

We have chosen the elements g1 and z1 so that g1z1Zi(G) is an arbitrary element in the quotient group
Zi+1(G)/Zi(G). Now, recall that our strategy for proving that G is solvable is to prove that the quotient
group Zi+1(G)/Zi(G) satisfies the following inclusion:

Zi+1(G)/Zi(G) ⊆ Z(G/Zi(G)).

So, we are interested in proving that the coset g1z1Zi(G) commutes with each coset in G/Zi(G). Now,
let g2 ∈ G be arbitrary, so that g2Zi(G) is an arbitrary element in G/Zi(G). Since z1 ∈ Zi(G) and since

g1Zi(G) ∈ Z(G/Zi(G)),

we thus have that:

[g1z1Zi(G)] ● [g2Zi(G)] = [g1Zi(G)] ● [g2Zi(G)]
= [g2Zi(G)] ● [g1Zi(G)]
= [g2Zi(G)] ● [g1z1Zi(G)] .

Since
Zi+1(G)/Zi(G) ⊆ Z(G/Zi(G)),

we have that each quotient of the form Zi+1(G)/Zi(G) is abelian. This effectively proves that G is solv-
able: even if a subnormal factor of the form Zi+1(G)/Zi(G) may not be simple, the fourth isomorphism
theorem may be applied to construct a subseries consisting of finite abelian simple groups, i.e., groups
which are isomorphic to Zp.

Exercise 1.80. We assume that G is a finite nontrivial group, and define G0 = G and

G1 = [G,G] ∶= ⟨ghg−1h−1 ∣ g, h ∈ G⟩.

Show that [G,G] ⊴ G and that G/[G,G] is abelian. Furthermore, show that if H◁G is such that G/H
is abelian then [G,G] ≤H. Let

Gi = [G,Gi−1] = ⟨ghg−1h−1 ∣ g ∈ G,h ∈ Gi−1⟩.

Show that Gi ⊴ G, then we have the Lower Central Series of G given by

. . . ⊴ G2 ⊴ G1 ⊴ G,

which will stabilize at some point since G is finite. Show that Gk = {1} if and only if G is nilpotent of
index k. (Hint: Zi(G) ≤ Gk−i−1 ≤ Zi+1(G).)
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Solution 1.81. By definition of the commutator subgroup, [G,G] is precisely the subgroup of G gener-
ated by all the commutators. We thus have that [G,G] ≤ G by definition of the commutator subgroup.
Let c be an element in this subgroup, and let g ∈ G be arbitrary. Consider the product g ⋅ c ⋅ g−1 ∈ G.
Rewrite this product in the following manner:

g ⋅ c ⋅ g−1 = (g ⋅ c ⋅ g−1) ⋅ (c−1 ⋅ c)
= (g ⋅ c ⋅ g−1 ⋅ c−1) ⋅ c

We thus find that a product of the form

g ⋅ c ⋅ g−1 = (g ⋅ c ⋅ g−1 ⋅ c−1) ⋅ c

must be equal to a product consisting of an element c in the subgroup [G,G] ≤ G and another element

g ⋅ c ⋅ g−1 ⋅ c−1 ∈ [G,G] ≤ G

in the commutatory subgroup [G,G]. But since [G,G] has to be closed with respect to the underlying
binary operation on G, we thus have that g ⋅ c ⋅ g−1 must be in [G,G]. We thus have that each element
in g[G,G] is in [G,G]g for g ∈ G, and a symmetric argument proves the reverse inclusion. We thus
have that [G,G] ⊴ G as desired. Now consider the quotient group G/[G,G]. Let g and h be arbitrary
elements in G, so that g[G,G] and h[G,G] are arbitrary elements in the quotient group G/[G,G].
Consider the following product of cosets:

(g[G,G]) ⋅ (h[G,G]) = gh[G,G].

Since the product
h−1g−1hg

is in the commutator subgroup, we thus find that the product

gh (h−1g−1hg)

is in the coset gh[G,G]. We thus have that

hg ∈ gh[G,G].

But we also have that
hg ∈ hg[G,G].

We thus find that the cosets gh[G,G] and hg[G,G] have a nonempty intersection. But recall that
two cosets in a given quotient group are either equal or disjoint. Since gh[G,G] and hg[G,G] are not
disjoint, we thus have that gh[G,G] = hg[G,G]. We thus find that

(g[G,G]) ⋅ (h[G,G]) = (h[G,G]) ⋅ (g[G,G])

for two elements g[G,G] and h[G,G] in G/[G,G], thus proving that G/[G,G] is abelian. Now suppose
that H ◁G is such that G/H is abelian, so that:

g1g2H =Hg1g2 = g2g1H =Hg2g1
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for g1, g2 ∈ G. Now, since
g1g2H =Hg2g1

for all g1, g2 ∈ G, and since e ∈H we have that:

∀g1, g2 ∈ G ∃h ∈H g1g2 = hg2g1.
Therefore,

g1g2g
−1
1 g

−1
2 ∈H

for all g1, g2 ∈ G. But since the commutator subgroup [G,G] is generated by expressions of the form
g1g2g−11 g

−1
2 for g1, g2 ∈ G, and since each such generator is in H, we thus find that [G,G] ⊆H. Moreover,

since [G,G] ≤ G and H ≤ G, we may thus deduce that [G,G] ≤H.

Letting i be an index, we have that Gi ≤ G by definition, since Gi is defined as a subgroup generated by
certain elements in G. Observe that each generator of the form

ghg−1h−1

for g ∈ G and h ∈ G1 ⊆ G must be in G1, since G1 is generated by expressions of the form aba−1b−1 for
a, b ∈ G. So, G2 ⊆ G1. Similarly, each generator of the form

ghg−1h−1

for g ∈ G and h ∈ G2 ⊆ G1 must be in G2, since G2 is generated by expressions of the form aba−1b−1 for
a ∈ G and b ∈ G1 ⊆ G. Continuing in this manner inductively, we thus arrive at the following inclusions:

⋯ ⊆ G2 ⊆ G1 ⊆ G.
Now, let g ∈ G, and let c be an arbitrary element in Gi. Consider the following product:

g ⋅ c ⋅ g−1.
Now, rewrite this product as follows:

(g ⋅ c ⋅ g−1 ⋅ c−1) ⋅ c.
Since g ∈ G and c ∈ Gi, we have that g ⋅ c ⋅ g−1 ⋅ c−1 is a generator for the group Gi+1. But we also know
that Gi+1 ⊆ Gi. So, g ⋅ c ⋅ g−1 ⋅ c−1 is in Gi. But we also know that c ∈ Gi. We thus have that

g ⋅ c ⋅ g−1 ∈ Gi,

proving the inclusion whereby
gGig−1 ⊆ Gi.

A symmetric argument proves the reverse inclusion, which proves that Gi is normal as a subgroup of G.
As indicated in the hint given for the above exercise, we have that Zi(G) ≤ Gk−i−1 ≤ Zi+1(G). This

may be shown inductively. Suppose that Gk = {1}, with:
{1} = Gk ⊴ ⋯ ⊴ G2 ⊴ G1 ⊴ G.

But then since Zi(G) ≤ Gk−i−1 ≤ Zi+1(G), we arrive at the following series:

{1} = Gk ≤ Z0(G) ≤ Gk−1 ≤ Z1(G) ≤ Gk−2 ≤ Z2(G) ≤ ⋯ ≤ G1 ≤ Zk−1(G) ≤ G ≤ Zk(G).
But then Zk(G) = G. Since the sequence

{1} = Gk ⊴ ⋯ ⊴ G2 ⊴ G1 ⊴ G
is finite, we have that the inequalities in this sequence must be strict. Therefore, Zk−1(G) ≠ G.
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Exercise 1.82. Let G be a nontrivial finite group. Then define G(0) = G and

G(i) = [G(i−1),G(i−1)] ⊴ G(i−1).

We note that it is not true in general that G(i) ⊴ G. We call the following normal series a Derived Series,
and since G is finite it stabilizes at some point:

G(k) ⊴ ⋯ ⊴ G(2) ⊴ G(1) ⊴ G(0).

Show that G is solvable if and only if G(k) = {1} for some k.

(Hint: Use the fact that G(i+1)/G(i) is abelian, this implies that G(i+1) = [Hs−i,Hs−ki] ⊴ Hs−i−1 where
{1} ⊴H0 ⊴H1 ⊴ ⋯ ⊴Hk = G).

Solution 1.83. We have previously shown that G/[G,G] is abelian. For an index i, we have that
[G(i−1),G(i−1)] is the group generated by all expressions of the form ghg−1h−1 for g and h in G(i−1). Since
[G(i−1),G(i−1)] is a group by definition, and since

G(i−1) = [G(i−2),G(i−2)]

is a group by definition, and since [G(i−1),G(i−1)] is generated by elements in the group G(i−1), we have
that:

G(i) ≤ G(i−1).

Now, let g be an arbitrary element in G(i−1), and let c be an arbitrary element in G(i). Consider the
following expression:

g ⋅ c ⋅ g−1 ∈ gG(i)g−1.

Now, observe that the product
g ⋅ c ⋅ g−1

may be rewritten as
g ⋅ c ⋅ g−1 ⋅ c−1 ⋅ c.

But since g ∈ G(i−1), and since c is an element in a group G(i) generated by certain products of elements
in G(i−1), it is clear that

g ⋅ c ⋅ g−1 ⋅ c−1 ∈ G(i)

so that
g ⋅ c ⋅ g−1 ⋅ c−1 ⋅ c ∈ G(i)c = G(i)

thus proving the inclusion whereby
gG(i)g−1 ⊆ G(i).

A symmetric argument may be used to prove the reverse inclusion, in order to show that:

G(i) ⊴ G(i−1).

As indicated above, we thus arrive at a subnormal series of the following form:

G(k) ⊴ ⋯ ⊴ G(2) ⊴ G(1) ⊴ G(0).

Now consider the quotient group G(i+1)/G(i), letting i be an index. Let g1 and g2 be arbitrary elements
in G(i+1). Let c be an element in G(i). Consider the following expression:

g1 ⋅ g2 ⋅ c ⋅ g−12 ⋅ g−11 .
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We know that
g2 ⋅ c ⋅ g−12 ∈ G(i)

since G(i) is normal in G(i+1). Since
g2 ⋅ c ⋅ g−12 ∈ G(i)

and since G(i) ⊴ G(i+1), we thus have that

g1 ⋅ g2 ⋅ c ⋅ g−12 ⋅ g−11 ∈ G(i),

thus proving the inclusion whereby

g1 ⋅ g2 ⋅G(i) ⋅ g−12 ⋅ g−11 ⊆ G(i),

which proves the inclusion whereby
g1 ⋅ g2 ⋅G(i) ⊆ G(i)g1g2.

A symmetric argument may be used to prove the reverse inclusion. So, each quotient in the subnormal
series

G(k) ⊴ ⋯ ⊴ G(2) ⊴ G(1) ⊴ G(0)

is abelian. So, by definition of a solvable group, if G(k) = {1} for some k, then G is solvable. Conversely,
suppose that G is abelian, and let

{1} ⊴H0 ⊴H1 ⊴ ⋯ ⊴Hk = G

be a subnormal series for G such that each quotient group of the form Hi+1/Hi is abelian. But the
quotient Hi+1/Hi is abelian if and only if Hi includes H

(1)
i+18. So, Hk includes G(1). So we obtain a series

of the following form:
{1} ⊴H0 ⊴H1 ⊴ ⋯ ⊴ G(1) ⊴Hk = G.

Continuing in this manner, since H0/{1} is abelian and H1/H0 is abelian, we find that G(k) = {1} for
some k.

Exercise 1.84. What can you say about groups of order 2014? Are they simple? Abelian? Nilpotent?
Solvable? Note that 2014 = 2 ⋅ 19 ⋅ 53.

Solution 1.85. Let G be a group of order 2014 = 2 ⋅19 ⋅53. Let n2, n19, and n53 respectively denote: the
number of Sylow 2-subgroups of G, the number of Sylow 19-subgroups of G, and the number of Sylow
53-subgroups of G. From Sylow theory, we have that:

(i) n19 ≥ 1;

(ii) n19 ∈ {1,2,19,38,53,106,1007,2014}; and

(iii) n19 ∈ {1}.

Now recall that Sylow p-subgroups are all conjugate to one another. Since n19, we thus have that there
exists a subgroup of G of order 19 which is a normal subgroup of G. Therefore, G is not simple.

It is clear that a group of order 2014 may or may not be abelian. For example, the cyclic group Z/2014Z
is abelian. However, the dihedral group of order 2014 is not abelian.

8See https://en.wikipedia.org/wiki/Solvable_group.
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It is easily seen that the order of the quotient of a finite group by its center is not a prime number.
Using this property along with Lagrange’s theorem, we have that:

∣Z(G)∣ = {2,19,53,2014}.
If Z(G) = 2014, then G is abelian, and abelian groups are nilpotent. So, suppose that:

∣Z(G)∣ = {2,19,53}.
Now suppose that ∣Z(G)∣ = 53. In this case, we have that

∣G/Z(G)∣ = 2 ⋅ 19.

Using Sylow theory, we know that since ∣G/Z(G)∣ = 2 ⋅ 19, there must be a normal cyclic subgroup of
G/Z(G) of order 19. Using this property, it is easily seen that G/Z(G) is either isomorphic to Z/38Z
or D19. In the former case, Z(G/Z(G)) = G/Z(G), and in the latter case, we have that Z(G/Z(G))
is trivial. Recall that the center of a dihedral group of the form Dn for odd n is trivial. In the former
case, the Upper Central Series is of the form

{1} ⊴ Z(G) ⊴ G,

and in the latter case, the Upper Central Series is of the form

{1} ⊴ Z(G).

So, in the case whereby ∣Z(G)∣ = 53, we find that G may or may not be nilpotent, since there may or
may not be an index k such that Zk(G) = G and Zk−1(G) ≠ G.

But is it even possible that ∣Z(G)∣ = 53? More specifically, does there exist a group G of order 2014
such that G/Z(G) is isomorphic to D19? Consider the direct product

D19 × (Z/53Z).

We know that the center of D19 is trivial. So, an element

(d1, z1) ∈D19 × (Z/53Z)

commutes with each element
(d2, z2) ∈D19 × (Z/53Z)

if and only if d1 = e. So, letting
G =D19 × (Z/53Z)

with
∣G∣ = 2014,

we have that
Z(G) ≅ Z/53Z,

and we thus have that
G/Z(G) ≅D19.
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But then we have that Z(G/Z(G)) is trivial, and as discussed above, in this case we have that the
Upper Central Series is given by the sequence whereby:

{1} ⊴ Z(G) ⊴ Z(G) ⊴ Z(G) ⊴ ⋯,

thus proving that there exists a group

G =D19 × (Z/53Z)

of order 2014 which is not nilpotent. On the other hand, there exist abelian groups of order 2014 such
as Z/2014Z, and nontrivial abelian groups are nilpotent.

Now, given a group G of order 2014, is G solvable? We have previously shown using Sylow theory that
there exists a unique Sylow p-subgroup H19 of G, and since n19 = 1, we have that H19 must be a normal
subgroup of G:

H19 ◁G.

A similar argument shows that there is a unique subgroup H53 of G of order 53 which is also a normal
subgroup of G. So, G/H53 is either cyclic, or is isomorphic to the dihedral group D19. In the case
whereby

G/H53 ≅ Z/38Z,
we have that G is solvable, since the subnormal series

{e}◁H53 ◁G

is a composition series with abelian composition factors. Now suppose that:

G/H53 ≅D19.

The subgroup of D19 consisting of rotational isometries in D19 is a normal subgroup of D19 of index 2.
So, let

R◁G/H53

denote the subgroup of the quotient group G/H53 corresponding to this subgroup consisting of rotational
isometries. By the Fourth Isomorphism Theorem for groups, we have that there exists a corresponding
subgroup R′ whereby:

H53 ⊴ R′ ⊴ G.
We thus obtain the subnormal series

H53/H53 ⊴ R′/H53 ⊴ G/H53.

Since R′/H53 is a group of order 19, we have that R′ is a group of order 1007. Writing R′ = H1007, we
thus arrive at the following subnormal series:

{1} ⊴H53 ⊴H1007 ⊴ G.

Now consider the following quotient groups:

G/H1007 ≅ Z/2Z
H1007/H53 ≅ Z/19Z
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H53/{1} ≅ Z/53Z.

We thus have that the subnormal series

{1} ⊴H53 ⊴H1007 ⊴ G

is a composition series with abelian composition factors, thus proving that G is solvable.

Exercise 1.86. What can you say about groups of order 2015? Are they simple? Abelian? Nilpotent?
Solvable? Note that 2015 = 5 ⋅ 13 ⋅ 31.

Solution 1.87. Let G be a group of order 2015 = 5 ⋅ 13 ⋅ 31. Letting n31 denote the number of Sylow
31-subgroups of G, using Sylow theory, we have that:

(i) n31 ≥ 1;

(ii) n31 ∈ {1,5,13,31,65,155,403,2015}; and

(iii) n31 ≡ 1(mod31).

Since n31 ∈ {1,5,13,31,65,155,403,2015} and n31 ≡ 1(mod31), it is easily seen that n31 = 1. Since Sylow
p-subgroups are all conjugates of each other, we have that the unique Sylow 31-subgroup H31 of G must
be a normal subgroup of G:

H31 ◁G.

We thus have that G is not a simple group.

It is known that if p and q are primes such that q ≡ 1(modp), then there exists a unique, up to
isomorphism, non-abelian group of order pq 9. So, it is thus easily seen that a group of order 2015 may
or may not be abelian.

If G is an abelian group of order 2015, then G must be nilpotent, since non-trivial abelian groups are
nilpotent.

Now suppose that G is a non-abelian group of order 2015. As indicated above, there exists a non-abelian
group of order 2015. Now, consider the center Z(G) of this group. By Lagrange’s theorem, we have
that the order of Z(G) divides ∣G∣. We claim that G/Z(G) cannot be cyclic. To show this, by way
of contradiction, suppose that G/Z(G) is cyclic, and let the coset gZ(G) generate this quotient group.
Let g1 and g2 be elements in G. If g1 is in Z(G) or g2 is in Z(G), then g1 ⋅ g2 = g2 ⋅ g1. Now suppose that
g1 ∉ Z(G) and g2 ∉ Z(G). Since gZ(G) generates the cyclic group G/Z(G), we may write

g1 = gn1z1

and
g2 = gn2z2

for some n1, n2 ∈ N0 and some z1, z2 ∈ Z(G). We thus have that

g1 ⋅ g2 = gn1z1g
n2z2 = gn1+n2z1z2

9See https://drexel28.wordpress.com/2011/04/19/groups-of-order-pq-pt-ii/.
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and
g2 ⋅ g1 = gn2z2g

n1z1 = gn2+n1z2z1 = gn1+n2z1z2.

But then g1 ⋅ g2 = g2 ⋅ g1 for all elements g1 and g2 in G, contradicting that G is non-abelian.

So, since ∣Z(G)∣ divides ∣G∣, and since G/Z(G) cannot be cyclic, we may deduce that:

∣Z(G)∣ ∈ {1,5,13,31,2015}.
Similarly, since G is non-abelian, we have that:

∣Z(G)∣ ∈ {1,5,13,31}.
By way of contradiction, suppose that Z(G) is of order 31. Then the quotient group G/Z(G) must be
of order 65 = 5 ⋅ 13. So, each non-identity element in G/Z(G) is either of order 5, of order 13, or of
order 65. Letting n5 denote the number of maximal 5-subgroups, and letting n13 denote the number of
maximal 13-subgroups, using Sylow theory, it is easily seen that n5 = 1 and n13 = 1. So, there is exactly
1 subgroup of G/Z(G) of order 5 and exactly 1 subgroup of G/Z(G) of order 13. So the number of
elements in G/Z(G) of order 5 is 4, and the number of elements in G/Z(G) of order 13 is 12. But then
the remaining non-identity elements must be of order 65, which shows that G/Z(G) must be cyclic,
contradicting that G is non-abelian. A similar argument shows that ∣Z(G)∣ ≠ 5. Therefore,

∣Z(G)∣ ∈ {1,13}.
Suppose that the order of Z(G) is equal to 13. Now, consider the quotient group G/Z(G). This quotient
group is of order 155 = 5 ⋅ 31. It is clear that G/Z(G) cannot be abelian, because otherwise, G/Z(G)
would have to be isomorphic to Z5 × Z31 ≅ Z155, which is impossible since G is non-abelian. We thus
have that G/Z(G) is a non-abelian group of order 155. Now consider the expression Z(G/Z(G)). By
Lagrange’s theorem, we have that

∣Z(G/Z(G))∣ ∈ {1,5,31,155}.

Since G/Z(G) is non-abelian, we have that

∣Z(G/Z(G))∣ ∈ {1,5,31}.

But we know that the quotient
(G/Z(G))/Z(G/Z(G))

cannot be cyclic since G/Z(G) is non-abelian. So, since the quotient

(G/Z(G))/Z(G/Z(G))

cannot be cyclic, we have that Z(G/Z(G)) cannot be of order 5, and cannot be of order 31. We thus
have that:

∣Z(G/Z(G))∣ = 1.

But since
Z(G/Z(G)) = eZ(G) = Z(G),

we have that the Upper Central Series

Z0(G) ⊴ Z1(G) ⊴ Z2(G) ⊴ ⋯
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would have to be of the form
{1} ⊴ Z(G) ⊴ Z(G) ⊴ Z(G) ⊴ ⋯,

and we thus have that G is not nilpotent in this case. Now suppose that the order of Z(G) is equal to
1. In this case, we have that the Upper Central Series

Z0(G) ⊴ Z1(G) ⊴ Z2(G) ⊴ ⋯

would have to be of the form
{1} ⊴ {1} ⊴ {1} ⊴ {1} ⊴ ⋯,

and we again have that G is not nilpotent. So we have shown that: if G is an abelian group of order
2015, then G is nilpotent, and if G is a non-abelian group of order 2015, then G is not nilpotent.
If G is an abelian group of order 2015, then G must be solvable, since abelian groups are solable. Now
suppose that G is a non-abelian group of order 2015 = 5 ⋅ 13 ⋅ 31. Let n5, n13, and n31 respectively
denote the number of Sylow 5-subgroups, the number of Sylow 13-subgroups, and the number of Sylow
31-subgroups. Using Sylow theory, it is easily seen that there is a unique subgroup H13 of order 13 which
is a normal subgroup, and there is a unique subgroup H31 of order 31 which is a normal subgroup. We
thus arrive at the following subnormal series:

{1}◁H31 ◁G.

The quotient group G/H31 is of order 65 = 5 ⋅ 13. Since 5 ≡ 5(mod 13) and 13 ≡ 3(mod 5), we may
deduce that a group of order 65 must be abelian. Furthermore, since 5 and 13 are relatively prime, we
may deduce that G/H31 is a cyclic group of order 65 = 5 ⋅13. Similarly, since H31/{1} is a group of order
31, and since 31 is a prime number, we have that the quotient group H31/{1} must be cyclic. We thus
have that G is solvable, regardless of whether or not G is abelian.

Exercise 1.88. What can you say about groups of order 2016? Are they simple? Abelian? Nilpotent?
Solvable? Note that 2016 = 25 ⋅ 32 ⋅ 7.

Solution 1.89. It is known that there are no simple groups of order 2016. Proving this requires a
complicated argument involving Sylow theory, as well as some more advanced topics beyond the scope
of MATH 6121. Proofs that there are no simple groups of order 2016 are given in the following links:

http://www.slideshare.net/JnosKurdics/hard-time-to-come
http://math.stackexchange.com/questions/1577502/no-simple-group-of-order-2016
It is clear that a group of order 2016 may or may not be abelian. For example, the cyclic group

Z/2016Z is abelian, but the dihedral group D 2016
2

of order 2016 is not abelian.
Of course, there exists a group of order 2016 which is nilpotent. For example, since the cyclic group

Z/2016Z is nontrivial and abelian, it must be nilpotent. However, it is known that every finite nilpotent
group is the direct product of p-groups10. But if G = D 2016

2
, then G is not a direct product of p-groups,

since dihedral groups are not direct products of p-groups. So, a group of order 2016 may or may not
be nilpotent. There is a more concrete way of showing that G = D1008 is not nilpotent. It is easily seen
that the center of a dihedral group Dn is trivial if n is odd, and consists precisely of the identity element
and the isometry given by a hald-turn rotation otherwise. So, the center Z(G) of G = D1008 consists
precisely of the identity element e and the isometry r given by a half-turn rotation. By considering the

10See https://en.wikipedia.org/wiki/Nilpotent_group.
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homomorphic image of a dihedral group, using the First Isomorphism Theorem for groups, it is easily
seen that quotient groups of dihedral groups are dihedral11 We thus have that

D1008/Z(D1008) ≅D504

and
Z(D1008/Z(D1008)) ≅ Z(D504)

so that
Z(D1008/Z(D1008)) ≅ Z2.

So, the union
⋃Z(D1008/Z(D1008))

consists of the elements in Z(D1008) = {e, r}, along with elements in some left coset of Z(D1008) = {e, r}.
We may thus write

⋃Z(D1008/Z(D1008)) = {e, r, a, ar},
for some element a. But since the Upper Central Series for G is of the form

Z0(G) ⊴ Z1(G) ⊴ Z2(G) ⊴ ⋯

we have that {e, r, a, ar} forms a group, and therefore must be abelian, since it is of order 4. So we have
thus far shown that the Upper Central Series

Z0 ⊴ Z1(G) ⊴ Z2(G) ⊴ ⋯

for G must be of the form
{e} ⊴ {e, r} ⊴ {e, r, a, ar} ⊴ ⋯

Continuing in this manner, it is easily seen that a dihedral group Dn nilpotent if and only if n is a power
of 2.

An abelian group of order 2016 is, of course, solvable. However, it is actually known that there exists
a non-solvable group of order 201612. Constructing such a group is beyond the scope of our paper.
However, it is know that a group of order 2016 may or may not be solvable.

Exercise 1.90. Let C3 = {e, a, a2} act on V = LC{e1, e2, e3} so that a(e1) = e2, a(e2) = e3, a(e3) = e1,
a2(e1) = e3, etc. By Maschke’s theorem, V is decomposible, with V ≅ L {e1 + e2 + e3} ⊕L {b2, b3}. Find
a basis {b2, b3} for L {b2, b3}, and check that it is a basis.

Solution 1.91. Following the proof of Maschke’s theorem, we start by fixing the basis B = {e1, e2, e3}
of V = LC{e1, e2, e3}, and we proceed to construct a scalar product ⟨⋅, ⋅⟩ so that

⟨v⃗, u⃗⟩ = [v⃗]TB[u⃗]B

for v⃗, u⃗ ∈ V . It is clear that this scalar product is such that:
Define the scalar product ⟨⋅, ⋅⟩ as follows:

⟨e⃗i, e⃗j⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j;
0 otherwise.

11See http://planetmath.org/sites/default/files/texpdf/38175.pdf.
12See https://oeis.org/A056866.
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Following the proof of Maschke’s theorem, we define the scalar product [⋅, ⋅] by “averaging over” the
entire group C3 as follows:

[x, y] = 1

3
⟨x, y⟩ + 1

3
⟨a(x), a(y)⟩ + 1

3
⟨a2(x), a2(y)⟩.

Applying the Gram-Schmidt algorithm, define b2 as follows:

b2 = e2 −
[e2, e1 + e2 + e3]

[e1 + e2 + e3, e1 + e2 + e3]
(e1 + e2 + e3).

Since e1 + e2 + e3 = a(e1 + e2 + e3) = a2(e1 + e2 + e3), it is clear that:

b2 = e2 −
1

3
(e1 + e2 + e3) = −

1

3
e1 +

2

3
e2 −

1

3
e3.

Similarly, we define:

b3 = e3 −
1

3
(e1 + e2 + e3) = −

1

3
e1 −

1

3
e2 +

2

3
e3.

Again since e1 + e2 + e3 = a(e1 + e2 + e3) = a2(e1 + e2 + e3), it is clear that:

⟨e1 + e2 + e3, b2⟩ = 0,

⟨e1 + e2 + e3, b3⟩ = 0.

We claim that {b2, b3} is linearly independent. Letting c1 and c2 be scalars, we have that:

c1b1 = c2b2Ô⇒ c1 (−
1

3
e1 +

2

3
e2 −

1

3
e3) = c2 (−

1

3
e1 −

1

3
e2 +

2

3
e3)

Ô⇒ c1 (−
1

3
e1) = c2 (−

1

3
e1)

Ô⇒ c1 = c2.

Since V = LC{e1, e2, e3} is of dimension 3, and since L {e1 + e2 + e3} is of dimension 1, we may deduce
that {b2, b3} is a spanning set.

Exercise 1.92. Prove that if θ∶M → N is a G-morphism, then ker(θ) ≤M is a G-module and im(θ) ≤ N
is a G-module.

Solution 1.93. Suppose that θ∶M → N is a G-morphism. By definition of a G-homomorphism, θ is
a group homomorphism with respect to the abelian group structures of M and N , and θ is also G-
equivariant. Since θ is a group homomorphism, the kernel of θ is a subgroup of M and the image of θ
is a subgroup of N .

Now, let m ∈M be such that θ(m) = 0, so that m is in the kernel of θ. Also, let g be an element in G.
We thus have that

gθ(m) = g ⋅ 0 = 0,

and since θ is a G-homomorphism, we have that

θ(g ⋅m) = 0.

So, if m is in the kernel of θ, then g ⋅m is in this kernel, thus proving that ker(θ) ≤M as a G-module.
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Again let m ∈M be arbitrary. We thus have that θ(m) is an arbitrary element in the image of θ. Since
g ⋅m is also in M , we have θ(g ⋅m) is also in the image of θ. But since θ is a G-homomorphism, we thus
find that

θ(g ⋅m) = g ⋅ θ(m)
is in the image of θ.

Exercise 1.94. Prove that Z(Matn×n(C)) = CIdn×n.

Solution 1.95. Suppose that A = [aij] is in Z(Matn×n(C)). Let Eij ∈ Matn×n(C) be such that the
(i, j)-entry is 1, and each other entry is 0. Then since

EiiA = AEii

for all indices i, A must be diagonal. Since

EijA = AEij

for all indices i and j, it is easily seen that the diagonal entries of A must all be equal. This effectively
completes the proof.

Exercise 1.96. Let G =D3 = {e, a, a2, b, ba, ba2}. Let vectors be indexed by group elements in G, writing
v⃗g for g ∈D3, and let h ⋅ v⃗g = v⃗hgh−1 . Now consider the module

L {v⃗e, v⃗a, v⃗a2 , v⃗b, v⃗ba, v⃗ba2} =W1 ⊕W2 ⊕W3,

where W1 = L {v⃗e}, W2 = L {v⃗a, v⃗a2}, and W3 = L {v⃗b, v⃗ba, v⃗ba2}. Write

W3 = L {v⃗b + v⃗ba + v⃗ba2} ⊕ V.

Find a basis for V .

Solution 1.97. Since W3 is of dimension 3, we may deduce that V must be of dimension 2. Consider
the following direct sum:

L {v⃗b + v⃗ba + v⃗ba2} ⊕L {v⃗ba, v⃗ba2}.
The underlying set of the above direct sum consists of all ordered pairs of the form

(c1v⃗b + c1v⃗ba + c1v⃗ba2 , c2v⃗ba + c3v⃗ba2)

where c1, c2, c3 ∈ C. Now consider the mapping

φ∶L {v⃗b + v⃗ba + v⃗ba2} ⊕L {v⃗ba, v⃗ba2} →L {v⃗b, v⃗ba, v⃗ba2}

whereby:
φ(c1v⃗b + c1v⃗ba + c1v⃗ba2 , c2v⃗ba + c3v⃗ba2) = c1v⃗b + (c1 + c2)v⃗ba + (c1 + c3)v⃗ba2 .

This mapping preserves addition, since

φ(c1v⃗b + c1v⃗ba + c1v⃗ba2 , c2v⃗ba + c3v⃗ba2) + φ(d1v⃗b + d1v⃗ba + d1v⃗ba2 , d2v⃗ba + d3v⃗ba2)

is equal to
(c1 + d1)v⃗b + (c1 + c2 + d1 + d2)v⃗ba + (c1 + c3 + d1 + d3)v⃗ba2 ,
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which is also equal to φ evaluated at

(c1v⃗b + c1v⃗ba + c1v⃗ba2 , c2v⃗ba + c3v⃗ba2) + (d1v⃗b + d1v⃗ba + d1v⃗ba2 , d2v⃗ba + d3v⃗ba2).

It is easily seen that φ preserves scalar multiplication. Also, it is clear that φ is surjective. If

φ(c1v⃗b + c1v⃗ba + c1v⃗ba2 , c2v⃗ba + c3v⃗ba2) = φ(d1v⃗b + d1v⃗ba + d1v⃗ba2 , d2v⃗ba + d3v⃗ba2)

then
c1v⃗b + (c1 + c2)v⃗ba + (c1 + c3)v⃗ba2 = d1v⃗b + (d1 + d2)v⃗ba + (d1 + d3)v⃗ba2 ,

which implied that c1 = d1, which in turn implies that c2 = d2 and c3 = d3. We thus have that φ is
injective, thus proving that

L {v⃗b + v⃗ba + v⃗ba2} ⊕L {v⃗ba, v⃗ba2} ≅ L {v⃗b, v⃗ba, v⃗ba2},

thus proving that {v⃗ba, v⃗ba2} is a basis for V .

Exercise 1.98. Prove that P̂ ∗Q(ρ) = P̂ (ρ) ⋅ Q̂(ρ).

Solution 1.99. We adopt notation for convolution and the Fourier transform from Diaconis’ Group
representations in probability and statistics 13. Assume that P and Q are probabilities on a finite group
G, so that P (s) ≥ 0 and ∑sP (s) = 1, and similarly for Q. The convolution is defined as follows:

P ∗Q(s) = ∑
t

P (st−1)Q(t).

The Fourier transform of P at the representation ρ is the matrix

P̂ (ρ) = ∑
s

P (s)ρ(s).

By definition, we have
P̂ ∗Q(ρ) = ∑

s
∑
t

P (st−1)Q(t)ρ(s).

Make the change of variables g = st−1:

P̂ ∗Q(ρ) = ∑
g
∑
t

P (g)Q(t)ρ(gt).

Since ρ is a group homomorphism, we have that:

P̂ ∗Q(ρ) = ∑
g
∑
t

P (g)Q(t)ρ(g)ρ(t).

Therefore,
P̂ ∗Q(ρ) = ∑

g
∑
t

P (g)ρ(g)Q(t)ρ(t).

Exercise 1.100. Define E so that E(e) = 1 and E(g) = 0 for g ≠ e. Also, define the uniform distribution
U so that U(g) = 1

∣G∣ for all g in G. Prove that E ∗ P = P and U ∗ P = U .
13See https://jdc.math.uwo.ca/M9140a-2012-summer/Diaconis.pdf.
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Solution 1.101. By definition of the convolution, we have that:

E ∗ P (s) = ∑
t

E(st−1)P (t).

The expression
E(st−1)P (t)

is equal to P (t) if and only if s = t, and is equal to 0 otherwise. Therefore,

E ∗ P (s) = ∑
t

E(st−1)P (t) = P (s)

for all s. Again by definition of the convolution, we have that

U ∗ P (s) = ∑
t

U(st−1)P (t).

That is,

U ∗ P (s) = ∑
t

1

∣G∣P (t).

Therefore,

U ∗ P (s) = 1

∣G∣ ∑t
P (t).

But since P is a probability on G, we have that

U ∗ P (s) = 1

∣G∣

for all s.

Exercise 1.102. Let G be a finite group, and let Z(G) be the center of G. Show that the order of
G/Z(G) is not a prime.

Solution 1.103. By way of contradiction, suppose that the order ∣G/Z(G)∣ of the quotient group
G/Z(G) is a prime p ∈ N. But by Lagrange’s theorem, the only group of order p up to isomorphism
is the cyclic group Z/pZ. We thus have that G/Z(G) is a cyclic group of order p. Let g ∈ G be such
that the left coset gZ(G) generates the cyclic group G/Z(G). Now, let g1 and g2 be elements in G. If
g1 ∈ Z(G) or g2 ∈ Z(G), then g1 ⋅ g2 = g2 ⋅ g1, by definition of the center of a group. Now suppose that it
is not the case that g1 ∈ Z(G), and that it is not the case that g2 ∈ Z(G). Consider the cosets g1Z(G)
and g2Z(G). Since gZ(G) generates the cyclic group G/Z(G), we have that

g1Z(G) = gn1Z(G)

and
g2Z(G) = gn2Z(G)

for some n1, n2 ∈ N0. So, for some z1, z2 ∈ Z(G), we have that:

g1 = gn1z1

g2 = gn2z2.
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Now consider the product g1 ⋅ g2:

g1 ⋅ g2 = gn1z1g
n2z2

= gn1gn2z1z2

= gn1+n2z1z2.

Now consider the product g2 ⋅ g1:

g2 ⋅ g1 = gn2z2g
n1z1

= gn2gn1z2z1

= gn2gn1z1z2

= gn2+n1z1z2

= gn1+n2z1z2.

But then we again have that g1 ⋅ g2 = g2 ⋅ g1, which shows that G is abelian. But then G = Z(G). But
then ∣G/Z(G)∣ = 1, contradicting that ∣G/Z(G)∣ is of prime order.

Exercise 1.104. Suppose that ∣G∣ = 175. Show that G is solvable and give its composition factors.

Solution 1.105. Letting G be of order 175, observe that ∣G∣ = 52 ⋅7. Let n7 denote the number of Sylow
7-subgroups of G. The divisors of ∣G∣ ordered canonically are given below:

(1,5,7,25,35,175).

The above sequence modulo 7 is given below:

(1,5,0,4,0,0).

Using Sylow theory, we may thus deduce that there exists a unique Sylow 7-subgroup H7 of G. Again
from Sylow theory, since n7 = 1, we have that H7 must be a normal subgroup of G:

{e}◁H7 ◁G.

Now consider the quotient group G/H7. This quotient group is of order 52. From the previous exercise,
we know that the order of the quotient of a group by its center cannot be prime. So, by Lagrange’s
theorem, the center of G/H7 is either trivial or is equal to G/H7. But it is known that the center of a
group of prime power order is necessarily non-trivial: this is easily seen using the class equation with
respect to a group acting on itself by conjugation. Therefore, G/H7 must be abelian, since the center of
G/H7 must be of order 52. Since the factor groups of the subnormal series

{e}◁H7 ◁G.

are all abelian, we thus have that G is solvable.

Exercise 1.106. Let G be a finite group and let γ∶G→ Aut(G) be defined by γ(g)(h) = ghg−1. We can
now define the semidirect product G⋊γG as the group consisting of the set of pairs {(g1, g2) ∶ g1, g2 ∈ G}
with the product (g1, g2) ⋅G⋊γG (g3, g4) = (g1γ(g2)(g3), g2g4). Show that H = {(g,1) ∶ g ∈ G}◁G ⋊γ G.
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Solution 1.107. We begin by showing that H ≤ G ⋊γ G. Let g1 and g2 be arbitrary elements in G, so
that (g1,1) and (g2,1) are arbitrary elements in H. We thus have that:

(g1,1) ⋅G⋊γG (g2,1) = (g1γ(1)(g2),1)
= (g1g2,1) ∈H.

We thus have that H is closed under the underlying operation of G ⋊γ G. Similarly, we have that:

(g1,1) ⋅G⋊γG (g−11 ,1) = (g1γ(1)(g−11 ),1)
= (g1g−11 ,1)
= (1,1).

A symmetric argument shows that

(g−11 ,1) ⋅G⋊γG (g1,1) = (1,1),

thus proving that H is closed under inverses, with H ≤ G ⋊γ G.

Again let g1, g2 ∈ G. We thus have that (g1, g2) is an arbitrary element in the semidirect product G⋊γG.
Now let g3 ∈ G, so that the ordered pair (g3,1) is an arbitrary element in H. We thus have that the
element given by the product

(g1, g2) ⋅G⋊γG (g3,1)
is an arbitrary element in the left coset (g1, g2)H. So, the ordered pair

(g1g2g3g−12 , g2)

is an arbitrary element in the coset (g1, g2)H. Letting g4 ∈ G, observe that elements in the right coset
H(g1, g2) are of the following form:

(g4,1) ⋅G⋊γG (g1, g2) = (g4g1, g2).

So, letting
(g1g2g3g−12 , g2) = (g4g1, g2)

we have that
g1g2g3g

−1
2 = g4g1

and we thus have that:

g4 = g1g2g3g−12 g−11
= (g1g2)g3(g1g2)−1.

This proves the inclusion whereby:
(g1, g2)H ⊆H(g1, g2).

Conversely, letting
(g4g1, g2)

be an arbitrary element in the right coset H(g1, g2), we know that elements in the left coset (g1, g2)H
are of the form

(g1g2g3g−12 , g2).
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Writing
(g4g1, g2) = (g1g2g3g−12 , g2),

we have that
g4g1 = g1g2g3g−12 .

Solving for g3 shows that the reverse inclusion (g1, g2)H ⊇H(g1, g2) holds.

Exercise 1.108. Letting γ be as given above, show that K = {(g, g−1) ∶ g ∈ G}◁G ⋊γ G.

Solution 1.109. We begin by showing that K ≤ G ⋊γ G. Let g1 and g2 be arbitrary elements in G, so
that (g1, g−11 ) and (g2, g−12 ) are arbitrary elements in K. Now evaluate the product (g1, g−11 )⋅G⋊γG(g2, g−12 )
in the following manner:

(g1, g−11 ) ⋅G⋊γG (g2, g−12 ) = (g1γ(g−11 )(g2), g−11 g−12 )
= (g1g−11 g2g1, g−11 g−12 )
= (g2g1, g−11 g−12 )
= (g2g1, (g2g1)−1) ∈K.

We thus have that K is closed under the underlying binary operation of G. Similarly,

(g1, g−11 ) ⋅G⋊γG (g−11 , g1) = (g1γ(g−11 )(g−11 ),1)
= (g1g−11 g−11 g1,1)
= (1,1).

A symmetric argument shows that

(g−11 , g1) ⋅G⋊γG (g1, g−11 ) = (1,1).

We thus have that K ≤ G ⋊γ G.

Again letting g1 and g2 be arbitrary elements in G, we thus have that the ordered pair (g1, g2) is an
arbitrary element in G⋊γ G. Letting g3 ∈ G, we have that (g3, g−13 ) is an arbitrary element in K. So the
product

(g1, g2) ⋅G⋊γG (g3, g−13 )
is an arbitrary element in the left coset (g1, g2)K. Evaluate this product as follows:

(g1, g2) ⋅G⋊γG (g3, g−13 ) = (g1g2g3(g−12 ), g2g−13 ).

Now let g4 ∈ G, so that (g4, g−14 ) is in K. We thus have that elements in the right coset K(g1, g2) are of
the following form:

(g4, g−14 ) ⋅G⋊γG (g1, g2) = (g4g−14 g1g4, g−14 g2)
= (g1g4, g−14 g2).

Now, given that
(g1g2g3(g−12 ), g2g−13 )

is an arbitrary element in the left coset (g1, g2)K, let

g4 = g2g3g−12 ,
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and rewrite the expression
(g4, g−14 ) ⋅G⋊γG (g1, g2)

as follows:

(g4, g−14 ) ⋅G⋊γG (g1, g2) = (g1g4, g−14 g2)
= (g1g2g3g−12 , g2g−13 g−12 g2)
= (g1g2g3g−12 , g2g−13 ).

This shows that each element in (g1, g2)K is in the corresponding right coset. A symmetric argument
may be used to prove the reverse inclusion.

Exercise 1.110. Again letting γ be as given above, show that G ⋊γ G ≅ G ×G.

Solution 1.111. Consider the mapping

φ∶G ⋊γ G→ G ×G

so that
φ(a, b) = (ab, b).

We claim that φ is a group homomorphism.

φ(a, b)φ(c, d) = (ab, b)(cd, d)
= (abcd, bd).

Now evaluate the product φ((a, b) ⋅G⋊γG (c, d)):

φ((a, b) ⋅G⋊γG (c, d)) = φ(abcb−1, bd)
= (abcd, bd).

We thus have that φ is a group homomorphism. The mapping φ is surjective, since given an element
(c, d) in the codomain of φ, writing

(ab, b) = (c, d)
we have that b = d and ab = c, so that ad = c and a = c ⋅ d−1. Similarly, if

φ(a, b) = φ(c, d)

then
(ab, b) = (cd, d)

and thus b = d, which in turn implies that a = c.

Exercise 1.112. Let G = {e, γ, γ2, . . . , γn−1}, with γn = e be the cyclic group of order n. Fix an integer
d, let Md = C be a vector space of dimension 1. Let G act on z ∈ Md with the action γ.z = ζdz where
ζ = e2πi/n is a primitive nth root of unity. [Here you have that γ2.z = γ.(γ.z) = ζ2dz and similarly
γk.z = ζkdz.] For what integers d is Md a G-module?
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Solution 1.113. The module Md is a G-module for all integers d. Since

γk.z = ζkdz

we have that
γn.z = ζndz Ô⇒ e.z = z

but by definition of a group action, we have that e.z = z. We thus have that

γn.z = ζndz Ô⇒ z = z.

So we have thatMd is a well-defined G-module for all integers d, in the sense that the given group action
is well-defined for all d.

Exercise 1.114. Letting Md be as given above, for which integers d is Md irreducible?

Solution 1.115. SinceMd = C is 1-dimensional for all d, it is clear thatMd is irreducible for all integers
d.

Exercise 1.116. Letting Md be as given above, when is Md ≅Md′?

Solution 1.117. We claim that Md ≅Md′ if and only if d ≡ d′(mod n). Suppose that Md and Md′ are
isomorphic as vector spaces and as G-modules. Then there exists a bijective linear map f from Md to
Md′ which is G-equivariant:

ζkd
′
f(c) = f(ζkdc).

Letting k = 1, we have that
ζd

′
f(c) = f(ζdc).

But this is only possible when d is equivalent to d′ modulo n, because

ζd
′
f(c) = ζdf(c),

and for nonzero f(c), we have that
ζd

′ = ζd

which implies that d′ is equivalent to d modulo n. Conversely, if d is equivalent to d′ modulo n, then
ζkd = ζkd′ , which implies that Md and Md′ have the same structure.

It was suggested in class that character theory may be used to construct an alternative solution to the
above exercise. Since Md and Md′ are both equal to C as vector spaces, of course we have that Md ≅Md′

as vector spaces. Let
ρd∶G→ Aut(C)

be such that ρ1(γk)(z) = ζkd(z) and letting

ρd′ ∶G→ Aut(C)

be such that ρ2(γk)(z) = ζkd′(z). Let χMd denote the character corresponding to ρ1, and let χMd′ denote
the character corresponding to ρ2. Now consider the scalar product ⟨χMd , χMd′ ⟩.

⟨χMd , χMd′ ⟩ = 1

n

n−1
∑
k=0

ζkd

ζkd′
.
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We thus have that:

⟨χMd , χMd′ ⟩ = 1

n

n−1
∑
k=0

ζk(d−d
′).

So the scalar product ⟨χMd , χMd′ ⟩ is equal to 1 if and only if ζk(d−d′) is equal to 1 for all indices k;
equivalently, if d is equivalent to d′ modulo n.

Exercise 1.118. Let X be a G-set for a finite group G. We denote by

X/G = {{g.x ∶ g ∈ G} ∶ x ∈X}.

That is, X/G is the set of equivalence classes of X via the action of G. In other words, X/G is the set
of orbits of the action of G on X. For g ∈ G, let

FixX(g) = {x ∈X ∶ g.x = x}.

Show that
∣X/G∣ = 1

∣G∣ ∑g∈G
∣FixX(g)∣.

Hint: count the cardinality of {(g, x) ∶ g ∈ G,x ∈X,g.x = x} in two different ways.

Solution 1.119. The result given in the above exercise is known as Burnside’s Lemma, which we proved
in class using the following strategy. Let n denote the number of orbits of the G-set X. We may write
X as a disjoint union of orbits as indicated below:

X =X1 ⊎X2 ⊎⋯ ⊎Xn.

Now, let xi ∈Xi:

∣G∣ = ∣G∣
∣Orb(xi)∣

∣Orb(xi)∣

= ∣G∣
∣Orb(xi)∣

∑
x∈Orb(xi)

1

= ∑
x∈Orb(xi)

∣G∣
∣Orb(xi)∣

= ∑
x∈Orb(xi)

∣G∣
∣Orb(x)∣

= ∑
x∈Orb(xi)

∣Stab(x)∣.

Therefore,

∑
x∈X

∣Stab(x)∣ =
n

∑
i=1

∑
x∈Orb(xi)

∣Stab(x)∣

=
n

∑
i=1

∣G∣

= n ⋅ ∣G∣.
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We thus have that:
1

∣G∣ ∑x∈X
∣Stab(x)∣.

Counting the cardinality of
{(g, x) ∶ g ∈ G,x ∈X,g.x = x}

in two different ways, i.e., with respect to the first entry of a tuple in this set and alternatively with
respect to the latter entry of a pair in this set, we have that:

∑
g∈G

∣Fix(g)∣ = ∑
x∈X

∣Stab(x)∣.

This proves that n = 1
∣G∣ ∑g∈G ∣Fix(g)∣.

Exercise 1.120. Let G = Z4 = {e, γ, γ2, γ3} with γ4 = e be the cyclic group of order 4. Let G act by
rotation on the set of 4-necklaces with black and white beads (where γ.N is a rotation of the necklace
by 90○ clockwise):

Describe the set FixX(g) for each element g ∈ Z4.

Solution 1.121. First of all, the identity element e ∈ G fixes everything, so we have that FixX(e) =X.
Similarly, we have that:

Exercise 1.122. Use the previous two exercises to count the number of different 4-necklaces up to the
action of G = Z4.

Solution 1.123. By Burnside’s Lemma, we have that the number of different 4-necklaces up to the
action of G is:

16 + 2 + 2 + 4

4
= 6.

Exercise 1.124. Let Cn = {e, a, a2, . . . , an−1} with an = e. Show that for each 0 ≤ d ≤ n − 1, if ψd(ar) =
e2drπi/n for all 0 ≤ r ≤ n − 1, then ψd is an irreducible character of Cn.

Solution 1.125. We recall that an irreducible character of a group G is a character of an irreducible
representation of G.

Now, letting d ∈ N0 be an index whereby 0 ≤ d ≤ n − 1 define the mapping

φd∶Cn → GL1(C)
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so that
φd(ar) = [e2drπi/n]1×1

for all r ∈ N0 such that 0 ≤ r ≤ n − 1. We claim that φd is a group homomorphism. To show this, letting
r1, r2 ∈ N0 be such that 0 ≤ r1, r2 ≤ n − 1, we have that:

φd(ar1)φd(ar2) = [e2dr1πi/n]1×1[e2dr2πi/n]1×1
= [e2dr1πi/ne2dr2πi/n]1×1
= [e2dr1πi/n+2dr2πi/n]1×1
= [e 2πi

n
⋅d(r1+r2)]1×1

= [e 2πi
n
⋅d⋅[(r1+r2)(mod n)]]1×1.

Similarly, we have that:

φd(ar1ar2) = φd(ar1+r2)
= φd(a(r1+r2)(mod n))
= [e 2πi

n
⋅d⋅[(r1+r2)(mod n)]]1×1.

We thus find that the mapping
φd∶Cn → GL1(C)

is a representation for each index d.

Recall that a representation
ρ∶G→ GL(V )

of a group G is irreducible if V is non-trivial and has no non-trivial proper G-invariant subspaces.
Considering the morphism

φd∶Cn → GL1(C) ≅ C,

we observe that C is nontrivial, and since C is a 1-dimensional vector space, we find that C has no
non-trivial proper subspaces. Therefore, the morphism

φd∶Cn → GL1(C),

must be an irreducible representation. It is obvious that ψd is given by the trace of φd. That is, ψd is
the character of the irreducible representation φd.

Exercise 1.126. Show that for a character χ of Cn, χ(e) = 1 if and only if χ(gr) = χ(g)r for all g ∈ Cn
and 0 ≤ r ≤ n − 1.

Solution 1.127. (Ô⇒) First, suppose that χ(e) = 1, letting

ρ∶Cn → GLm(C)

be a representation of the multiplicative cyclic group Cn, letting m ∈ N. Now, since ρ is a group
homomorphism, we know that ρ must map the identity element e ∈ Cn to the m ×m identity matrix
Im ∈ GLm(C). We thus have that

χ(e) = χρ(e) = tr(ρ(e)) = tr(Im) =m = 1.
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We thus find that the codomain GLm(C) of the group homomorphism ρ is necessarily equal to GL1(C) ≅
C∗. Now, let g ∈ Cn, and let r ∈ N0 be such that 0 ≤ r ≤ n − 1. Let

ρ(g) = [cg]1×1 ,

where cg ∈ C∗. We thus have that
ρ(g)r = [cg]r1×1 = [crg]1×1 .

Since ρ is a group homomorphism, we thus have that

ρ(gr) = [crg]1×1 .

Therefore,
χ(gr) = χρ(gr) = tr(ρ(gr)) = tr([crg]1×1) = c

r
g.

Now consider the expression χ(g). Since

ρ(g) = [cg]1×1 ,

we thus have that
χ(g) = tr([cg]1×1) = cg,

and we thus find that
χ(g)r = crg,

thus proving the desired equality whereby χ(gr) = χ(g)r.

(⇐Ô) Conversely, suppose that χ(gr) = χ(g)r for all g ∈ Cn and 0 ≤ r ≤ n − 1. Again let

ρ∶Cn → GLm(C)

be a representation of the multiplicative cyclic group Cn, again letting m ∈ N. Again since ρ is a group
homomorphism, we have that ρ must map the identity element e in Cn to the m×m identity matrix Im
in the general linear group GLm(C) given by the codomain of ρ. Now, from our assumption that the
equality

χ(gr) = χ(g)r,
we have that

χ(er) = χ(e)r,
for all r ∈ N0 whereby 0 ≤ r ≤ n − 1. We thus find that

χ(e) = χ(e)r,

for all r ∈ N0 satisfying the inequality whereby 0 ≤ r ≤ n − 1. Now, we know that χ(e) must be equal to
the trace of Im ∈ GLm(C). Therefore, χ(e) =m. Therefore,

m =mr,

for all r ∈ N0 satisfying the inequality whereby 0 ≤ r ≤ n−1. But recall that m ∈ N. Since m is a positive
integer and

m =mr,

for all 0 ≤ r ≤ n − 1, we may thus deduce that m = 1, with χ(e) =m = 1, as desired.
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Exercise 1.128. Show that for a character χ of Cn, if χ(ar) = e2rπi/n for all 1 ≤ r ≤ n − 1, then
χ(e) ≡ 1(mod n). Hint: compute the multiplicity of the trivial character in χ.

Solution 1.129. Let
ρ∶Cn → GLm(C)

be a group homomorphism, and let χ = χρ denote the corresponding character. Suppose that χ(ar) =
e2rπi/n for all 1 ≤ r ≤ n − 1. We proceed to consider the multiplicity of the trivial character χT of χ.
Recall that a trivial representation of a group maps each element in such a group to a fixed identity
automorphism. The multiplicity of the trivial character in χ is equal to ⟨χ,χT ⟩. Now, from the definition
of the scalar product ⟨⋅, ⋅⟩, we find that:

⟨χ,χT ⟩ = 1

∣Cn∣
∑
c∈Cn

χ(c)χT (c−1)

= 1

n
∑
c∈Cn

χ(c)

= 1

n
(χ(e) + e 2πi

n + e 4πi
n +⋯ + e

2(n−1)πi
n )

= 1

n
(χ(e) − 1) .

We proceed to remark that 1
n (χ(e) − 1) must be an integer, since ⟨χ,χT ⟩ is the multiplicity of the trivial

character in χ. Write ⟨χ,χT ⟩ = k, letting k ∈ N0. We thus find that χ(e) − 1 = kn, which implies that
χ(e) ≡ 1(mod n).

Exercise 1.130. Let Dn = {e, a, a2, . . . , an−1, b, ba, . . . , ban−1} be the dihedral group of order 2n where n
is odd with an = b2 = e and ba = a−1b. Let V = L {vh ∶ h ∈ Dn} be the module where g acts on V by
g.vh = vghg−1 and for each X conjugacy class of Dn, let VX = L {vh ∶ h ∈ X} ⊆ V be a submodule. Show
that the sets X0 = {e}, Xi = {ai, a−i} for 1 ≤ i ≤ (n−1)/2 and X ′ = {b, ba, ba2, . . . , ban−1} are all conjugacy
classes of Dn.

Solution 1.131. Letting g be an arbitrary element in Dn, we have that geg−1 = g ⋅ g−1 = e, which proves
that {e} is a conjugacy class.

Now, consider the dihedral relation whereby ba = a−1b. From this dihedrla relation, we have that

ba2 = a−1ba = a−2b,

and by induction, it is easily seen that
bai = a−ib,

for all i ∈ N0. So, given an element of the form aj in Dn, we have that

ajaia−j = aj+i−j = ai ∈Xi = {ai, a−i}

and
a−jaiaj = a−j+i+j = ai ∈Xi = {ai, a−i}.

Similarly, given an element of the form baj in Dn, we have that:

(baj)ai (baj)−1 = bajaia−jb−1
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= baj+i−jb−1

= baib−1

= a−ibb−1

= a−i ∈Xi = {ai, a−i}.

Similarly, we have that:

(baj)a−i (baj)−1 = baja−ia−jb−1

= baj−i−jb−1

= ba−ib−1

= aibb−1

= ai ∈Xi = {ai, a−i}.

This proves that Xi is a conjugacy class of Dn.

Finally, consider the set X ′ = {b, ba, ba2, . . . , ban−1}. Given an element of the form aj in Dn, and given
an element of the form bai in the set X ′, we have that:

ajbaia−j = ajbai−j

= aja−(i−j)b
= aja−i+jb
= a2j−ib
= bai−2j ∈X ′.

This shows that bai ∼ bak for all i and k, writing k in place of i − 2j. Similarly, given an element of the
form baj in Dn, and given an element of the form bai in the set X ′, we have that:

(baj) ⋅ bai ⋅ (baj)−1 = baj ⋅ bai ⋅ a−jb−1

= bajbai−jb−1

= baja−i+jbb−1

= baja−i+j

= ba−i+2j ∈X ′.

We thus find that X ′ is a conjugacy class of Dn, as desired.

Exercise 1.132. With respect to the previous exercise, show that if n = 5, VX′ decomposes into 3
irreducible submodules, exactly one of which has a trivial action.

Solution 1.133. Letting n = 5, consider the submodule VX′ :

VX′ = LC{vb, vba, vba2 , vba3 , vba4}.
Define W0 as follows:

W0 = LC{vb + vba + vba2 + vba3 + vba4}.
We claim that W0 is a submodule of VX′ ≤ V with a trivial action. Since X ′ is a conjugacy class,
we know that W0 must be stable under the action of D5. But furthermore, we claim that the action
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of D5 on W0 must be trivial. We know that given g ∈ D5 and an element bai in the conjugacy class
X ′ = {b, ba, ba2, ba3, ba3, ba4}, we have that

g (bai) g−1 ∈X ′

since X ′ is a conjugacy class of D5. So, in other words, the mapping

∗∶D5 ×X ′ →X ′

whereby
g ∗ x = gxg−1

for g ∈D5 and x ∈X ′ is well-defined. But furthermore, for fixed g ∈D5, we claim that the mapping

φg ∶X ′ →X ′

on X ′ whereby
φg(x) = g ∗ x = gxg−1

for x ∈ X ′ is actually a bijection on X ′. The mapping φg is certainly injective, since for x, y ∈ X ′, we
have that:

φg(x) = φg(y) Ô⇒ gxg−1 = gyg−1

Ô⇒ x = y.

Similarly, it is clear that φg is sujective, since for y in the codomain of φg, the product g−1yg must be in
the conjugacy class X ′, and φg(g−1yg) = y. So, for each element g in D5, we have that

g.(vb + vba + vba2 + vba3 + vba4) = vσg(b) + vσg(ba) + vσg(ba2) + vσg(ba3) + vσg(ba4)

for some permutation σg of the conjugacy class {b, ba, ba2, ba3, ba4}. Since W0 is 1-dimensional, we have
that W0 is irreducible. We now make use of Maschke’s theorem.

Now, let
ρ∶D5 → Aut(VX′)

denote the mapping whereby ρg is the linear mapping on VX′ satisfying

ρ(g)(vbai) = ρg(vbai) = vgbaig−1

for all g ∈ D5. The mapping ρ is a group homomorphism, and is therefore a representation of D4. We
have shown that W0 is an invariant subspace of of VX′ . So, by Maschke’s theorem, there exists an
invariant subspace W1 of VX′ such that VX′ =W0 ⊕W1. We remark that W1 must be of dimension 4.

Since characters are constant on conjugacy classes, we begin by considering the following matrix given
by ρb acting on elements in the given basis for VX′ :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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This shows that χVX′(b) = 1. Similarly, we have that χVX′(e) = 5, and χVX′(ai) = 0. Now compute
⟨χVX′ , χT ⟩ and ⟨χVX′ , χVX′ ⟩:

⟨χVX′ , χT ⟩ = 1

10
(5 + 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 1) = 1

⟨χVX′ , χVX′ ⟩ = 1

10
(25 + 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 1) = 3.

From the above equalities, we may deduce that VX′ decomposes into 3 irreducible submodules, exactly
one of which has a trivial action.

Exercise 1.134. Let G be a finite group. Let G act on itself by conjugation and let FixG(G) be the
set of fixed points by this action. Show that FixG(G) = Z(G).

Solution 1.135. Recall that the center of a group G, denoted Z(G), may be defined as follows:

Z(G) = {g ∈ G ∶ ∀h ∈ G gh = hg}.
Now, let

●∶G ×G→ G

denote the group action on G given by conjugation. Explicitly,

h ● g = hgh−1,

for g, h ∈ G.

Now, FixG(G) denotes the set of points which are fixed by this action:

FixG(G) = {g ∈ G ∶ ∀h ∈ G h ● g = g}
= {g ∈ G ∶ ∀h ∈ G hgh−1 = g}
= {g ∈ G ∶ ∀h ∈ G hg = gh}
= Z(G).

Exercise 1.136. Let T and S be subgroups of a finite group G such that ∣T ∣ = ∣S∣. Let T act on the
left cosets, G/S, by left multiplication and let FixT (G/S) be the dixed points under the action. Show
that if gS ∈ FixT (G/S), then T = gSg−1.

Solution 1.137. Let ● denote the action on T × (G/S) whereby:

t ● (gS) = t(gS).

Let set FixT (G/S) is the set of fixed points under this action:

FixT (G/S) = {gS ∈ G/S ∶ ∀t ∈ T t(gS) = gS}.

So, let the left coset gS be in the above set, letting g ∈ G. So, for t ∈ T ,

{t ⋅ g ⋅ s ∶ s ∈ S} = {g ⋅ s ∶ s ∈ S}.
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Figure 1: A D3 action is defined on colorings of diagrams of the form indicated above.

So, for each t ∈ T and each s ∈ S, there exists an element u ∈ S such that:

t ⋅ g ⋅ s = g ⋅ u.

So, for each t ∈ T and each s ∈ S, there exists an element u ∈ S such that:

t = g ⋅ u ⋅ s−1 ⋅ g−1.

But s is an element in S, and u is also an element in S. So, since S is a subgroup of G, we thus have
that S must be closed under the underlying binary operation of G, which means that the product u ⋅s−1
must be in S. So,

t = g ⋅ u ⋅ s−1 ⋅ g−1 ∈ gSg−1,
thus proving the inclusion whereby

T ⊆ gSg−1.
Now, we make use of the equality whereby ∣T ∣ = ∣S∣ in the following manner.

We have thus har shown that the inclusion whereby T ⊆ gSg−1 holds. Now, consider the cardinality of
gSg−1. We claim that the sets S and gSg−1 are bijectively equivalent. Consider the mapping φg ∶S →
gSg−1 whereby φg(s) = gsg−1. It is clear that this mapping is injective, since: φg(s) = φg(t) implies that
gag−1 = gtg−1, which in turn implies that s = t. Similarly, it is clear that this mapping is surjective, since
for gsg−1 in the codomain, we have that φg(s) = gsg−1. So, we have shown that

∣S∣ = ∣gSg−1∣.

But since ∣S∣ = ∣T ∣, we have that ∣T ∣ = ∣gSg−1∣. But since T is contained in gSg−1, and T and gSg−1 are
bijectively equivalent, we may deduce that T = gSg−1.

Exercise 1.138. Let D3 = {e, a, a2, b, ba, ba2} be the dihedral group of order 6 with a3 = b2 = e and
ba = a2b. Define an action on colorings of the diagrams of the form indicated in Fig. 1, where the
vertices are either black or white. There are 26 = 64 total colorings, but we would like to know how
many orbits there are under the action of D3 where a rotates both colored diagrams (simultaneously)
120○ clockwise and b reflects the two diagrams across the vertical between them. For example, if we act ba
on the diagram on the left in Fig. 2, we obtain the diagram on the right in Fig. 2 by ba.(D) = b.(a.(D)).

Prove that this defines a D3-action on the colorings of the diagram.

Solution 1.139. To prove that the given action is actually a group action, since the given group is
defined in terms of the generators a and b and the relations a3 = b2 = e and ba = a2b, we need to show
that the given action agrees with the above relations.
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Figure 2: An illustration of the group action . defined on colorings of diagrams as in Fig. 1.

Relation 1: a3 = b2 = e. Let 1,2,3,4,5, and 6, as below, denote colors. Fig. 3 illustrates that the given
action . is such that

a.a.a.x = x
for an element x in the D3-set X consisting of 64 colorings. This shows that the given action . agrees
with the dihedral relation whereby a3 = e.

Fig. 4 illustrates that the given action . is such that

b.b.x = x

for element x ∈X. So the action . agrees with the dihedral relation whereby b2 = e.

Fig. 5 illustrates that the given action . is such that

e.x = x

for elements x ∈X.

So, the above three figures together illustrate that the given action agrees with the dihedral relations
whereby a3 = b2 = e.

Relation 2: ba = a2b.

The following two figures show that the given action defines a D3-action on the colorings of the given
diagram, with respect to the given definition of D3, defined in terms of generators and relations.

Exercise 1.140. With respect to the previous exercise, use Burnside’s Lemma,

# orbits = 1

∣G∣ ∑g∈G
∣Fixg(E)∣

to determine the number of orbits of colorings under the action of D3.

Solution 1.141. We evaluate Fixg(E) for g ∈ G, in order to use Burnside’s Lemma. First of all, the
identity element e fixes everything, so Fixe(E) = E. Now observe that Fixa(E) and Fixa2(E) each
consist of the following diagrams.

We have that Fixb(E) consists of the following diagrams.
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Figure 3: An illustration of the identity a3 = e, with respect to the group action on the set of all
colorings of diagrams of the form indicated in Fig 1.

Figure 4: An illustration of the identity b2 = e, with respect to the group action on the set of all
colorings of diagrams of the form indicated in Fig 1.
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Figure 5: An illustration of the group action axiom whereby e.x = x.

Figure 6: An illustration of the given action.
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Figure 7: An illustration of the given action.

We have that Fixba(E) consists of the following diagrams.

We have that Fixba2(E) consists of the following diagrams.
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So, by Burnside’s Lemma, we have that:

# of orbits = 1

∣G∣ ∑g∈G
∣Fixg(E)∣

= 26 + 4 + 4 + 8 + 8 + 8

6
= 16.

Exercise 1.142. Let R be a ring with 1. Letting I be an ideal of R, prove that I = R iff I contains a
unit.

Solution 1.143. Recall that an ideal I of a ring R is a nonempty subset of R such that

a ∈ I, b ∈ I Ô⇒ a + b ∈ I

and
a ∈ I, r ∈ RÔ⇒ ra ∈ I.

So, let R be a ring with 1, as above, and let I be an ideal of R.

(Ô⇒) Assume that I = R. Since R is a ring with 1, and since I = R, we have that I contains 1, and we
thus have that I contains a unit.

(⇐Ô) Conversely, suppose that I contains a unit u. Since u is a unit, we have that there exists an
element v in R such that uv = vu = 1. But since I is an ideal, we have that vu must be in I, so 1 must
be in I. Again since I is an ideal, we thus have that each expression of the form r ⋅ 1 = r must be in I,
thus proving the desired equality whereby I = R.

Exercise 1.144. Let R be a commutative ring with unity. Prove that R is a field iff the only ideals of
R are the trivial ideal and R itself.

Solution 1.145. (Ô⇒) Suppose that R is a field. Let I be an arbitrary ideal of R. We begin by
considering the case whereby 1 ∈ I, and we later consider the case in which 1 /∈ I. So, suppose that 1 ∈ I.
From our results given in our previous solution, since I contains a unit, we thus have that I = R. Now
suppose that 1 /∈ I. By definition of an ideal, we have that I must be nonempty. So, let a be an element
in I. By definition of an ideal, we have that I must be closed under addition. We may thus deduce that
0 ∈ I. Now, by way of contradiction, suppose that there exists a nonzero element b ≠ 0 in I. Now, under
our assumption that R is a field, since b is nonzero, we find that b is invertible. But since I is an ideal,
with b ∈ I, we thus find that b−1 ⋅ b ∈ I. Therefore, 1 ∈ I. But this contradicts that 1 /∈ I. We thus have
that if 1 /∈ I, then I = {0}.

(⇐Ô) Conversely, suppose that the only ideals of R are the trivial ideal and R itself. Now, let r be a
nonzero element in R. Consider the principal ideal ⟨r⟩ generated by r ∈ R. From our initial assumption
that the only ideals of R are {0} and R itself, we may thus deduce that ⟨r⟩ = R. Since 1 ∈ R, we thus
find that 1 ∈ ⟨r⟩ = rR. So, there exists some element s ∈ R such that 1 = rs, thus proving that r is
invertible.

Exercise 1.146. Compute gcd(2, x) in the Euclidean domain Q[x].

Solution 1.147. Since x = (x
2
) ⋅ 2 + 0, we have that 2 divides x as well as 2. So, gcd(2, x) = 2, by the

Euclidean algorithm.
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Exercise 1.148. Show that if F is a field, then F [x] is a Euclidean domain.

Solution 1.149. We begin by reviewing some preliminary terminology. The following definitions are
from “Introductory Algebraic Number Theory” by Alaca and Williams.

Let D be an integral domain. A mapping φ∶D → Z is called a Euclidean function on D if it has the
following two properties:

(i) φ(ab) ≥ φ(a), for all a, b ∈D with b ≠ 0; and

(ii) If a, b ∈D with b ≠ 0 then there exist q, r ∈D such that a = qb + r and φ(r) < φ(b).

Again, let D be an integral domain. If D possesses a Euclidean function φ, then D is called a Euclidean
domain with respect to φ.

So, letting F be a field, to show that F [x] is a Euclidean domain, we begin by constructing an appropriate
Euclidean function. For p(x) ∈ F [x], define φ(p(x)) so that deg(p(x)) if p(x) is nonzero, and let
deg(p(x)) = −1 otherwise. It is clear that φ(ab) ≥ φ(a) for all a, b ∈ D with b ≠ 0. The second axiom
may be proven inductively using “long division” for polynomials in the following sense. If a(x) is the
zero polynomial then take q(x) = r(x) = 0. So, let a(x) ≠ 0. We may prove the existence of q(x) and
r(x) by induction with respect to the degree of a(x).

Exercise 1.150. Show that if F is a field, then F [x] is a principal ideal domain and a unique factor-
ization domain.

Solution 1.151. We have previously shown that if F is a field, then F [x] is a Euclidean domain. But
since every Euclidean domain is a principal ideal domain, we thus have that F [x] is a principal ideal
domain. Also, it is known that every PID is a UFD. In the following exercise, we prove that for a ring
R, R is a UFD iff R[x] is a UFD. Since a field is necessarily a UFD, we thus have that F [x] is a UFD.

Exercise 1.152. Prove that R is a Unique Factorization Domain if and only if R[x] is a Unique
Factorization Domain.

Solution 1.153. Suppose that R is a UFD. Let p(x) be a nonzero element in the polynomial ring R[x]
that is not a unit. If p(x) is irreducible, then it is a product of irreducibles. Now suppose that p(x) is
not irreducible. Write p(x) = s1(x)s2(x), letting s1(x) and s2(x) be non-units. Repeating this argument
inductively shows that every nonzero element of R[x] that is not a unit can be written as a product of
irreducibles. Since R is a UFD, the elements in R[x] which are in R satisfy the unique factorization
property. A degree-1 polynomial ax + b in R[x] must satisfy the unique factorization property, since if
ax + b = c(dx + e), then a = cd and b = ce, but R is a UFD. Continuing in the manner inductively shows
that R[x] is a UFD. Conversely, if R[x] is a UFD, then R must be a PFD since R ⊆ R[x].

Exercise 1.154. Let f(x) ∈ Z[x]. Prove that if f(x) is reducible over Q, then it is reducible over Z.

Solution 1.155. Our solution is based upon a proof given in Joseph Gallian’s Contemporary Abstract
Algebra. Recall that the content of a nonzero polynomial with integer coefficients is the greatest common
divisor of the coefficients. A primitive polynomial is a polynomial with integer coefficients which has
content 1. Let f(x) ∈ Z[x], and suppose that f(x) = g(x)h(x), where g(x) and h(x) are in Q[x]. We
may assume without loss of generality that f(x) is primitive, because we may divide f(x) and g(x) by
the content of f(x). Let a be the least common multiple of the denominators of the coefficients of g(x),
and let b be the least common multiple of the denominators of the coefficients of h(x). Let c1 be the
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content of ag(x) and let c2 be the content of bh(x). The content of abf(x) is ab since f(x) is primitive.
Since the product of two primitive polynomials is primitive, we have that the content of abf(x) is also
equal to c1c2. So, f(x) = g1(x)h1(x), writing ag(x) = c1g1(x) and bh(x) = c2h1(x), where the degree of
g1 is equal to the degree of g, and similarly for h1.

Exercise 1.156. Letting R be a commutative ring with unity, and letting I be an ideal of R, prove
that I is a prime ideal if and only if R/I is an integral domain.

Solution 1.157. (Ô⇒) Suppose that I is a prime ideal, and consider the quotient ring R/I. Let r1 and
r2 be elements in R, so that r1 + I and r2 + I are in R/I. Now consider the product

(r1 + I) (r2 + I) = r1r2 + I.

Since R is a commutative ring with unity, it is clear that R/I is also a commutative ring with unity. So,
to prove that R/I is an integral domain, it remains to prove that R/I has no zero divisors. By way of
contradiction, suppose that it is not the case that R/I has no zero divisors. So, suppose that

(r1 + I) (r2 + I) = r1r2 + I = 0 + I = I,

for some nonzero elements r1 + I and r2 + I in the quotient ring R/I. But since

r1r2 + I = 0 + I = I,

we may deduce that the product r1r2 is in I, and since I is a prime ideal, we may thus deduce that
r1 ∈ I or r2 ∈ I. So, we may assume without loss of generality that r1 ∈ I. Therefore, r1 + I = 0 + I. But
this contradicts that r1 + I is nonzero.

(⇐Ô) Conversely, suppose that R/I is an integral domain. Let r1 and r2 be elements in R, and suppose
that r1r2 ∈ I. Equivalently, r1r2 + I = (r1 + I)(r2 + I) = 0 + I. But since R/I is an integral domain, we
have that R/I has no zero divisors. So, r1 + I = 0 + I or r2 + I = 0 + I. We may assume without loss of
generality that r1 + I = 0 + I. Since r1 + I = I, we thus find that r1 ∈ I, thus proving that I is a prime
ideal.

1.1 Practice problems for the final exam

Exercise 1.158. Show that a group of order 2001 = 3 ⋅ 23 ⋅ 29 must contain a normal cyclic subgroup of
index 3.

Solution 1.159. Let G be an arbitrary group of order 2001 = 3 ⋅ 23 ⋅ 29. The following integer tuple
consists of the positive divisors of ∣G∣, ordered canonically:

(1,3,23,29,69,87,667,2001).

Now, reduce the entries in the above tuple modulo 23:

(1,3,0,6,0,18,0,0).

Let n23 denote the number of Sylow 23-subgroups of G. By Sylow’s First Theorem, n23 ≥ 1. By Sylow’s
Third Theorem, we have that n23 must be congruent to 1 modulo 23, and that n23 must divide the order
of G. From the above integer tuple, it is clear that n23 = 1. So, there is a unique Sylow 23-subgroup of
G. Let this unique Sylow 23-subgroup be denoted by H23. By Sylow’s Second Theorem, we have that
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all Sylow 23-subgroups must be conjugates of each other. But since n23 = 1, we may deduce that H23

must be a normal subgroup of G.
So, we obtain the subnormal series of the form

H23 ◁G.

We thus proceed to consider the quotient group G/H23. We begin by observing that the quotient group
G/H23 is of order 87 = 3 ⋅ 29. The positive divisors of the order of G/H23 are: 1, 3, 29, and 87. Reducing
these divisors modulo 29, we find that there must be a unique Sylow 29-subgroup K of G/H23. By
Sylow’s Second Theorem, we have that K must be a normal subgroup G/H23, since there is only one
Sylow 29-subgroup of G/H23:

H23/H23 ⊴K ◁G/H23.

So, by the Fourth Isomorphism Theorem for groups, we may thus deduce that there is a corresponding
group K such that

H23 ⊴K ◁G,

and such that K is of order 23 ⋅ 29 = 667.
So, we have shown that there exists a normal subgroup K of G such that ∣K ∣ = 667. That is, we have

shown that a group G of order 2001 must contain a normal subgroup of index

2001

667
= 3.

So, it remains to prove that K is cyclic.
The positive divisors of 667 are 1, 23, 29, and 667. Let η23 denote the number of Sylow 23-subgroups

of K, and let η29 denote the number of Sylow 29-subgroups of K. Reducing the tuple (1,23,29,667)
modulo 23, we find that n23 = 1. Reducing this tuple modulo 29, we obtain the equality whereby n29 = 1.
Now, consider the orders of the elements in K. Of course, there is exactly one element of order 1,
namely, the identity element. By Lagrange’s theorem, we have that the order of an element in K must
be in {1,23,29,667}. Since there is a unique subgroup of K of order 23, we have that there are exactly
22 elements of order 23 in K. Since there is a unique subgroup of K of order 29, we may deduce that
there are exactly 28 elements of order 29 in K. So, there are a total of

1 + 22 + 28 = 51

elements in K with an order in {1,23,29}. So, by Lagrange’s theorem, the 667− 51 remaining elements
in K must be of order 667. Since there exists an element in K of order 667, we thus have that K is
cyclic.

Exercise 1.160. For n ≥ 3, the dihedral group Dn of order 2n is given by Dn = ⟨a, b ∣ an = b2 = 1, ba =
a−1b⟩. What are the conjugacy classes of Dn?

Solution 1.161. Since g ⋅ e ⋅ g−1 = e for each element g in Dn≥3, we have that the singleton set {e} is a
conjugacy class of Dn. Let i, j ∈ N. Now consider the conjugacy class of Dn containing aj.

ajaia−j = aj+i−j = ai

bajai (baj)−1 = bajaia−jb−1

= baib−1
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= b aa⋯a²
i

b−1

= b aa⋯a²
i

b

= ba aa⋯a²
i−1

b

= a−1b aa⋯a²
i−1

b

= a−1ba aa⋯a²
i−2

b

= a−2b aa⋯a²
i−2

b

⋯
= a−ibb
= a−i.

We thus find that {ai, a−i} is a conjugacy class of Dn for all i ∈ N. Now consider the conjugacy class of
Dn which contains the element bai, letting i ∈ N0.

b(ba)b = ab
= ban−1

ba(ba)ba = babaa−1b
= babb
= ba

ba2(ba)ba2 = baababaa
= baabaa−1ba
= baabba
= baaa
= ba3

ba3(ba)ba3 = baaababaaa
= baaabaa−1baa
= baaabbaa
= baaaaa
= ba5

etc.

So, in general, we have that baj(ba)baj = ba2j−1. So, all expressions of the form bai for odd positive
integers i ≤ n − 1 are in the conjugacy class of ba. But we also have that:

b(ba)b = ban−1

ban−1(ba)ban−1 = ba2(n−1)−1

= ba2n−3

= ban−3
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ban−2(ba)ban−1 = ban−5

etc.

So, if n is odd, all expressions of the form bai for i ∈ N are in the same conjugacy class. If n is even, then
the set of all expressions of the form ba2i for i ∈ N is a conjugacy class, and the set of all expressions of
the form ba2i+1 is also a conjugacy class.

Exercise 1.162. When n is odd, how many Sylow 2-subgroups does Dn have?

Solution 1.163. Let n be odd, and consider the number of Sylow 2-subgroups of Dn. The number of
Sylow 2-subgroups of Dn is equal to the number of elements in Dn of order 2. The elements in Dn are
precisely the elements in the following set:

{1, a, a2, . . . , an−1, b, ba, ba2, . . . , ban−1}.

The collection {1, a, a2, . . . , an−1} consisting of the rotational isometries in Dn forms a cyclic subgroup.
By the Fundamental Theorem of Cyclic Groups, we have that: a subgroup of {1, a, a2, . . . , an−1} must be
cyclic and must be of order d for a positive divisor d of n. But since n is odd, we find that no element
in {1, a, a2, . . . , an−1} is of order 2.

We have that b is of order 2, since b ≠ 1, and since b2 = 1. Now consider the order of ba ∈Dn:

(ba)(ba) = baa−1b
= bb
= 1.

Now consider the order of ba2 ∈Dn:

ba2ba2 = baabaa
= baa(ba)a
= baa(a−1b)a
= baba
= 1.

Continuing in this manner, we find that each expression of the form bai for i ∈ N0 is of order 2. That is,
each element in the set {b, ba, ba2, . . . , ban−1} is of order 2. So it is clear that there are precisely n Sylow
2-subgroups of Dn in the case whereby n is odd.

Exercise 1.164. What are the composition factors of Dn?

Solution 1.165. Recall that a subnormal series is a composition series if the subnormal factors are
simple. The cyclic rotational subgroup

{1, a, a2, . . . , an−1} ≤Dn

must be a normal subgroup of Dn, because, in general, a subgroup of index 2 is necessarily normal. From
a geometric perspective, it is easily seen that the cyclic subgroup of Dn consisting of the rotational
isometries in Dn must be normal, since this subgroup is precisely the kernel of the homomorphism
from Dn to Z/2Z which maps each orientation-preserving isometry to 0, and each orientation-reversing
isometry to 1.
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So, it remains to consider the composition factors of the cyclic group {1, a, a2, . . . , an−1}. By the
Fundamental Theorem of Cyclic Groups, we have that: for each positive divisor d of the order of
{1, a, a2, . . . , an−1}, there exists a unique cyclic subgroup of {1, a, a2, . . . , an−1} of order d. Now, consider
the prime factorization of n, writing

n = pb1a1pb2a2⋯pbmam .
So, there exists a cyclic subgroup

C
p
b1
a1
p
b2
a2
⋯pbm−1

am
◁{1, a, a2, . . . , an−1}

of order pb1a1p
b2
a2⋯pbm−1am , as well as a second subgroup

C
p
b1
a1
p
b2
a2
⋯pbm−2

am
◁C

p
b1
a1
p
b2
a2
⋯pbm−1

am
◁{1, a, a2, . . . , an−1}

of order pb1a1p
b2
a2⋯pbm−2am , and so forth. Continuing in this manner, we find that the composition factors of

Dn are as given below, ordered based on the procedure outlined above:

Z/pa1Z,Z/pa1Z, . . . ,Z/pa1Z´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b1−1

,

Z/pa2Z,Z/pa2Z, . . . ,Z/pa2Z´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b2

,

Z/pa3Z,Z/pa3Z, . . . ,Z/pa3Z´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b3

,

⋯
Z/pamZ,Z/pamZ, . . . ,Z/pamZ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bm

,

Z/2Z.

Exercise 1.166. How many irreducibles does Dn have? What are the dimensions?

Solution 1.167. The number of irreducible representations of Dn is equal to the number of conjugacy
classes of Dn. The conjugacy classes of Dn are given in a previous solution. We thus find that the
number of irreducible representations of Dn for even n is

n

2
+ 3,

and the number of irreducible representations of Dn for odd n is n+3
2 .

It is known that the possible dimensions of the irreducible representations of Dn are: 1 and 2. The
commutators of Dn generate the subgroup of the squares of rotation. So, the number of 1-dimensional
irreducible representations of Dn is 2 if n is odd, and 4 otherwise.

The following mappings yield irreducible representations of Dn for 1 ≤ k < n
2 :

a↦ (cos (
2πk
n

) − sin (2πk
n

)
sin (2πk

n
) cos (2πk

n
) ) ,

b↦ (0 1
1 0

) .
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So, this shows that the total number of irreducible representations of Dn which are 1-dimensional or
2-dimensional is n

2 + 3 for n even and n+3
2 for n odd. This shows that the total number of irreducible

representations ofDn which are 1-dimensional or 2-dimensional is equal to the total number of irreducible
representations of Dn.

Exercise 1.168. For R a U.F.D., show that a non-zero element is prime if and only if it is irreducible.

Solution 1.169. (Ô⇒) Suppose that p is a non-zero prime element in a unique factorization domain
R. Now, suppose that

p = ab,
where a, b ∈ R. Recall that a unique factorization domain must be an integral domain, by definition. We
thus find that R is a commutative ring with unity and no zero divisors. Since

p = ab,

and since R is a unital ring, we find that:
p ⋅ 1 = ab.

Therefore, p∣ab. Since p prime, we have that p divides a or b. We may assume without loss of generality
that p divides a. Write pc = a, letting c ∈ R. So, from the equality

p = ab,

we obtain the equality
p = pcb.

Equivalently,
p − pcb = 0.

Again since R must be a unital ring, we have that the above equality is equivalent to the following:

p(1 − cb) = 0.

Now, recall that R must be an integral domain. Since R cannot have any zero divisors, we have that p
or 1 − cb must be equal to 0. But recall that p is non-zero. We thus have that

1 − cb = 0,

and we find that
1 = cb.

So, we have shown that b and c are both units. A symmetric argument shows that if we instead assume
without loss of generality that p divides b, then a must be a unit. So we have shown that if p = ab, then
either a or b must be a unit. Therefore, p is irreducible.

(⇐Ô) Conversely, suppose that i is a non-zero irreducible element in a unique factorization domain R.
If i is a unit, then i must be prime, since for a unit u, if u divides ab with a, b ∈ R, then u divides a,
since ua′ = a, where a′ = u′a, letting u′ denote the inverse of u.

Now, assume that it is not the case that i is a unit. Suppose that i divides ab, letting a and b be nonzero
elements in R. Since i∣ab, we have that

ic = ab
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for some element c in R.

First consider the case whereby c is a unit. Then

i = abd

for some d ∈ R, but since R is a unique factorization domain and since i ≠ 0 is irreducible and i is not
a unit, we have that i has a unique factorization as a product of irreducible elements. But the unique
factorization of i as a product of irreducible elements is precisely i, itself. Each element among a, b, and
d must be non-zero, since i is nonzero. Moreover, it cannot be the case that a, b, and d are all units,
since i is not a unit. So, at least one element among a, b, and d is a non-zero, non-unit element in R.
We may assume without loss of generality that a is a non-zero, non-unit element in R. Again since R
is a unique factorization domain, we have that a has a unique factorization as a product of irreducible
elements in D. But since R is a U.F.D., we have that a = ui for some unit u. But then i must divide a,
thus showing that i is prime in this case.

Now, suppose that it is not the case that c is a unit. Since a and b are nonzero, we have that c is a
nonzero, nonunit element in R. So, since R is a U.F.D., we have that c has a unique factorization as a
product of irreducible elements:

i ⋅ j1 ⋅ j2 ⋅ ⋯ ⋅ jm1 = a ⋅ b.
Recall that a and b are nonzero. If a is a unit, then we have that

a−1 ⋅ i ⋅ j1 ⋅ j2 ⋅ ⋯ ⋅ jm1 = b,

so that i divides b. Similarly, if b is a unit, then i must divide a. So, it remains to consider the case
whereby neither a nor b is a unit. In this remaining case, we have that a and b are both non-zero,
non-unit elements in the unique factorization domain R. So, in this case we have that both a and b have
unique factorizations as products of irreducible elements. So, we arrive at decompositions into products
of irreducible elements of the following form:

i ⋅ j1 ⋅ j2 ⋅ ⋯ ⋅ jm1 = u ⋅ k1 ⋅ k2 ⋅ ⋯ ⋅ km2 ⋅ `1 ⋅ `2 ⋅ ⋯ ⋅ `m3 ,

where u is a unit, and the remaining product on the right-hand side of the above equation is a rearrange-
ment of the product of irreducibles on the left-hand side. So, we may assume without loss of generality
that i = k1. But then the irreducible terms `1, `2, . . ., `m3 for c cancel with the same terms on the other
side of the above equation, which shows that

i ⋅ j1 ⋅ j2 ⋅ ⋯ ⋅ jm4 = u ⋅ a,

so that
u−1 ⋅ i ⋅ j1 ⋅ j2 ⋅ ⋯ ⋅ jm4 = a,

thus proving that i divides a, proving that i is prime in this remaining case.

Exercise 1.170. For a ring R we say that a ∈ R is right quasi-regular (r.q.r.) if a+x = ax has a solution
x = b ∈ R. The unity is never r.q.r. and 0 is always r.q.r. Show that if a2 is r.q.r., then a is r.q.r.

Solution 1.171. Letting a be an element in a unital ring R, suppose that a2 is r.q.r. Now, observe that
an element c in R is right quasi-regular if and only if c + x − cx = 0 has a solution x ∈ R. Equivalently,
c ∈ R is r.q.r. iff (1 − c)(1 − x) = 1 has a solution x ∈ R. So, by assumption that a2 is r.q.r. in the unital
ring R, we have that (1 − a2)(1 − x) = 1 has a solution x ∈ R. Therefore, (1 − a)(1 + a)(1 − x) = 1 has a
solution x ∈ R. So, (1 − a)(1 − y) = 1 has a solution y ∈ R, which shows that a is r.q.r.
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Exercise 1.172. Show that if R is a division ring, then the unity is the only non-r.q.r. element of R.

Solution 1.173. Suppose that R is a division ring. So, each non-zero element in R is invertible. That
is, each non-zero element in R is a unit.

We have previously shown that, in general, for a ring S, an element c ∈ S is r.q.r. iff (1 − c)(1 − x) = 1
has a solution x ∈ S. So, in general, for a ring S, an element c ∈ S is right quasi-regular if and only if
1 − c is invertible. So, assuming that R is a division ring, we have that each non-zero element in R is
invertible. So, an expression of the form 1−c is invertible in R iff c =≠ 1. That is, for an element c in the
division ring R, c is right quasi-regular if and only if c =≠ 1. That is, the only element in the division
ring R which is not right quasi-regular is the unity in R.

Exercise 1.174. Prove that R is a division ring if and only if all elements of R but one are r.q.r.

Solution 1.175. (Ô⇒) Suppose that R is a division ring. From our previous solution, we have that
the unity of R is the only element of R which is not right quasi-regular. So, all elements of R but one
are r.q.r.

(⇐Ô) Conversely, suppose that all elements of a unital ring R are r.q.r. As indicated previously, the
unity is never r.q.r. So, we may deduve that all non-unity elements of the unital ring R are r.q.r.
Equivalently, all non-zero elements in R are invertible. So, R must be a division ring.

Exercise 1.176. Let φ∶G→ Aut(M) be a representation of a finite group G and let χ be its associated
character. Show that 1

∣G∣ ∑g∈G χ(g) is equal to the number of times the trivial representation appears in
the decomposition of φ into irreducibles.

Solution 1.177. Let the module M be decomposed so that

M =
n

⊕
i=0
M⊕mi

i ,

where mi denotes the multiplicity of the irreducible component Mi in the above decomposition for each
index i. Let M0 denote the module such that the character χM0 is trivial. We thus have that:

⟨χ,χM0⟩ =m0.

That is, the value of the scalar product ⟨⋅, ⋅⟩ evaluated at χ and χM0 is precisely equal to the number
of times the trivial representation appears in the decomposition of φ into irreducibles. Now expand the
expression ⟨χ,χM0⟩ as follows:

⟨χ,χM0⟩ = 1

∣G∣ ∑g∈G
χ(g)χM0(g−1).

But since the character function χM0 is trivial, we have that:

1

∣G∣ ∑g∈G
χ(g)χM0(g−1) = 1

∣G∣ ∑g∈G
χ(g),

thus proving that 1
∣G∣ ∑g∈G χ(g) =m0.

Exercise 1.178. Letting φ∶G → Aut(M) and χ be as given above, show that if 1
∣G∣ ∑g∈G ∣∣χ(g)∣∣2 = 3,

then φ is the idrect sum of three distinct irreducible representations.
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Solution 1.179. Suppose that 1
∣G∣ ∑g∈G ∣∣χ(g)∣∣2 = 3. Let the module M be decomposed as above, with:

M =
n

⊕
i=0
M⊕mi

i ,

again letting mi denote the multiplicity of the irreducible component Mi in the above decomposition for
each index i. We thus have that:

⟨χ,χ⟩ =
n

∑
i=0
m2
i .

By definition of the scalar product ⟨⋅, ⋅⟩, we have that

⟨χ,χ⟩ = 1

∣G∣ ∑g∈G
χ(g)χ(g),

since we may assume without loss of generality that the matrices under consideration are unitary ma-
trices, letting χ(g) denote the complex conjugate of χ(g). Since χ(g)χ(g) = ∣∣χ(g)∣∣2, we thus have
that

n

∑
i=0
m2
i = 3.

So each integer of the form mi must be less than or equal to 1. So, we may deduce that there are three
distinct terms in the irreducible decomposition

M =
n

⊕
i=0
M⊕mi

i =M0 ⊕M1 ⊕M2,

each of which has multiplicity 1.

Exercise 1.180. Let R be a commutative ring with identity 1 andM a finitely generated left R-module.
Show that for any m ∈M , the set Ann(m) = {a ∈ R ∶ am = 0} ⊆ R is an ideal.

Solution 1.181. Let m ∈M . Let a1 and a2 be elements in R such that a1m = 0 and a2m = 0. We thus
have that

a1m + a2m = 0.

But since M is a left R-module, we have that the equality a1m + a2m = 0 is equivalent to the equality
whereby

(a1 + a2)m = 0.

Therefore, a1 + a2 is in Ann(m), thus proving that Ann(m) is closed with respect to the underlying
additive binary operation on R. Letting a1 be as given above, let r be an arbitrary element in the
commutative unital ring R. Since

a1m = 0,

we find that
r(a1m) = r ⋅ 0.

Since M is a left R-module, we may deduce that

(ra1)m = 0.

We thus have that Ann(m) is closed under multiplication my elements in R, thus proving that Ann(m)
is an ideal of R.
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Exercise 1.182. Letting R and M be as given above, let P = {Ann(m) ∶ 0 ≠ m ∈ M}. Show that a
maximal element of P must be a prime ideal.

Solution 1.183. Let µ ∈M be such such that µ ≠ 0, and Ann(µ) is a maximal element in {Ann(m) ∶
0 ≠m ∈M} Now, letting a and b be elements in the ring R, suppose that:

ab ∈ Ann(µ).

By way of contradiction, suppose that it is not the case that a is in Ann(µ). Now, consider the ideal
generated by the elements in Ann(µ) and a. This ideal properly contains Ann(µ), by assumption that
a /∈ Ann(µ). An element in this ideal would be of the form n + ra for some n ∈ Ann(µ), and some r ∈ R.
Therefore,

(n + ra) ⋅ bµ = n(bµ) + ra(bµ)
= (nb)µ + r(ab)µ
= (nb)µ.

Since n ∈ Ann(µ), and since Ann(µ) is an ideal as proven above, we have that nb is in Ann(µ), so that
(nb)µ vanishes. So, we have shown that there exists an ideal J which properly contains Ann(µ), such
that j ⋅ (bµ) for each element j ∈ J :

Ann(µ) ⊊ J ⊆ Ann(bµ),
thus contradicting the maximality of Ann(µ)

Exercise 1.184. Assume that the following diagram of group homomorphisms commutes and that the
two rows are exact sequences.

Prove that if β is surjective and if γ and ψ′ are injective then α is surjective.

Solution 1.185. Since the bottom row forms an exact sequence, we have that an element b′ ∈ B′ is
mapped to eC′ iff it is in imψ′. Since the top row forms an exact sequence, we have that an element
b ∈ B is mapped to eC iff it is in imψ.

Now, since γ is injective, an element b ∈ B is mapped to eC′ through γ ○ φ iff it is in imψ.

So, since the given diagram commutes, with γ ○ φ = φ′ ○ β, we have that an element b ∈ B is mapped to
eC′ iff:

(i) b ∈ imψ; and

(ii) β(b) ∈ im(ψ′).
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We claim that the image of β ○ ψ is equal to the image of ψ′. Given in element a ∈ A, we have that:

ψ(a) ∈ imψ = ker(φ).

Again by injectivity of γ, we find that ψ(a) must be mapped to eC′ . Given an element a ∈ A, we know
that ψ(a) is mapped to eC′ iff (β ○ ψ)(a) ∈ im(ψ′). So, this shows that im(β ○ ψ) ⊆ im(ψ′).

Now, by way of contradiction, suppose that there exists an element x ∈ im(ψ′) outside of im(β ○ψ). But
by surjectivity of β, there exists an element y ∈ B such that β(y) = x. But y would be mapped to eC′ y
would have to be in the image of ψ, so that β(y) ∈ im(β ○ ψ), contradicting our initial assumption that
β(y) /∈ im(β ○ ψ).

So, we have shown that im(β ○ ψ) = im(ψ′). So, for each element a′ ∈ A′, we have that

ψ′(a′) ∈ im(ψ′) = im(β ○ ψ),

so that there exists a corresponding element a ∈ A such that:

ψ(β(a)) = ψ′(a′).

But since the given diagram commutes, we have that

ψ(β(a)) = ψ′(a′) = ψ′(α(a)).

By injectivity of ψ′, we have that:

ψ′(a′) = ψ′(α(a)) Ô⇒ a′ = α(a),

thus proving the surjectivity of α.

Exercise 1.186. Let I and J be ideals of R, a ring with identity 1 ≠ 0. Recall that IJ is the set of all
finite sums of products xy where x ∈ I and y ∈ J . Prove that I + J is the smallest ideal containing both
I and J .

Solution 1.187. The set I +J consists of all expressions of the form i+ j, where i ∈ I and j ∈ J . Letting
i1, i2 ∈ I and j1, j2 ∈ J , we have that i1 + j1 and i2 + j2 are arbitrary elements in I + J . So, the sum

(i1 + j1) + (i2 + j2) = (i1 + i2) + (j1 + j2)

must be in I + J , since I and J are both closed under addition. Similarly, given an element r ∈ R,
together with an element i in I and an element j ∈ J , since

r ⋅ (i + j) = r ⋅ i + r ⋅ j

and since I and J are closed under multiplication by elements in R, we have that r ⋅ i + r ⋅ j must be in
I +J . Since I +J is closed with respect to the underlying additive binary operation of R, and since I +J
is closed under multiplication by elements in R, we thus have that I + J is an ideal of R, as desired.

Since I and J are ideals, 0 ∈ I and 0 ∈ J . So, each element of the form 0 + j is in I + J for j ∈ J , and
each element of the form i + 0 for i ∈ I is in I + J , for i ∈ I. So, the ideal I + J contains both I and J .

Now, let K be an arbitrary ideal of R which contains both I and J . Since K must be closed under
addition, and since I, J ⊆K, we thus find that each expression of the form i + j must be in K, for i ∈ I
and j ∈ J . This shows that an arbitrary ideal K ⊆ R which contains I and J must be such that I+J ⊆K.
This proves that I + J is the smallest ideal of R containing both I and J .
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Exercise 1.188. Prove that IJ is an ideal contained in I ∩ J .

Solution 1.189. As indicated above, IJ is the set of all finite sums of expressions of the form xy where
x ∈ I and y ∈ J . Let

x1y1 + x2y2 +⋯ + xnyn
and

xn+1yn+1 + xn+2yn+2 +⋯ + xmym
be arbitrary elements in IJ . Then the sum

x1y1 + x2y2 +⋯ + xnyn + xn+1yn+1 + xn+2yn+2 +⋯ + xmym

of these two elements is also a finite sum of expressions of the form xy for x ∈ I and y ∈ J , thus proving
that IJ is closed under addition. Letting r ∈ R, and letting

x1y1 + x2y2 +⋯ + xnyn ∈ IJ

be as given above, we thus have that

r ⋅ (x1y1 + x2y2 +⋯ + xnyn) = (r ⋅ x1)y1 + (r ⋅ x2)y2 +⋯ + (r ⋅ xn)yn

and since I is closed under multiplication by elements in R, we have that the sum

(r ⋅ x1)y1 + (r ⋅ x2)y2 +⋯ + (r ⋅ xn)yn

is also a finite sum of products of the form xy for x ∈ I and y ∈ J . This shows that IJ is an ideal of R.
Again letting

x1y1 + x2y2 +⋯ + xnyn ∈ IJ
be as given above, so that

x1y1 + x2y2 +⋯ + xnyn ∈ IJ
is an arbitrary element in IJ , each expression of the form x1y1 is in I since xi ∈ I for each index i, and
since I is closed under multiplication by elements in R, and each expression of the form x1y1 is in J
since yi ∈ J for each index i, and since J is an ideal. This shows that each element in IJ is contained in
I ∩ J .

Exercise 1.190. Give an example where IJ ≠ I ∩ J .

Solution 1.191. Let R = Z/8Z. Observe that R is a ring with unity 1 ≠ 0. Let I ⊆ R denote the
principal ideal {0,2,4,6} generated by 2 ∈ R, and let J denote the ideal {0,4}. We thus find that
I ∩ J = {0,4}. However, as indicated in the following multiplication table, each product of the form ij
for i ∈ I and j ∈ J vanishes:

⋅8 0 2 4 6
0 0 0 0 0
4 0 0 0 0

Since each expression of the form ij vanishes for i ∈ I and j ∈ J , we thus have that IJ must be equal to
the singelton set {0}. We thus have that IJ ⊊ I ∩ J , as desired.

Exercise 1.192. Prove that if R is commutative and if I + J = R, then IJ = I ∩ J .
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Solution 1.193. Suppose that R is commutative, and suppose that I + J = R. We have previously
shown that IJ is an ideal satisfying the inclusion whereby IJ ⊆ I ∩J . So, it remains to prove the reverse
inclusion. So, suppose that x is an element in I ∩ J ⊆ R = I + J . Since R is untial, we may rewrite the
element x in the manner indicated below:

x = x ⋅ 1.
Since 1 ∈ R = I + J , we thus have that the unit 1 in R may be written as 1 = i + j where i ∈ I and j ∈ J .
We thus have that:

x = x ⋅ 1
= x ⋅ (i + j)
= x ⋅ i + x ⋅ j.

Since I is an ideal, we have that the expression x ⋅ i must be in I, since x ∈ R and i ∈ I. Since J is closed
under multiplication by elements of R, we have that x ⋅ j ∈ J . Therefore,

x ⋅ i + x ⋅ j ∈ I + J.

So, we have shoiwn that each element x ∈ I ∩ J must be in IJ in the case whereby I + J .

Exercise 1.194. Let A and B be ideals in R, a commutative ring with 1 ≠ 0. For r ∈ R, prove that
φ(r) = (r +A, r +B) is a ring homomorphism from R to R/A ×R/B and compute ker φ.

Solution 1.195. Let A, B, R, etc., be as given above. Let r1 and r2 be arbitrary elements in the
domain R of φ. We thus have that:

φ(r1) + φ(r2) = (r1 +A, r1 +B) + (r2 +A, r2 +B)
= ((r1 +A) + (r2 +A), (r1 +B) + (r2 +B))
= (r1 + r2 +A, r1 + r2 +B)
= φ(r1 + r2).

Similarly, we have that:

φ(r1) ⋅ φ(r2) = (r1 +A, r1 +B) ⋅ (r2 +A, r2 +B)
= ((r1 +A) ⋅ (r2 +A), (r1 +B) ⋅ (r2 +B))
= (r1 ⋅ r2 +A, r1 ⋅ r2 +B)
= φ(r1 ⋅ r2).

Since φ preserves the multiplicative operation of R, as well as the additive operation of R, we have that
φ is a ring homomorphism, as desired. Now evaluate the kernel of φ∶R → R/A × R/B in the manner
suggested below:

ker(φ) = {r ∈ R ∶ φ(r) = (0 +A,0 +B)}
= {r ∈ R ∶ (r +A, r +B) = (0 +A,0 +B)}
= {r ∈ R ∶ r +A = 0 +A, r +B = 0 +B}
= {r ∈ R ∶ r ∈ A, r ∈ B}
= A ∩B.
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Exercise 1.196. Let F be a field. Show that the subring F[x,x2y, x3y2, . . . , xnyn−1, . . .] of the ring
F[x, y] contains an ideal which is not finitely generated.

Solution 1.197. Consider the ideal

I = ⟨x,x2y, x3y2, . . . , xnyn−1, . . .⟩ ⊆ F[x,x2y, x3y2, . . . , xnyn−1, . . .].

This ideal consists precisely of polynomials in

R = F[x,x2y, x3y2, . . . , xnyn−1, . . .]

with a constant term equal to 0. By way of contradiction, suppose that I is finitely generated, writing

I = ⟨p1, p2, . . . , pm⟩,

where m ∈ N, and pi is in R for each index i. The non-constant terms of each polynomial in R must
be of the form xjyj−1. Now, let k ∈ N be the least natural number such that the monomial xkyk−1 is
greater than all of the terms among the polynomials in {p1, p2, . . . , pm}. There must exist a monomial
of this form, since there are only a finite number of terms for each polynomial in {p1, p2, . . . , pm}, and
since there are only a finite number of elements in {p1, p2, . . . , pm}. But since xkyk−1 is a polynomial in
R with a constant term equal to 0, we have that:

xkyk−1 = p1q1 + p2q2 +⋯ + pmqm

where q1, q2, . . . , qm ∈ R. But given monomials x`1y`1−1 and x`2y`2−1 such that `1 < k, we have that:

x`1y`1−1x`2y`2−1 = x`1+`2y`1+`2−2.

So, each term in the expansion of
p1q1 + p2q2 +⋯ + pmqm

is either of the form x`y`−1 where ` < k, or is of the form

x`y`−2,

which shows that it cannot be the case that

xkyk−1 = p1q1 + p2q2 +⋯ + pmqm.

thus showing that I cannot be finitely generated.

Exercise 1.198. Prove that the ring Z[x1, x2, x3, . . .]/⟨x1x2, x3x4, x5x6, . . .⟩ contains infinitely many
minimal prime ideals.

Solution 1.199. Let R = Z[x1, x2, x3, . . .], and let K = ⟨x1x2, x3x4, x5x6, . . .⟩. Our solution is based on a
solution given in the below link14. Let Y denote the set of all choice functions on {{2k+1,2k+2}∣k ∈ N}.
For λ ∈ Y , let Iλ = ⟨λ0, λ1, . . .⟩. Observe that K ⊆ Iλ for each index λ.

By the third isomorphism theorem for rings, we have that

(R/K)/(Iλ/K) ≅ R/Iλ.
14See https://crazyproject.wordpress.com/2010/11/26/exhibit-a-ring-with-infinitely-many-minimal-prime-ideals/.
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Similarly, we have that R/Iλ ≅ R. Since R is an integral domain, Iλ/K must be a prime ideal of R/K.

Suppose that J/K ⊆ Iλ/K is a prime ideal. Let (i, i+ 1) be a pair such that i is an odd natural number.
We may assume without loss of generality that xi ∈ Iλ. Since xixi+1 ∈ K ⊆ J . Since J is prime and
xi+1 /∈ J as xi+1 /∈ Iλ, we have that xi ∈ J . This shows that J = Iλ.

Observe that R/K is not an integral domain since (x1 +K)(x2 +K) = 0, so that the trivial ideal is not
prime. So, each ideal of the form Iλ is a prime ideal which is minimal with respect to inclusion.

Exercise 1.200. Suppose that I is a monomial ideal generated by monomials m1,m2, . . . ,mk. Prove
that the polynomial f ∈ F[x1, x2, . . . , xn] is in I if and only if every monomial term fi of f is a multiple
of one of the mj.

Solution 1.201. (Ô⇒) Letting
I = ⟨m1,m2, . . . ,mk⟩,

where each expression of the form mi is a monomial, suppose that the polynomial f ∈ F[x1, x2, . . . , xn]
is in I. We thus have that

f =m1p1 +m2p2 +⋯ +mkpk,

where pi is a polynomial in F[x1, x2, . . . , xn] for each index i. Expanding each polynomial of the form pi
in terms of its monomial terms, we thus have that each monomial term in f must be a multiple of mj

for some index j.

(⇐Ô) Conversely, suppose that every monomial term fi of f is a multiple of some expression of the
form mj. Writing

f = f1 + f2 +⋯ + fr,
we thus have that

f =m1q1 +m2q2 +⋯ +mrqr,

where qi is a polynomial for each index i. This shows that f must be in I.

Exercise 1.202. Fix a monomial ordering on R = F[x1, x2, . . . , xn] and suppose that {g1, g2, . . . , gm} is
a Gröbner basis for the ideal

I = ⟨m1,m2, . . . ,mk⟩
in R. Prove that h ∈ LT(I) if and only if h is a sum of monomial terms each of which is divisible by
some LT(gi).

Solution 1.203. (Ô⇒) Suppose that h ∈ LT(I). Since {g1, g2, . . . , gm} is a Gröbner basis of I, we have
that

I = ⟨g1, g2, . . . , gm⟩
and

LT(I) = ⟨LT(g1),LT(g2), . . . ,LT(gm)⟩.
Since h ∈ LT(I) = ⟨LT(g1),LT(g2), . . . ,LT(gm)⟩, we have that

h = LT(g1)p1 + LT(g2)p2 +⋯ + LT(gm)pm

where each expression of the form pi is a polynomial in R. Expanding each such polynomial in terms of
monomials, we thus have that h is a sum of monomial terms each of which is divisible by some expression
of the form LT(gi).
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(⇐Ô) Conversely, suppose that h is a sum of monomial terms each of which is divisible by some
expression of the form LT(gi), writing

h = LT(g1)`1 + LT(g2)`2 +⋯ + LT(gk)`k,

where `i is a monomial in R for each index i. But then

h ∈ ⟨LT(g1),LT(g2), . . . ,LT(gm)⟩

and we thus have that h ∈ LT(I), as desired.

Exercise 1.204. Show that {x − y3, y5 − y6} is a Gröbner basis for the ideal I = ⟨x − y3,−x2 + xy2⟩ with
respect to lexicographic ordering where x > y in the ring F[x, y].

Solution 1.205. Let J denote the ideal generated by {x − y3, y5 − y6} in F[x, y]. We claim that I = J .
In the ideal

I = ⟨x − y3,−x2 + xy2⟩,
we have that x is equivalent to y3 modulo I. That is, −x2+xy2 is equivalent to −y6+y5 modulo I, which
shows that:

⟨x − y3,−x2 + xy2⟩ = ⟨x − y3,−y6 + y5⟩,
as desired. Now observe that:

{LT(x − y3),LT(y5 − y6)} = {x, y5}.

Now consider the ideal LT(I). Recall that x is equivalent to y3 in I = ⟨x − y3,−x2 + xy2⟩. Suppose that
a leading term in I contains x as a factor. Then this leading term must be in ⟨x, y5⟩. Now suppose that
it is not the case that a leading term in I contains x as a factor. Then since x is equivalent to y3 in I,
this leading term must be of the form y≥5, which shows that this leading term must be in ⟨x, y5⟩. This
shows that LT(I) ⊆ ⟨x, y5⟩. Similarly, since x = LT(x − y3) and y6 ≡ LT(−x2 + xy2), we have that the
reverse inclusion holds.

Exercise 1.206. Prove that the rings F[x, y]/⟨y2 − x⟩ and F[x, y]/⟨y2 − x2⟩ are not isomorphic for any
field F.

Solution 1.207. Let R denote the polynomial ring F[x, y]. The expression polynomial y2 − x is irre-
ducible, but y2 − x2 = (y − x)(y + x). The ideal ⟨y2 − x⟩ consists of expressions of the form (y2 − x)p But
since y2 − x is irreducible, if ab = (y2 − x)p for some polynomials a and b, then either a or b must be a
multiple of y2 − x. This proves that ⟨y2 − x⟩ is a prime ideal in F[x, y], so that F[x, y]/⟨y2 − x⟩ is an
integral domain. However, if

ab = (y2 − x2)p = (y − x)(y + x)p,
then it is possible that a = y − x /∈ ⟨y2 − x2⟩ and that b = (y + x)p /∈ ⟨y2 − x2⟩. This shows that ⟨y2 − x2⟩ is
not a prime ideal in F[x, y]. Therefore, F[x, y]/⟨y2 −x2⟩ is not an integral domain, and therefore cannot
be isomorphic to F[x, y]/⟨y2 − x⟩, since F[x, y]/⟨y2 − x⟩ is an integral domain.
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2 Former comprehensive exam questions

2.1 University of Toronto comprehensive exam questions

Exercise 2.1. (Toronto, 2008) Show that every group of order 200 has a nontrivial normal subgroup.

Solution 2.2. Begin by writing 200 as a product of primes:

200 = 23 ⋅ 52.

Now, let G be a group of order 200. Let n5 denote the number of Sylow 5-subgroups of G. The divisors
of 200 which are positive are precisely the elements in the following set:

{1,2,4,5,8,10,20,25,40,50,100,200}.

Now, consider the tuple
(1,2,4,5,8,10,20,25,40,50,100,200)

consisting of the positive divisors of 200 ordered canonically, and reduce each entry in the above tuple
modulo 5:

(1,2,4,0,3,0,0,0,0,0,0,0) .
Since n5 ≡ 1(mod 5) and n5∣200, we have that n5 = 1. But since Sylow 5-subgroups of G are all conjugate
to each other, we thus have that the unique Sylow 5-subgroup H5 of G is necessarily normal in G. By
definition of a Sylow p-subgroup, H5 is a maximal 5-subgroup, so H5 must be nontrivial.

Exercise 2.3. (Toronto, 2008) Make a list (up to isomorphism) of all abelian groups of order 200.

Solution 2.4. By the Fundamental Theorem of Finitely-Generated Abelian Groups, we have that a
finitely-generated abelian group of order 200 must be of the form

Cpn11
×Cpn22

×⋯ ×Cpnmm

where pi is a prime for all indices i, with m ∈ N, and ni ∈ N for all indices i, with:

pn1
1 p

n2
2 ⋯pnmm = 200.

So, the following list consists previsely of the abelian groups of order 200, up to isomorphism, since
Za ×Zb ≅ Zab if a and b are relatively prime.

Z200,
Z2 ×Z100,
Z4 ×Z50,
Z5 ×Z40,
Z10 ×Z20,
Z2 ×Z2 ×Z50,
Z2 ×Z10 ×Z10.

Exercise 2.5. (Toronto, 2008) Find all ideals of the ring Z[x]/(2, x3 + 26).
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Solution 2.6. Consider the ideal of Z[x] generated by {2, x3 + 26} ⊆ Z[x]:

I = (2, x3 + 26) = 2Z[x] + (x3 + 26)Z[x].
Define:

p(x) = anxn + an−1xn−1 +⋯ + a1x + a0
q(x) = bmxm + bm−1xm−1 +⋯ + b1x + b0.

So, an element in I is of the form:

(2a0 + 26b0) + (2a1 + 26b1)x + (2a2 + 26b2)x2+
(2a3 + 26b3 + b0)x3 + (2a4 + 26B4 + b1)X4 + (higher powers).

Observe that the constant term of an element in I must be even. So 0 + I ≠ 1 + I. Similarly, the first 3
coefficients of an element in I must be even. This shows that the following cosets are pairwise unequal:

{0 + I,1 + I, x + I, x + 1 + I, x2 + I, x2 + 1 + I, x2 + x + I, x2 + x + 1 + I}.

Since higher coefficients may be of the form 2a3 + 26b3 + b0, 2a4 + 26b4 + b1, etc., it is easily seen that
Z[x]/(2, x3 + 26) is equal to the above set of 8 cosets. So Z[x]/I is a ring of order 8. It is evident that
the underlying additive abelian group of this ring is isomorphic to Z2 ×Z2 ×Z2.

To compute the ideals of the quotient ring Z[x]/I, begin by considering the principal ideals (x + I),
(x + 1 + I), etc.

(x + I) = {0 + I, x + I, x2 + x + I, x2 + I} = (x2 + I) = (x2 + x + I).
Since (x+ I) is of order 4 and Z[x]/I is of order 8, (x+ I) is maximal. It is easily seen that (x+ 1+ I) =
(x2 + 1 + I) = (x2 + x + 1 + I) = Z[x]/I. Also,

(x2 + x + I) = {0 + I, x2 + x + I, x2 + I, x + I}.
Since the above ideal is of order 4 and Z[x]/I is of order 8, (x2 + x + I) is maximal. So, the above
evaluations show that the ideals of the ring Z[x]/(2, x3 + 26) are:

{0 + I}
Z[x]/(2, x3 + 26),
{0 + I, x + I, x2 + x + I, x2 + I},
{0 + I, x2 + x + I, x2 + I, x + I}.

Exercise 2.7. (Toronto, 2007) LetG be a group. State the three Sylow theorems. What is a composition
series of G? To what extent is it unique?

Solution 2.8. First Sylow Theorem: Sylow p-subgroups always exist for a prime p dividing the order
of G.

Second Sylow Theorem: Sylow p-subgroups are all conjugates of each other.

Third Sylow Theorem: Letting np denote the number of Sylow p-subgroups of G, for a prime p dividing
the order of G, np∣∣G∣ and np ≡ 1(mod p)15.

15See http://garsia.math.yorku.ca/~zabrocki/math6121f16/documents/100416notes.pdf.
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A composition series of G is a subnormal series

{e} =H0 ◁H1 ◁⋯◁Hn = G

of G such that Hi◁Hi+1 for all indices i, and Hi+1/Hi is simple for all indices i16. By the Jordan-Hölder
theorem, two composition series of the same group G must be isomorphic, i.e., they must be the same
up to a rearrangement of the composition quotients, up to isomorphism.

Exercise 2.9. (Toronto, 2007) Let R be an integral domain. Define the terms prime element and
irreducible element. What is the connection between prime elements and irreducible elements in R?

Solution 2.10. (See Alaca and Williams’ “Introductory Algebraic Number Theory”, for example.) A
nonzero, nonunit element a of an integral domina R is called an irreducible, or said to be irreducible, if
a = bc, where b, c ∈ R, implies that either b or c is a unit. A nonzero, nonunit element p of an integral
domain R is called a prime if p∣ab, where a, b ∈ R, implies that p∣a or p∣b. We claim that in an integral
domain R, a prime element must necessarily be irreducible. Letting p ∈ R be a prime, suppose that
p = ab, with a, b ∈ R. By definition of an integral domain, R must have a unity. We may thus write
ab = p ⋅ 1. Since p is a prime, we have that p∣a or p∣b, that is, a/p ∈ R or b/p ∈ R. Since a = a/p ⋅ b or
1 = a ⋅ b/p, either b is a unit or a is a unit of R.

Exercise 2.11. (Toronto, 2006) What is the order of the group of rotations of the cube?

Solution 2.12. The following solution is based on the linked MATH 4160 course website given below17.
There are 24 rotations of the cube. The identity isometry is trivially a rotational isometry. There are
also 9 rotations of the cube about the 3 axes illustrated below.

There are 6 rotational isometries of the cube by 180○ around the axes shown in the following image.

There are rotations by 120○ and 240○ around the 4 axes shown in the image below.

16See http://garsia.math.yorku.ca/~zabrocki/math6121f16/documents/092716notes.pdf.
17See http://garsia.math.yorku.ca/~zabrocki/math4160w03/cubesyms/.
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We thus have that the group of rotations of the cube is of order 24.

Exercise 2.13. (Toronto, 2006) The dihedral group D30 is the group of rotations and reflections of the
regular 15-gon: D30 = ⟨σ, ρ ∣ σ2 = 1 = ρ15, σρ = ρ−1σ⟩. How many Sylow subgroups of each possible order
are there in D30? Are any of them normal?

Solution 2.14. For a prime p, a Sylow p-subgroup of a given group is a maximal p-subgroup. The
dihedral group D30 is of order 30:

∣D30∣ = 30 = 2 ⋅ 3 ⋅ 5.
For p ∈ {2,3,5}, let np denote the number of Sylow p-subgroups of D30. The following tuple consists of
the positive divisors of ∣D30∣ = 30:

(1,2,3,5,6,10,15,30).
Reduce the above tuple modulo p, for p ∈ {2,3,5}:

(1,0,1,1,0,0,1,0),
(1,2,0,2,0,1,0,0),
(1,2,3,0,1,0,0,0).

By Sylow’s First Theorem, we have that n2 ≥ 1, n3 ≥ 1, and n5 ≥ 1. We begin by considering the value
of n5. To find the value of n5, we proceed to consider the subgroup of D30 consisting of the rotational
isometries in D30:

R = {1, ρ, ρ2, . . . , ρ14}.
We remark that R is a cyclic subgroup, and that R◁D30, since subgroups of index 2 must be normal.
Consider the following subgroup of R:

{1, ρ3, ρ6, ρ9, ρ12}◁R.

A group of order 5 must be cyclic. So, a Sylow 5-subgroup of D30 must be a cyclic subgroup of order 5.
What elements in D30 are of order 5? The elements in the dihedral group D30 are indicated below:

D30 = {1, ρ, ρ2, . . . , ρ14, σ, σρ, σρ2, . . . , σρ14}.

By the Fundamental Theorem of Cyclic Groups, the only elements in {1, ρ, ρ2, . . . , ρ14} of order 3 are
ρ3, ρ6, ρ9, and ρ12. Now consider the orders of elements in {σ,σρ, σρ2, . . . , σρ14}:

σ2 = 1

(σρ) ⋅ (σρ) = (σρ) ⋅ (ρ−1σ) = 1

(σρ2) ⋅ (σρ2) = σρρσρρ
= σρσρ = 1.

Continuing in the manner suggested above, we find that the only elements in D30 of order 5 are: ρ3, ρ6,
ρ9, and ρ12. So, the only subgroup of D30 of order 5 is {1, ρ3, ρ6, ρ9, ρ12}. Now, consider the subgroups
of D30 of order 3. Of course, a group of order 3 must be cyclic. So, to determine the subgroups of
D30 of order 3, it remains to consider the elements in D30 of order 3. We have shown above that the
elements in {σ,σρ, σρ2, . . . , σρ14} are all of order 2. So it remains to consider the elements of order 3
in the rotational cyclic subgroup R = {1, ρ, ρ2, . . . , ρ14} ◁D30. By the Fundamental Theorem of Cyclic
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Groups, we have that the only elements of order 3 are the non-identity elements in the following cyclic
subgroup:

{1, ρ5, ρ10}.
We thus find that there is a unique subgroups of D30 of order 3, namely, the cyclic subgroup {1, ρ5, ρ10},
with n3 = 1. So, it remains to evaluate n2. By Sylow’s Third Theorem, since n2 ≡ 1(mod 2) and n2∣∣G∣,
we may deduce that:

n2 ∈ {1,3,5,15}.
Now, we have previously shown that each element in

{σ,σρ, σρ2, . . . , σρ14}

is of order 2. Therefore, there are at least 15 subgroups of order 2. Using Sylow theory, we thus find
that n2 = 15. So, we have thus far shown that:

n2 = 15,

n3 = 1,

n5 = 1.

By Sylow’s second theorem, for fixed p, Sylow p-subgroups are all conjugates of one another. So, since
n3 = 1, the unique Sylow 3-subgroup of D30 is normal, and since n5 = 1, the unique Sylow 5-subgroup of
D30 is normal. Since n2 = 15, Sylow 2-subgroups of D30 are not normal.

Exercise 2.15. (Toronto, 2005) Show that there are no simple groups of order 70.

Solution 2.16. Let G be a group of order 70 = 2 ⋅ 5 ⋅ 7. The following tuple consists of the positive
divisors of 70, ordered canonically:

(1,2,5,7,10,14,35,70).
Now, reduce the entries in the above tuple modulo 5:

(1,2,0,2,0,4,0,0).

By Sylow’s Third Theorem, we have that the number n5 of Sylow 5-subgroups of G must divide ∣G∣,
and must be such that n5 ≡ 1(mod 5). As indicated above, we have that n5 must be equal to 1. But
by Sylow’s Second Theorem, all Sylow 5-subgroups must be conjugates od each other. But since n5 = 1,
we thus havce that the unique Sylow 5-subgroup of G must be a normal subgroup of G. But since this
normal subgroup must be of prime power order, and since ∣G∣ = 2 ⋅ 5 ⋅ 7, we have that this subgroup is
normal, proper, and nontrivial.

Exercise 2.17. (Toronto, 2005) Prove or disprove: every finite p-group is nilpotent.

Solution 2.18. Recall that every finite p-group must be of prime power order. Also recall that groups
of prime power order must have nontrivial centers, as may be verified using the class equation with
respect to conjugation. So, let G be a finite p-group. We thus have that G must be nontrivial, since it
must be of prime power order. Also, Z(G) must be nontrivial. We thus arrive at the following series:

Z0(G) ◁Z1(G).
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Now, the quotient group G/Z(G) also must be of prime power order. Therefore, Z(G/Z(G)) also must
be nontrivial in the quotient group G/Z(G):

Z(G)/Z(G) ◁Z(G/Z(G)) ⊴ G/Z(G).

We thus arrive at a series of the form

Z0(G) ◁Z1(G) ◁Z2(G).

Continuing in this manner, we have that the series

Z0(G) ◁Z1(G) ◁Z2(G) ◁Z3(G) ◁⋯

is always strictly increasing provided that we are dealing with proper subgroups of prime power order.
So the above series must be of the form

Z0(G) ◁Z1(G) ◁Z2(G) ◁Z3(G) ◁⋯◁Zn−1(G) ◁G

for some n ∈ N.

Exercise 2.19. (Toronto, 2005) How many Sylow subgroups of each possible order are there in the
symmetric group S4? Are any of them normal?

Solution 2.20. We begin by writing the order of S4 as a product of prime powers:

∣S4∣ = 24 = 8 ⋅ 3 = 23 ⋅ 3.

The following tuple consists of the positive divisors of ∣S4∣, ordered canonically:

(1,2,3,4,6,8,12,24).

Reduce the entries in the above tuple modulo 2:

(1,0,1,0,0,0,0,0).

Now, reduce the entries in the tuple (1,2,3,4,6,8,12,24) modulo 3:

(1,2,0,1,0,2,0,0).

Let np denote the number of Sylow p-subgroups of S4 for p ∈ {2,3}. By definition of a Sylow p-subgroup,
a Sylow p-subgroup is a maximal p-subgroup. So, a maximal 3-subgroup of S4 must be a subgroup of
S4 of order 3. By Sylow’s First Theorem, we have that n3 ≥ 1. By Sylow’s Third Theorem, we have that
n3 ≡ 1(mod 3) and n3∣∣S4∣. From our above reduction of the entries in (1,2,3,4,6,8,12,24) modulo 3,
we find that n3 is either equal to 1 or 4. So, to evaluate n3, it remains to consider the elements in S4 of
order 3. Observe that:

⟨(234)⟩ = {id, (234), (243)}
⟨(123)⟩ = {id, (123), (132)}.

So, we have shown that there are at least two order-3 subgroups of S4. But since n3 ∈ {1,4}, we may
thus deduce that n3 = 4.
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Now, by Sylow’s Second Theorem, we have that all Sylow 3-subgroups of S4 must be conjugates of each
other. But since n3 = 4 ≠ 1, we have that Sylow 3-subgroups of S4 are not normal subgroups.

Now consider the number of Sylow 2-subgroups of S4. From our above computations, by Sylow’s Third
Theorem, we find that n2 ∈ {1,3}. We proceed to construct an order-8 subgroup of S4. By labeling the
corners of a square as suggested below, we find that there is a subgroup of S4 which is isomorphic to
the dihedral group of order 8.

We thus obtain the following permutation subgroup which is isomorphic to D4.

{id, (1234), (13)(24), (1432), (12)(34), (14)(23), (24), (13)}.
Now consider the following labeling.

We thus obtain a subgroup of S4 which is isomorphic to D4 and which contains to the permutation
(1423). This shows that there are at least two different subgroups of S4 which are isomorphic to the
dihedral group of order 8. Using Sylow theory, we have shown that n2 ∈ {1,3}. But since n2 ≥ 2, we
have that n2 = 3, so by Sylow’s Second Theorem, we have that an arbitrary Sylow 2-subgroup of S4 is
not normal.

In summary, we have shown that there are 4 Sylow 3-subgroups of S4, and 3 Sylow 2-subgroups of S4,
and that Sylow subgroups of S4 cannot be normal subgroups.

Exercise 2.21. (Toronto, 2004) What is the smallest positive integer n so that the symmetric group
Sn contains an element of order 18?

Solution 2.22. By Ruffini’s theorem18, the order of a permutation written in disjoint cycle form is
equal to the least common multiple of the lengths of its cyclies. So, it remains to find a1, a2, . . . , am ∈ N
such that lcm(a1, a2, . . . , am) = 18, and a1 + a2 + ⋯ + am is minimal. Writing 18 = 2 ⋅ 32 as a product of
prime powers, we proceed to consider possible expressions of the form lcm(a1, a2, . . . , am) = 18:

lcm(2,9) = 18,

18See Gallian’s “Contemporary Abstract Algebra”. Ruffini’s theorem was formulated in the following manner in this
textbook: “The order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the
lengths of the cycles.”
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lcm(6,9) = 18,

lcm(18,1) = 18.

So, the least a1, a2, . . . , am ∈ N such that lcm(a1, a2, . . . , an) = 18 is such that a1 = 2 and a2 = 9. Observe
that the element (1,2)(3,4,5,6,7,8,9,10,11) is of order 18 in S11. So, the smallest positive integer n
such that Sn contains an element of order 18 is n = 11.

Exercise 2.23. (Toronto, 2004) Let σ ∈ S10 be the permutation σ = (123)(456). What is the order of
ZS10(σ), its centralizer in S10?

Solution 2.24. Recall that given a group G and a subset A of G, the centralizer CG(A) of A in G is
the following set19:

CG(A) = {g ∈ G ∣ ∀a ∈ A ga = ag}.
So, the centralizer ZS10(σ) of σ in S10 is the following set:

ZS10(σ) = {ρ ∈ S10 ∣ ρσ = σρ}.

For ρ ∈ S10, we have that ρσ = σρ iff the following holds:

ρ2 = σ(ρ1)
ρ3 = σ(ρ2)
ρ1 = σ(ρ3)
ρ5 = σ(ρ4)
ρ6 = σ(ρ5)
ρ4 = σ(ρ6)
ρ7 = σ(ρ7)
ρ8 = σ(ρ8)
ρ9 = σ(ρ9)
ρ10 = σ(ρ10).

Since σi = i iff i ∈ {7,8,9,10}, and since σi = i iff i ∈ {ρ7, ρ8, ρ9, ρ10}, there are 4! choices for ρ7, ρ8, ρ9, and
ρ10. Each remaining element ρi in {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6} is such that ρi, σ(ρi), and σ2(ρi) are all distinct,
with σ3(ρi) = ρi. So, there are 6 choices for ρ1. Given each choice for ρ1, ρ2 and ρ3 are “automatically”
determined. Then, there are 3 remaining choices for ρ4. Given each such choice for ρ4, ρ5 and ρ6 are
automatically given. So, the order of ZS10 is 4! ⋅ 6 ⋅ 3.

There is a general formula for the order of the centralizer of a permutation20 Let n1, n2, . . ., nk be the
distinct lengths of the cycles of σ, and suppose that there are mi cycles of length ni. Then the centralizer
of σ is of order ∏k

i=1 n
mi
i mi!. This agrees with our evaluation for the above exercise.

Exercise 2.25. (Toronto, 2003) Let D12 = ⟨r, s ∣ r6 = s2 = 1, rs = sr−1⟩ be the dihedral group of order
12. Determine whether D12 is a nilpotent group.

19See http://garsia.math.yorku.ca/~zabrocki/math6121f16/documents/092216notes.pdf.
20See http://math.stackexchange.com/questions/85817/.
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Solution 2.26. It is known that the center of a diehdral group of the form D2n consists of the identity
isometry and the half-turn isometry21. Therefore,

Z(D12) = {1, r3} .
Writing G =D12, we thus have that Z0 = {1}, and Z1 = {1, r3}.

Now, consider the quotient group D12/Z(D12). Since Z(D12) = {1, r3}, we have that D12/Z(D12) is a
group of order 6. This quotient group consists of the following cosets:

1{1, r3} = {1, r3},
r{1, r3} = {r, r4},
r2{1, r3} = {r2, r5},
s{1, r3} = {s, sr3},
sr{1, r3} = {sr, sr4},
sr2{1, r3} = {sr2, sr5}.

Now, consider the groups of order 6, up to isomorphism. By the Fundamental Theorem of Finitely-
Generated Abelian Groups, the only abelian group of order 6 is Z/6Z ≅ C6, up to isomorphism. The
only non-abelian group of order 6 is D3 ≅ S3, up to isomorphism. It is clear that D12/Z(D12) ≅D3, since
the quotient group D12/Z(D12) cannot be cyclic, since

s{1, r3} ⋅ s{1, r3} = s2{1, r3} = 1{1, r3}.
It is known that the center of a dihedral group of the form Dm for an odd natural number m is trivial.
So, we have that Z(D12/Z(D12)) is trivial. We thus have that

Z(D12/Z(D12)) = {{1, r3}}.
Therefore,

⋃Z(D12/Z(D12)) = {1, r3}.
But this shows that Z1 = Z2 ≠ G:

Z0 = {1}
Z1 = {1, r3}
Z2 = {1, r3} ≠ G.

Since Z1 = Z2 ≠ G, we may conclude that D12 is not a nilpotent group.

Exercise 2.27. (Toronto, 1999) If T is a diagonalizable linear operator on a vector space V of finite
dimension, and if the characteristic polynomial of T has only one root, show that T is a scalar multiple
of the identity.

Solution 2.28. Let A denote the matrix corresponding to T . Since A is diagonalizable, we have
that there exists a diagonalizing matrix P such that PAP −1 is equal to a diagonal matrix consisting
ot the eigenvalue(s) of A along the main diagonal. But since the characteristic polynomial of A has
only one root, the matrix A has only one eigenvalue, which shows that PAP −1 = λIn for some n ∈ N,
since V is finite-dimensional, letting λ denote teh unique root of the characteristic polynomial of A.
Since PAP −1 = λIn, we have that P −1(λIn)P = A, and we thus have that λP −1InP = A, so that
A = λP −1P = λIn.

21See https://en.wikipedia.org/wiki/Center_(group_theory). As stated in this article, “The center of the dihedral
group Dn, is trivial when n is odd. When n is even, the center consists of the identity elements together with the 180○

rotation of the polygon.”
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2.2 University of British Columbia comprehensive exam questions

Exercise 2.29. (U.B.C., 2012) Let G be a group, H a subgroup. Recall that the normalizer fo H in G
is the subgroup NG(H) = {x ∈ G ∣ xHx−1 = H}. Now let H1, H2 be subgroups of G that are conjugate
to each other. Show that their normalizers NG(H1), NG(H2) are also conjugate to each other.

Solution 2.30. Since H1 and H2 are conjugate to each other, let g ∈ G be such that gH1g−1H2. By
definition of the normalizer of a subgroup, we have that:

NG(H2) = {x ∈ G ∣ xH2x
−1 =H2}.

Since gH1g−1 =H2, we have that:

NG(H2) = {x ∈ G ∣ xgH1g
−1x−1 =H2}.

Equivalently,

NG(H2) = {x ∈ G ∣ xgH1g
−1x−1 = gH1g

−1}
= {x ∈ G ∣ g−1xgH1g

−1x−1g =H1}
= {x ∈ G ∣ g−1xgH1(g−1xg)−1 =H1}
= {x ∈ G ∣ g−1xg ∈ NG(H1)}
= {x ∈ G ∣ x ∈ gNG(H1)g−1}
= gNG(H1)g−1.

3 Terminology

Exercise 3.1. What is a nilpotent group?

Solution 3.2. See Exercise 1.78 and Exercise 2.17.

Exercise 3.3. What is a prime ideal?

Solution 3.4. A proper ideal P of an integral domain D is called a prime ideal if

ab ∈ P Ô⇒ (a ∈ P ∨ b ∈ P )

for a, b ∈D.

Exercise 3.5. What is the centralizer of a subset of a group?

Solution 3.6. Let A ⊆ G. We define the centralizer of A in G as the set

CG(A) = {g ∈ G ∣ gag−1 = a for all a ∈ A}.

Exercise 3.7. What is a Sylow p-subgroup?

Solution 3.8. A Sylow p-subgroup is a maximal p-subgroup.

Exercise 3.9. What is a Noetherian ring?

Solution 3.10. A commutative ring R with 1 is called Noetherian if every ideal of R is finitely generated.
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Exercise 3.11. What is a Gröbner basis?

Solution 3.12. A Gröbner basis for an ideal I in the polynomial ring F [x1, x2, . . . , xn] is a finite set of
generators {g1, g2, . . . , gm} for I whose leading terms generate the ideal of all leading terms in I, i.e.,

I = (g1, g2, . . . , gm)

and
LT(I) = (LT(g1),LT(g2), . . . ,LT(gm)).

Exercise 3.13. What is an irreducible element in an integral domain R?

Solution 3.14. An irreducible element of R is a nonzero, nonunit element a of R such that: for all
b, c ∈ R, if a = bc, then b or c is a unit.

Exercise 3.15. What is a prime element in an integral domain R?

Solution 3.16. A prime element of R is a nonzero, nonunit element a ∈ R such that: for all b, c ∈ R, if
a∣bc, then a∣b or a∣c.

Exercise 3.17. What are associate elements in R?

Solution 3.18. Two nonzero elements a, b ∈ R are said to be associate elements in R if there exists a
unit u such that a = bu.

Exercise 3.19. What is a solvable group?

Solution 3.20. A finite group G is solvable if there exists a subnormal series of the form

{e} =H0 ◁H1 ◁⋯◁Hn = G

such that Hi+1/Hi is abelian for all indices i.
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