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1 MATH 6122 exercises

Exercise 1.1. If possible, construct countable products and countable coproducts in the categoryRing.

Solution 1.2. Recall that a product of objects A and B in a category C , provided that it exists
according to the following construction, may be defined in the following manner, and consists of:

● An object P ∈ ob(C );

● A morphism πA∶P → A; and

● A morphism πB ∶P → B,

such that there exists a unique morphism φ∶C → P such that the following diagram commutes, where
C ∈ ob (C ) is arbitrary.

Similarly, for objects A and B in a category C , the ordered tuple (P, iA, iB) is a coproduct of A and B
if the universal property indicated below is satisfied.
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So, let I be a countable index set, and let Ai be an object in Ring for each index i ∈ I.

So, we define the product of the objects in the family {Ai}i∈I in Ring so as to consist of an object P in
Ring, together with a projection morphism

πAi ∶P → Ai

for each index i ∈ I such that: for each object C in Ring, and for each morphism fi∶C → Ai, there exists
a unique morphism φ such that the following diagram commutes, and the morphism φ is the same for
each index i.

Similarly, we define the coproduct of the objects in {Ai}i∈I so as to consist of an object P in Ring,
along with a morphism ji∶Ai → P for each index i ∈ I such that: for all objects C in Ring, and for all
morphisms fi∶Ai → C, there exists a unique morphism φ such that the following diagram commutes,
and the morphism φ is the same for all i ∈ I.

Exercise 1.3. Prove that in a given category, coproducts, if they exist, are unique up to isomorphism.

Solution 1.4. Let A and B be objects in a category C , so that the ordered tuple (P, iA, iB) is a
coproduct of A and B, with the universal property indicated below being satisfied.

Now, suppose that (P ′, i′A, i
′
B) is also coproduct of A and B, so that the universal property indicated

below holds.
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Our proof of the unicity of coproducts is heavily based upon a similar proof which is available through
the https://proofwiki.org/ website. With respect to the former diagram, let C be equal to P ′, let
the morphism from A to C be i′A, and let the morphism from B to C = P ′ be equal to i′B. Given the
universal property satisfied with respect to the coproduct (P ′, i′A, i

′
B) of A and B, we thus obtain a

commutative diagram of the following form.

Now, with respect to the above commutative diagram, let C be equal to P , and let the unlabeled
morphism in this diagram from A to C be equal to iA. Also, let the unlabeled morphism from B to C
be equal to iB, as illustrated below.

So, from the above diagram, we have that the following diagram commutes.
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By definition of a coproduct, we have that the endomorphism on P in the above diagram must be unique.
Since P is an object of the category C , we have that the set HomC (P,P ) is nonempty, by definition of
a category, with an identity morphism 1P = idP ∈ HomC (P,P ). So, from the identity morphism axiom,
we have that the following diagram must commute.

Since the endomorphism on P in the above diagram must be unique, we thus have that

φ′ ○ φ = 1P .

A symmetric argument may be used to prove that:

φ ○ φ′ = 1P ′ ,

thus proving that P ≅ P ′, as desired.

Exercise 1.5. Show how free groups may be constructed using the category-theoretic definition of a
free object given in class.

Solution 1.6. Let Grp denote the category of groups, and let

U = UGrp∶Grp→ Set

denote the canonical forgetful functor on Grp, which, informally, “forgets” the group structures on
objects in Grp. We thus have that (Grp,U) is a concrete category.

We thus proceed to construct an appropriate functor

F ∶Set→Grp
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in order to apply the category-theoretic definition of a free object given in class. The following discussion
is heavily based upon the section on free groups given in Fraleigh’s “A First Course in Abstract Algebra”.

Given a set X, let F [X] denote the set of all reduced words formed from the alphabet X. We define a
word over X as a finite string of symbols of the form xz for z ∈ Z and x ∈ X, written in juxtaposition.
The elementary contractions consist of functions given by the replacement of an occurrence of the form
xmxn with xm+n, as well as the mapping given by the removal of an occurrence of x0. A reduced word is
a word for which no more elementary contractions are possible.

Letting F [X] be as given above, we endow F [X] with the binary operation ⋅ so that for elements w1 and
w2 in F [X], the expression w1 ⋅w2 is equal to the reduced form of the word obtained by the concatenation
w1w2.

In the following solution, we show how this construction agrees with the universal property given in the
category-theoretic definition of a free object.

Exercise 1.7. In Grp, what is F [X], with respect to the commutative diagram used to define a free
object? Study some different ways of defining free objects in Grp. How can these different definitions
be reformulated in terms of a category-theoretic framework? How can these different definitions be
reformulated using forgetful functors?

Solution 1.8. As above, we may let F [X] denote the set of all reduced words from the alphabet
X ∈ ob(Set), letting F [X] be endowed with the binary operation ⋅ given above. Equivalently, F [X]
may be informally defined as “the group generated by X” or “the smallest group containing X”, which
agrees with the above definition.

It can be shown that the definition of F [X] involving reduced words given above agrees with the
category-theoretic definition of a free object. To show this, we make use of the following theorem from
Fraleigh’s “A First Course in Abstract Algebra”:

Theorem: Let G be generated by the family X = {xi ∣ i ∈ I} and let G′ be any group. If x′i is an
element in G′ for each index i ∈ I, such that expressions of these forms are not necessarily distinct, then
there is at most one homomorphism φ∶G → G′ such that φ(xi) = x′i. If G is free on A, then there is
exactly one such homomogrphism.

So, let X be an object in Set, and let F [X] be defined in a concrete way with respect to reduced words
as above. So, for an arbitrary object G′ in Grp, and given an arbitrary morphism f ∶X → U[G′], there is
a unique homomorphism φ∶F [X] → G′ such that the following diagram commutes, where the injective
mapping from X to U[F [X]] is canonical.

U[F [X]] U[G′]

X

U[φ]

iX
f

Exercise 1.9. Let (C ,U) be a concrete category, and let F ∶Set → C be the functor mapping objects
X in Set to corresponding free objects F [x] in C . Prove that if X ≅X ′Ô⇒ F [X] ≅ F [X ′].

Solution 1.10. Given a category C , and objects A and B in ob (C ), the objects A and B are said to be
isomorphic if there exist morphisms φ and ψ such that the diagram illustrated below commutes. This
is denoted by: A ≅ B.
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So, suppose that X ≅ X ′ in the category Set. By the category-theoretic definition of an isomorphism,
we have that there exist morphisms b and a such that the following diagram commutes.

By definition of the free object F [X], we have that: for each object G in C , and each morphism
f ∶X → U[G], there exists a unique morphism φ∶F [X] ⇢ G such that the following diagram commutes.

U[F [X]] U[G]

X

U[φ]

iX
f

(1.1)

With respect to the commutative diagram given in (1.1), let G = F [X ′], and let f = iX′ ○ b, letting
iX′ ∶X ′ ↪ U[F [X ′]]. Since the morphisms a and b essentially “cancel” with each other, we obtain a
diagram of the following form.

By essentially repeating the above argument, we obtain a commutative diagram of the following form.

From the above diagram together with (1.1), it is clear that ψ○φ must be equal to the identity morphism
on F [X], by unicity of the “upper” morphism illustrated in (1.1). A symmetric argument shows that
the reverse composition also must be an identity morphism.

6



Exercise 1.11. Letting R be a unital ring, and letting X be a set, show that the underlying operations
on the free R-module generated by X are well-defined in the sense that the expressions resulting from
applying these operations are in ⊕x∈X R.

Solution 1.12. Recall that we defined the functor F ∶Set → R-Mod so that an object X in Set is
mapped to

⊕
x∈X

R = {f ∶X → R ∣ f has finite support},

where the support of a function f ∶X → R is precisely {x ∈X ∣ f(x) ≠ 0}.

We thus endow ⊕x∈X R with an additive operation given by componentwise addition, so that

(f + g)(x) ∶= f(x) +R g(x)

for f and g in ⊕x∈X R, letting x be an element in X. Similarly, we define the operation ⋅ so that
(r ⋅ f)(x) ∶= r(f(x)) for r ∈ R.

Since the set of elements x ∈ X such that f(x) is nonzero is finite, and since the set of elements y ∈ X
such that g(y) is nonzero is also finite, it is clear that the set of elements z ∈X such that f(x) +R g(x)
is nonzero must be finite. In particular, if f(x) +R g(x) is nonzero, then it is obvious that either f(x)
or g(x) must be nonzero, thus proving the inclusion whereby:

Supp(f + g) ⊆ Supp(f) ∪ Supp(g).

This shows that the additive operation on⊕x∈X R given by componentwise addition is a binary operation
on ⊕x∈X R.

Now consider the expression r ⋅ f . Since there are only finitely many elements x ∈ X such that f(x) is
nonzero, it is obvious that there are only finitely many elements y ∈ X such that r ⋅ f(y) is nonzero. If
r = 0, then it is obvious that

Supp(rf) ⊆ Supp(f).
Now suppose that r ≠ 0. Then if r ⋅ f(y) is nonzero, then it cannot be the case that f(y) is nonzero,
thus proving the desired inclusion whereby

Supp(rf) ⊆ Supp(f)

for r ≠ 0. This shows that the operation ⋅ is such that r ⋅ f ∈ ⊕x∈X R.

Exercise 1.13. Letting X be a set, prove that F [X] is free in R-Mod.

Solution 1.14. Let N be an arbitrary object inR-Mod, and let f ∶X → U[N] be an arbitrary morphism
in Set. Writing ⊕x∈X R in place of F [X] as above, let X be written as a family, writing X = {xi}i∈I
and f(xi) = ni ∈ U[N] for each index i in I.

We may let the injective morphism
iX ∶X → U[X]

be such that for i ∈ I, with xi ∈X as an arbitrary element in X, iX(xi) is equal to the function gi∶X → R
which maps xi to 1 and which maps xj to 0 for j ∈ I ∖ {i}.

Given an arbitrary element g∶X → R in F [X] = ⊕x∈X R, we have that g has finite support. First
suppose that the support of g is not equal to ∅. Letting {xi1 , xi2 , . . . , xim} ⊆ X denote the support of
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g ∈ ⊕x∈X R for some m ∈ N, write g(xj) = rj ∈ R, for all indices j. Now, observe that the mapping g may
be rewritten so that:

g = ri1iX(xi1) + ri2iX(xi2) +⋯ + rimiX(xim).
Now, suppose that φ is a morphism such that the following diagram commutes:

U[F [X]] U[N]

X

U[φ]

iX
f

Since φ is a morphism, and since U is a functor, we have that the following holds, writing φ in place of
U[φ] for the sake of clarity, and similarly for objects such as g ∈ F [X]:

φ(g) = φ(ri1iX(xi1) + ri2iX(xi2) +⋯ + rimiX(xim))
= φ(ri1iX(xi1)) + φ(ri2iX(xi2)) +⋯ + φ(rimiX(xim))
= ri1φ(iX(xi1)) + ri2φ(iX(xi2)) +⋯ + rimφ(iX(xim))
= ri1f(xi1) + ri2f(xi2) +⋯ + f(xim)
= ri1ni1 + ri2ni2 +⋯ + nim .

So, we have shown that if φ is a morphism such that the above diagram commutes, φ must be uniquely
defined on non-identity elements in the domain of φ, as above. Given that φ is a morphism, it must map
the additive identity element in the domain of φ to the additive identity element in N , thus proving the
unicity of φ.

Exercise 1.15. Assume R is a commutative ring with 1. For an ideal I ⊆ R, show: Rn/IRn ≅ (R/I)n.

Solution 1.16. Let n ∈ N, and let r1, r2, . . . , rn ∈ R, so that the ordered n-tuple (r1, r2, . . . , rn) is an
arbitrary element in Rn. So, the expression

(r1, r2, . . . , rn) + IRn

is an arbitrary element in Rn/IRn. Define the mapping

φ∶Rn/IRn → (R/I)n

so that
φ((r1, r2, . . . , rn) + IRn) = (r1 + I, r2 + I, . . . , rn + I) ∈ (R/I)n.

Letting q1, q2, . . . , qn ∈ R, suppose that:

(r1, r2, . . . , rn) + IRn = (q1, q2, . . . , qn) + IRn.

Equivalently,
(r1 − q1, r2 − q2, . . . , rn − qn) ∈ IRn.

So, each expression of the form ri − qi is in the ideal I, for each index i. We thus have that

(r1 − q1 + I, r2 − q2 + I, . . . , rn − qn + I) = (0 + I,0 + I, . . . ,0 + I),

so that
(r1 + I, r2 + I, . . . , rn + I) = (q1 + I, q2 + I, . . . , qn + I),
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thus proving that the mapping φ is well-defined. It is clear that φ preserves addition, as indicated below.

φ((r1, r2, . . . , rn) + IRn) + φ((q1, q2, . . . , qn) + IRn)
= (r1 + I, r2 + I, . . . , rn + I) + (q1 + I, q2 + I, . . . , qn + I)
= (r1 + q1 + I, r2 + q2 + I, . . . , rn + qn + I)
= φ((r1 + q1, r2 + q2, . . . , rn + qn) + IRn)
= φ((r1, r2, . . . , rn) + IRn + (q1, q2, . . . , qn) + IRn).

Similarly, we have that φ preserves multiplication, as shown below.

φ((r1, r2, . . . , rn) + IRn) ⋅ φ((q1, q2, . . . , qn) + IRn)
= (r1 + I, r2 + I, . . . , rn + I) ⋅ (q1 + I, q2 + I, . . . , qn + I)
= (r1 ⋅ q1 + I, r2 ⋅ q2 + I, . . . , rn ⋅ qn + I)
= φ((r1 ⋅ q1, r2 ⋅ q2, . . . , rn ⋅ qn) + IRn)
= φ(((r1, r2, . . . , rn) + IRn) ⋅ ((q1, q2, . . . , qn) + IRn)).

Since the unity element in the domain of φ is

(1,1, . . . ,1) + IRn ∈ Rn/IRn,

and since
φ((1,1, . . . ,1) + IRn) = (1 + I,1 + I, . . . ,1 + I) ∈ (R/I)n,

we have that φ is a ring homomorphism. Given an element

(r1 + I, r2 + I, . . . , rn + I) ∈ (R/I)n

we have that
φ((r1, r2, . . . , rn) + IRn) = (r1 + I, r2 + I, . . . , rn + I) ∈ (R/I)n,

thus establishing the surjectivity of φ. Now, suppose that:

φ((r1, r2, . . . , rn) + IRn) = φ((q1, q2, . . . , qn) + IRn).

Equivalently,
(r1 + I, r2 + I, . . . , rn + I) = (q1 + I, q2 + I, . . . , qn + I).

Since
(r1 − q1 + I, r2 − q2 + I, . . . , rn − qn + I) = (0 + I,0 + I, . . . ,0 + I),

writing
(r1 − q1, r2 − q2, . . . , rn − qn) = (i1, i2, . . . , in) ∈ In

where i1, i2, . . . , in ∈ I, we have that the following equality holds.

(r1 − q1, r2 − q2, . . . , rn − qn)
= i1(1,0,0, . . . ,0) + i2(0,1,0,0, . . . ,0) +⋯ + in(0,0, . . . ,1) ∈ IRn.

Since
(r1 − q1, r2 − q2, . . . , rn − qn) ∈ IRn
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we have that
(r1 − q1, r2 − q2, . . . , rn − qn) + IRn = 0 + IRn.

Therefore,
(r1, r2, . . . , rn) + IRn = (q1, q2, . . . , qn) + IRn,

thus proving the injectivity of φ. So, we have shown that φ is a bijective ring homomorphism, thus
proving the desired equivalence whereby Rn/IRn ≅ (R/I)n.

Exercise 1.17. Recall that we can find maximal ideals in a commutative ring R with 1. Conclude that
for any finite sets A and B,

F [A] ≅ F [B] ⇐⇒ ∣A∣ = ∣B∣,
letting F [X] denote the free R-module generated by a given set X.

Solution 1.18. Let m ∈ N0 and n ∈ N0 respectively denote the cardinalities of A and B. Let I denote
a fixed maximal ideal in R. First suppose that F [A] ≅ F [B]. We thus have that Rm ≅ Rn, since
F [A] ≅ Rm, and similarly for F [B]. From our results given in the previous solution, we have that:

Rm/IRm ≅ (R/I)m

and that
Rn/IRn ≅ (R/I)n.

But since Rm ≅ Rn, we have that:
Rm/IRm ≅ Rn/IRn.

Therefore,
(R/I)m ≅ (R/I)n.

Since I is a maximal ideal within R, we have that R/I is a field. So, since (R/I)m and (R/I)n are
isomorphic as vector spaces, we have that m = n as desired, thus proving that A and B are bijectively
equivalent. Conversely, suppose that m = n. In this case, since F [A] ≅ Rm and F [B] ≅ Rn, we have
that F [A] and F [B] must be isomorphic, since Rm ≅ Rn are isomorphic, since m = n.

Exercise 1.19. Find a ring R and an R-module M with bases of cardinality 1 and 2.

Solution 1.20. The following discussion is based upon the linked Wikipedia article on invariant basis
numbers1. A ring R has invariant basis number (IBN) if for all natural numbers m and n, if Rm and
Rn are isomorphic as left R-modules, then m = n.

Let CFMN(R) denote the ring of column finite matrices, i.e., the matrices over R with entries indexed
by N ×N with each column having only finitely many non-zero entries. We claim that: CFMN(R) and
CFMN(R) ×CFMN(R) are isomorphic as left modules. This is easily seen using the mapping

ψ∶CFMN(R) → CFMN(R)2

mapping a given matrix M in the above domain to the matrix obtained by listing the odd columns of
M , and then listing the even columns of M .

Exercise 1.21. Assume R is a commutative ring with 1. We say that an R-module M is irreducible if
there are no non-trivial proper R-submodules. Show that the following are equivalent.

1See https://en.wikipedia.org/wiki/Invariant_basis_number.
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(a) M is irreducible;

(b) M ≅ R/I for some maximal ideal I ⊆ R;

(c) M = Ra for all 0 ≠ a ∈M .

Solution 1.22. Let (a), (b), and (c) respectively denote the first, second, and third statements given
in the above list.

(a) Ô⇒ (b) Suppose that M is irreducible. So, given an arbitrary nonzero element m ≠ 0 such that
m ∈M , we find that the R-submodule generated by m ∈M must be equal to M . Therefore, M = Rm.
Now, let m ≠ 0 be a fixed nonzero element in M . Now, consider the set

I = {r ∈ R ∣ rm = 0} ⊆ R.

Given two elements r1 and r2 in this set, we have that r1m = 0 and r2m = 0, so that r1m + r2m =
(r1 + r2)m = 0, thus proving that I is closed with respect to the underlying additive binary operation on
R, letting r1 and r2 be arbitrary elements in R. Now, given an element r ∈ I, with rm = 0, and given
an element s ∈ R, we have that s(rm) = 0, so that (sr)m = 0, thus proving that I is an ideal of R.
Now consider the quotient ring R/I. Let the expression R/I denote the R-module whereby addition is
as given in the quotient ring R/I, and such that multiplication is defined in the following way. Letting
s ∈ R, let multiplication by an element r ∈ R in this R-module be such that r(s+ I) = rs+ I ∈ R/I. Now,
define

φ∶M = Rm→ R/I
so that given an element r ∈ R, so that rm is an arbitrary element in M = Rm, we have that

φ(rm) = r + I ∈ R/I.

It is clear that φ preserves addition:

φ(r1m) + φ(r2m) = (r1 + I) + (r2 + I) = r1 + r2 + I = φ((r1 + r2)m)

letting r1, r2 ∈ R. Similarly, φ preserves multiplication by elements in R: sφ(rm) = s(r + I) = sr + I =
φ(s(rm)). Given an element r ∈ R, so that r + I is an arbitrary element in the codomain of φ, we have
that

φ(rm) = r + I,
which shows that φ is surjective. Now, suppose that

φ(r1m) = φ(r2m),

letting r1 and r2 be elements in R. We thus have that:

r1 + I = r2 + I,

so that
r1 − r2 ∈ I,

thus proving that
(r1 − r2)m = 0,
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which shows that
r1m = r2m,

thus proving that φ is an R-module isomorphism. Now, we must prove that I is a maximal ideal of R.
By way of contradiction, suppose that there exists an ideal J ⊊ R such that:

{r ∈ R ∣ rm = 0} ⊊ J ⊊ R.

So, let s be an element in J so that sm ≠ 0. Write sm = n ∈M , with n ≠ 0. Now let t be another element
such that tm ≠ 0. Since Rn = Rm, we have that t′n = tm for some t′ ∈ R. So t′sm = tm. That is, t′s = t.
But then t has to be in the ideal J , which shows that J must be equal to R, contradicting that J ⊊ R.

(b) Ô⇒ (c) Suppose that M ≅ R/I for some maximal ideal I ⊊ R, letting the R-module structure
on R/I be as given above. Since I ⊊ R is a maximal ideal, we have that there must be some element
r ∈ R such that r /∈ I. But then the ideal generated by the union of the singleton set {r} ⊆ R and I
must strictly contain I, and must be contained in R. By maximality of I, we thus have that the ideal
generated by {r} ∪ I is R. That is, each element in R may be written in the form sr + i for some s ∈ R
and some i ∈ I. Now consider the expression r + I ∈ R/I. Since each element in R may be written in the
form sr + i as above, we have that R/I, as an R-module, consists precisely of expressions of the form
sr + i + I for s ∈ R. That is, as an R-module, R/I consists precisely of expressions of the form sr + I for
s ∈ R. That is,

R/I = R(r + I),
thus proving that M = Ra for some a ∈M .

(c)Ô⇒ (a) Finally, suppose thatM = Ra for each nonzero element a inM . Given a nontrivial submodule
N of M , and given a nonzero element n ≠ 0 in N , we have that the submodule generated by n is equal
to M , thus proving that N =M .

2 Problems from former exams

Exercise 2.1. Let G be a finite group, and let Z(G) be the center of G. Show that the order of G/Z(G)
is not a prime.

Solution 2.2. Letting G be a finite group, we have that the center Z(G) of G is equal to {z ∈ G ∶ ∀g ∈
G gz = zg}. The center of Z(G) is a normal subgroup of G, so G/Z(G) has the structure of a quotient
group. By way of contradiction, assume that the order of G/Z(G) is equal to a prime number p ∈ N. We
thus have that the order of G/Z(G) must be nontrivial. By Lagrange’s theorem, we have that the order
of each non-identity element in G/Z(G) must be equal to ∣G/Z(G)∣. This shows that G/Z(G) must be
a cyclic group. So, there exists an element g in G such that the coset gZ(G) generates the cyclic group
G/Z(G). So, given elements a and b in G, we have that the coset aZ(G) is equal to gnZ(G) for some
integer n, and we have that bZ(G) is equal to gmZ(G) for some integer m. We thus have that a = gnz1
and b = gmz2 for some element z1 in the center of G and some element z2 ∈ Z(G). So, we have that the
composition ab may be written as

ab = gnz1gmz2,
and since z1 and z2 are in the center of G, we have that the expression gnz1gmz2 may be rewritten in
the following manner:

ab = gnz1gmz2
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= gngmz1z2
= gn+mz1z2
= gm+nz1z2
= gmgnz1z2
= gmgnz2z1
= gmz2gnz1
= ba.

So, we have shown that ab = ba for elements a and b in G. Therefore, G is abelian. Therefore, the center
of G is equal to G. Therefore, the cardinality of the quotient G/Z(G) is equal to 1, thus contradicting
that the cardinality of G/Z(G) is equal to a prime number.

Exercise 2.3. Given an example where the order of G/C is 4, where G denotes a group and C denotes
the center of G.

Solution 2.4. Let G denote the dihedral group of order 8. Let the elements in the underlying set of this
dihedral group be denoted as planar isometries. Then the center of G consists of the identity isometry,
together with an isometry given by a half-turn rotation, so that the center of G is isomorphic to Z/2Z.
Letting C denote the center of G, since G is of order 8 and since C is of order 2, we have that G/C is
of order 4.

Exercise 2.5. Let A be the abelian group generated by {x, y, z} subject to the relations 2x+2y+2z = 0,
2x + 2y = 0 and 2x + 2z = 0. Describe A as the direct sum of cyclic groups.

Solution 2.6. Let B denote the free abelian group generated by {x, y, z}, so that B ≅ Z⊕Z⊕Z. Now,
let

C = ⟨2x + 2y + 2z,2x + 2y,2x + 2z⟩
denote the abelian group generated by the set {2x + 2y + 2z,2x + 2y,2x + 2z}. Since B is abelian, we
have that C is a normal subgroup B, and we find that the quotient B/C is isomorphic to A. So, our
strategy is to find an ordered basis

{b1, b2, b3} ⊆ B
of B and a basis

{c1, c2, c3} ⊆ C
of C such that ci = sibi for all indicates i, and such that s1∣s2∣s3. Consider the following matrix product:

⎡⎢⎢⎢⎢⎢⎣

2 2 2
2 2 0
2 0 2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2x + 2y + 2z
2x + 2y
2x + 2z

⎤⎥⎥⎥⎥⎥⎦
.

Let M denote te above 3 × 3 matrix. Basically, it remains to determine the Smith Normal Form of M .
We can apply row and column operations to find the Smith Normal Form of this matrix, as indicated
below.

⎡⎢⎢⎢⎢⎢⎣

2 2 2
2 2 0
2 0 2

⎤⎥⎥⎥⎥⎥⎦

R2Ð→R2−R1ÐÐÐÐÐÐ→
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⎡⎢⎢⎢⎢⎢⎣

2 2 2
0 0 −2
2 0 2

⎤⎥⎥⎥⎥⎥⎦

R3Ð→R3−R1ÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

2 2 2
0 0 −2
0 −2 0

⎤⎥⎥⎥⎥⎥⎦

R1Ð→R1+R2ÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

2 2 0
0 0 −2
0 −2 0

⎤⎥⎥⎥⎥⎥⎦

R1Ð→R1+R3ÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

2 0 0
0 0 −2
0 −2 0

⎤⎥⎥⎥⎥⎥⎦

R2Ð→−R2ÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

2 0 0
0 0 2
0 −2 0

⎤⎥⎥⎥⎥⎥⎦

R3Ð→−R3ÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

2 0 0
0 0 2
0 2 0

⎤⎥⎥⎥⎥⎥⎦

R2←→R3ÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

2 0 0
0 2 0
0 0 2

⎤⎥⎥⎥⎥⎥⎦
.

So, since B ≅ Z⊕Z⊕Z, and since C ≅ (2Z) ⊕ (2Z) ⊕ (2Z), we may deduce that

A ≅ B/C ≅ (Z/2Z) ⊕ (Z/2Z) ⊕ (Z/2Z) .

Exercise 2.7. Let K/Q be the splitting field of (x2 − 2)(x2 − 3)(x2 − 5). How many distinct Galois
extensions F /Q with F ⊆K can you find?

Solution 2.8. Since the polynomial (x2 − 2)(x2 − 3)(x2 − 5) has no repeated roots, we have that this
polynomial is separable as an element in Q[x]. We thus have thatK/Q is the splitting field of a separable
polynomial over Q. So, we have that K/Q is a Galois extension. Exercise 3.166, which is given below,
requires the evaluation of the Galois group of (x2 − 2)(x2 − 3)(x2 − 5), and the determination of all of
the subfields of the splitting field of this polynomial. In our solution to Exercise 3.166, we showed that
Aut(Q(

√
2,

√
3,

√
5)/Q) is an abelian group of order 8 such that σ2 is the identity automorphism on

Aut(Q(
√

2,
√

3,
√

5)/Q) for each element σ in Aut(Q(
√

2,
√

3,
√

5)/Q), so that

Gal(Q(
√

2,
√

3,
√

5)/Q) ≅ (Z/2Z) × (Z/2Z) × (Z/2Z) .

Now, by the Fundamental Theorem of Galois theory, we know that an intermediate field F /Q such that
Q ⊆ F ⊆K is Galois over Q if and only if subgroup corresponding to F is normal in Gal(K/Q). But since
Aut(Q(

√
2,

√
3,

√
5)/Q) is an abelian group, every subgroup of this group is a normal subgroup, which

shows that every corresponding subfield is Galois. In our solution for Exercise 3.166, we determined all
of the intermediate fields between Q and K, which are also listed below. All of these fields are Galois,
as indicated above.
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Galois subfields
Q(

√
2,

√
3,

√
5)

Q(
√

2,
√

3)
Q(

√
2,

√
5)

Q(
√

2,
√

15)
Q(

√
3,

√
5)

Q(
√

3,
√

10)
Q(

√
5,

√
6)

Q(
√

6,
√

10,
√

15)
Q(

√
2)

Q(
√

3)
Q(

√
6)

Q(
√

5)
Q(

√
10)

Q(
√

15)
Q(

√
30)

Q

Exercise 2.9. Let R be a commutative ring with identity. Prove that (x) is a prime ideal in R[x] if
and only if R is an integral domain.

Solution 2.10. In general, given a commutative unital ring S and an ideal I of S, we have that the
quotient ring S/I is an integral domain if and only if I is a prime ideal in S, as we later prove. So,
we have that (x) is a prime ideal in R[x] if and only if R[x]/(x) is an interal domain. We have that
the ideal (x) consists precisely of elements in R[x] with a constant term equal to 0. So, we have that
R[x]/(x) ≅ R. So, since (x) is a prime ideal in R[x] if and only if R[x]/(x) is an interal domain, and
since R[x]/(x) ≅ R, we have that (x) is a prime ideal in R[x] if and only if R is an interal domain.

Recall that given a commutative ring S, and given an ideal I of this ring S, the ideal I is said to be
a prime ideal2 if S ≠ I, and for a, b ∈ S, if ab ∈ I then a ∈ I or b ∈ I, by direct analogy with Euclid’s
lemma. Also recall that an integral domain is a commutative ring with unity and no zero divisors. Using
these definitions, we proceed to prove that: given a commutative unital ring S and an ideal I of S, the
quotient ring S/I is an integral domain if and only if I is a prime ideal in S.

(Ô⇒) Assume that the quotient ring S/I is an integral domain. So we have that S ≠ I. By definition of
an integral domain, we have that there are no zero divisors in S/I. So, given arbitrary elements a and
b in S, we have that the cosets a + I ∈ S/I and b + I ∈ S/I are such that: if the product

(a + I) (b + I)

is equal to the additive identity element in S/I, then either a + I = 0 + I or b + I = 0 + I. That is,

(a + I) (b + I) = 0 + I Ô⇒ (a + I = 0 + I) ∨ (b + I = 0 + I).

Equivalently,
ab + I = 0 + I Ô⇒ (a + I = 0 + I) ∨ (b + I = 0 + I).

2See https://en.wikipedia.org/wiki/Prime_ideal.
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Equivalently,
ab ∈ I Ô⇒ (a ∈ I) ∨ (b ∈ I),

which shows that I must be prime.

(⇐Ô) Conversely, assume that the ideal I is prime. So, by definition of a prime ideal, we have that
S ≠ I, and we have that: for all a, b ∈ S, if ab ∈ I, then either a or b is in I. Also, recall that we let
the ring S be commutative and unital. Now, consider the quotient ring S/I. Since S is commutative
and unital, we have that S/I is commutative and unital. So, to prove that S/I is an integral domain,
it remains to prove that S/I has no zero divisors. By way of contradiction, suppose that a and b are
elements in S such that:

(i) a + I ≠ 0 + I;

(ii) b + I ≠ 0 + I; and

(iii) ab + I = 0 + I.

Equivalently,

(i) a /∈ I;

(ii) b /∈ I; and

(iii) ab ∈ I.

But this contradicts that the ideal I is a prime ideal.

Exercise 2.11. Let R be a commutative ring with identity. Prove that (x) is a maximal ideal in R[x]
if and only if R is a field.

Solution 2.12. In general, letting S denote a commutative unital ring, and letting I denote an ideal
contained in S, we have that I is a maximal ideal with respect to S if and only if the quotient ring S/I
is a field. We later prove this general result. Now, letting R be as given above, consider the principal
ideal (x) generated by x in the polynomial ring R[x], and observe that the ideal (x) consists precisely
of polynomials in R[x] with a constant term equal to 0. So, we find that the quotient ring R[x]/(x) is
isomorphic to the ring R consisting of constant polynomials in R[x]. So, we have that (x) is a maximal
ideal in R[x] if and only if R[x]/(x) is a field, so that (x) is a maximal ideal in R[x] if and only if R is
a field, since R ≅ R[x]/(x). We proceed to prove the following more general result, letting S and I be
as given above: I is a maximal ideal with respect to S if and only if the quotient ring S/I is a field.

(Ô⇒) Assume that I is a maximal ideal with respect to S. So, we have that given an arbitrary ideal J
of S satisfying

I ⊆ J ⊆ S,
it follows that either I = J or J = S. That is, there does not exist any ideal K of S such that

I ⊊K ⊊ S.

Now, consider the quotient ring S/I. Let s be an element in S, so that s + I is a coset in S/I. Now,
suppose that s /∈ I, so that

s + I ≠ 0 + I,
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i.e., s + I is not equal to the additive identity element in S/I. Now, consider the ideal J of S generated
by I ∪ {s}. Now, since s is not in I, we have that the ideal J generated by I ∪ {s} must strictly contain
I. So, by maximality of I, we may deduce that J = S. That is, the ideal generated by I ∪ {s} is equal
to S. In particular, since 1 ∈ S, and since 1 /∈ I we have that

i1t1 + i2t2 +⋯ + intn + s ⋅ tn+1 = 1,

for some elements i1, i2, . . . , in ∈ I, with t1, t2, . . . , tn+1 ∈ S. Accordingly, we have that

(i1t1 + i2t2 +⋯ + intn + s ⋅ tn+1) + I = 1 + I,

so that
s ⋅ tn+1 + I = 1 + I,

which shows that each element in S/I which is not equal to the additive identity element in S/I must
be a unit in S/I. We thus have that S/I is a field, as desired.

(⇐Ô) Conversely, assume that the quotient ring S/I is a field. Now, suppose that J is an ideal of I
which strictly contains I. So, there exists at least one element s in J which is not in I. Since s is not
in I, we have that

s + I ≠ 0 + I,
i.e., s + I is not equal to the additive identity element in the quotient ring S/I. Now, from our initial
assumtion that the quotient ring S/I is a field, we have that there must be an element t in S such that:

st + I = 1 + I.

So, there must be an element i in the ideal I such that

i + st = 1.

Not, let r be an arbitrary element in S. From the equality

i + st = 1.

we have that
ir + rst = r.

But since J contains I, with i ∈ J , and since s ∈ J , we have that

ir + rst = r ∈ J,

which shows that J must be equal to S, which shows that the ideal I must be maximal.

Exercise 2.13. Give an example of a commutative ring R which has a non-zero prime ideal that is not
a maximal ideal.

Solution 2.14. If R is a commutative ring and if I is a non-zero prime ideal of R that is not a maximal
ideal, then we have that R/I is an integral domain which is not a field. Now, consider the ring Z[x]
consisting of polynomials with integer coefficients. Now, consider the principal ideal (x) generated by
the polynomial x consisting of polynomials in Z[x] with constant term equal to 0. Since Z[x]/(x) ≅ Z,
we have that the quotient ring Z[x]/(x) is an integral domain, but not a field. This shows that the
principal ideal (x) is a prime ideal in Z[x], but not a maximal ideal. So, we have that Z[x] is a
commutative ring which has a non-zero prime ideal that is not a maximal ideal.
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3 Textbook exercises

The solutions given in this section are for assigned exercises given in the class textbook by Dummit and
Foote.

3.1 Exercises from Appendix II

Exercise 3.1. Let N be a group and let Nor–N be the collection of all groups that contain N as a
normal subgroup. A morphism between objects A and B is any group homomorphism that maps N
into N . Prove that Nor–N is a category.

Solution 3.2. We begin by briefly reviewing the definition of a category given in the aforementioned
class textbook:

Definition: (p.911-912) A category C consists of a class of objects and sets of morphisms between those
objects. For every ordered pair (A,B) consisting of objects, there exists a set HomC(A,B) of morphisms
from A to B, and for every triple A, B, C of objects there is a law of composition of morphisms, i.e., a
map

HomC(A,B) ×HomC(B,C) Ð→ HomC(A,C)
where (f, g) ↦ gf , and gf is called the composition of g with f . The objects and morphisms satisfy the
following axioms: for objects A, B, C, and D:

(i) if A ≠ C or B ≠D, then HomC(A,B) and HomC(C,D) are disjoint sets;

(ii) composition of morphisms is associative; and

(iii) each object has an identity morphism.

Now, let N and Nor–N be as given above. So, we have that Nor–N consists of a class of objects and
sets of morphisms between those objects, whereby morphisms between objects A and B are precisely
group homomorphisms mapping N into N . In particular, we let HomNor–N(A,B) denote the set of
morphisms from A to B. Now, let A, B, and C be objects in Nor–N . Let f be in HomC(A,B), and
let g be in HomC(B,C). So, f ∶A→ B is a group homomorphism that maps N into N , and g∶B → C is
a group morphism that maps N into N . Since f and g are both group homomorphisms, we have that

gf(a1 ● a2) = g(f(a1 ● a2)) = g(f(a1) ●′ f(a2)) = g(f(a1)) ●′′ g(f(a2)),

given elements a1 and a2 in A, and given appropriately-defined binary operations ●, ●′, and ●′′. This
shows that gf is also a group morphism. Since f(N) ⊆ N and g(N) ⊆ N , we have that gf(N) ⊆ g(N) ⊆
N , thus proving that gf(N) ⊆ N .

Now, let A, B, C, andD be objects inNor–N . If A ≠ C, then the domain of each element in HomC(A,B)
is not equal to the domain of each element HomC(C,D). Similarly, if B is not equal to D, then the
codomain of each element in HomC(A,B) is not equal to the codomain of each element in HomC(C,D).
This shows that HomC(A,B) and HomC(C,D) are disjoint in the case whereby A ≠ C or B ≠ D. So,
the above axiom listed enumerated as (i) holds. In general, the composition of functions is associative,
so axiom (ii) as above holds. Finally, it is clear that each object A has an identity morphism, since the
identity morphism on A maps N to N .
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Exercise 3.3. Show how the projection homomorphism G↦ G/N may be used to define a functor from
Nor–N to Grp.

Solution 3.4. We begin by reviewing the definition of a functor from the class textbook. Letting C
and D be categories, we have that F is a coinvariant functor from C to D if: for every object A in C,
FA is an object in D, and for every element f in HomC(A,B) we have F(f) ∈ HomD(FA,FB) such
that the following axioms hold:

(i) if gf is a composition of morphisms in C, then F(gf) = F(g)F(f) in D; and

(ii) F(1A) = 1FA.

Now, define F in the following manner. For an object G in Nor–N , with N as a normal subgroup of
G by definition of Nor–N , let FG be equal to G/N . Since N ⊴ G, we have that G/N is an object in
Grp. Now, let f ∶G1 → G2 be a homomorphism that maps N into N , letting G1 and G2 be objects in
Nor–N . Define

F(f)∶G1/N → G2/N
so that

F(f)(gN) = f(g)N,
letting g be an arbitrary element in G1, so that the coset gN is an arbitrary element in the quotient
group G1/N . We need to show that

F(f)∶G1/N → G2/N
is well-defined in the sense that an expression of the form

F(f)(gN)

does not depend on any particular choice of a coset representative for the input coset gN . So, suppose
that gN = g′N . Equivalently, (g′)−1gN = N . But recall that f ∶G1 → G2 is a homomorphism that maps N
into N . We thus have that f((g′)−1gN) ⊆ N . Since f is a homomorphism, we have that f(g)N ⊆ f(g′)N .
Again since gN = g′N , we have that g−1g′N = N . So, f(g−1g′)N ⊆ N , with f(g′)N ⊆ f(g)N , thus proving
that F(f) is well-defined.

We claim that F(f) is a group homomorphism. To show this, we begin by letting g and h be ele-
ments in G1. We have that F(f)(gNhN) = F(f)(ghN) = f(gh)N = f(g)f(h)N = f(g)Nf(h)N =
F(f)(gN)F(f)(hN). This proves that that F(f) ∈ HomGrp(F(G1),F(G2)). Now suppose that gf is
a composition of morphisms f and g in Nor–N . Let f ∶G1 → G2, and let g∶G2 → G3, with

gf ∶G1 → G3.

So, we have that
F(gf)∶G1/N → G3/N

is such that
F(gf)(xN) = gf(x)N = g(f(x))N

for x ∈ G1. Similarly, we have that

F(g)F(f)(xN) = F(g)f(x)N = g(f(x))N.

19



Letting 1A∶A→ A denote the identity morphism for an object A in Nor–N , we have that

F(1A)∶A/N → A/N

is such that
F(1A)(aN) = 1A(a)N = aN,

as desired.

Exercise 3.5. Let H be a group. Defione a map H× from Grp to itself on objects and morphisms as
follows:

H×∶G→H ×G,
and if φ∶G1 → G2 then H× (φ)∶H ×G1 →H ×G2 by (h, g) ↦ (h,φ(g)). Prove that H× is a functor.

Solution 3.6. Given an input group G in Grp, we have that H ×G is in Grp, which shows that H×
is from Grp to itself, as indicated above. If φ∶G1 → G2, then

H × (φ)∶H ×G1 →H ×G2

is given by the mapping
(h, g) ↦ (h,φ(g)),

with
(h1, φ(g1))(h2, φ(g2)) = (h1h2, φ(g1)φ(g2)) = (h1h2, φ(g1g2)),

so that
H × (h1, g1)H × (h2, g2) = H × (h1h2, g1g2).

Now suppose that gf is a composition of morphisms in Grp. Let f ∶G1 → G2 and let g∶G2 → G3, with
G1, G2, and G3 as objects in Grp. We have that

H × (gf)∶H ×G1 →H ×G3

with
H × (gf)(x, y) = (x, g(f(y))).

Similarly,
H × (f)∶H ×G1 →H ×G2

maps (x, y) to (x, f(y)), and
H × (g)∶H ×G2 →H ×G3

maps (x, f(y)) to (x, g(f(y))). Also, H × (1A) maps (x, y) to (x,1A(y)) = (x, y). We thus have that
the functor axioms holds.

Exercise 3.7. Show that the map Ring to Grp by mapping a ring to its group of units (i.e., R ↦ R×)
defines a functor. Show by explicit examples that this functor is neither faithful nor full.

Solution 3.8. Since the set of all units of a given ring R forms a group with respect to the underlying
multiplicative binary operation on R, we have that the mapping F indicated in the above exercise is
a rule of assignment from Ring to Grp. That is, for every object R in Ring, we have that FR is
an object in Grp. Now, given an arbitrary ring homomorphism f in HomRing(A,B), we have that f
preserves the multiplicative operations of A and B, with f(a1a2) = f(a1)f(a2) for elements a1 and a2
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in A. So, for f in HomRing(A,B), let Ff denote the mapping from A× to B× such that Ff(a) = f(a)
for each element a in A×. Now, we must show that this mapping is well-defined in the sense that Ff(a)
is actually an element in the given codomain B×, given an input unit a ∈ A×. Since a is a unit, we have
that there exists an element a′ ∈ A such that

a ⋅ a′ = a′ ⋅ a = 1.

By definition of a unit, we have that a′ must also be a unit, with a′ ∈ A×. Since f is a morphism, from
the equalities

f(a ⋅ a′) = f(a′ ⋅ a) = f(1),
we obtain the equalities whereby

f(a) ⋅ f(a′) = f(a′) ⋅ f(a) = 1,

thus showing that Ff(a) is a unit, as desired.

Since f ∈ HomRing(A,B) preserves multiplication, we have that

Ff = HomGrp(FA,FB) = HomGrp(A×,B×),

as desired. Now, suppose that gf is a composition of morphisms in Ring, letting f ∶A→ B and g∶B → C.
We thus have that F(gf) maps each element a in A× to gf(a) ∈ C×. Also, F(g)F(f)(a) is equal to to
F(g)f(a), which, in turn, is also equal to gf(a) ∈ C×, which shows that the initial functor axiom holds.

Now, consider the identity morphism 1A on an object A in Ring. By definition of F , we have that
F(1A) maps each element a in A× to 1A(a) = a ∈ A×. That is, F(1A) = 1A× , which shows that the latter
functor axiom holds.

As stated in the class textbook, a functor G from C to D is called faithful, respectively full, if for
every pair of objects A and B in C the map G∶Hom(A,B) → Hom(GA,GB) is injective, or surjective
respectively.

Let
f ∶ (Z/2Z) × (Z/2Z) → (Z/2Z) × (Z/2Z)

denote the identity mapping on the ring (Z/2Z) × (Z/2Z). Let

g∶ (Z/2Z) × (Z/2Z) → (Z/2Z) × (Z/2Z)

denote the mapping whereby g(a, b) = (b, a) for elements a and b in Z/2Z. It is clear that g is a ring
homomorphism, since g(a1, b1) + g(a2, b2) = (b1, a1) + (b2, a2) = (b1 + b2, a1 + a2) = g(a1 + a2, b1 + b2) =
g((a1, b1) + (a2, b2)) and since g(a1, b1) ⋅ g(a2, b2) = (b1, a1) ⋅ (b2, a2) = (b1 ⋅ b2, a1 ⋅ a2) = g(a1 ⋅ a2, b1 ⋅ b2) =
g((a1, b1) ⋅ (a2, b2)) and since (1,1) ↦ (1,1) under g. Since there is only one unit in Z/2Z, we have
that Ff and Fg are both the identity morphisms on {(1,1)}. But f ≠ g, since f(0,1) = (0,1) whereas
g(0,1) = (1,0). This shows that the map F∶Hom((Z/2Z)×(Z/2Z), (Z/2Z)×(Z/2Z)) → Hom(F((Z/2Z)×
(Z/2Z)),F((Z/2Z) × (Z/2Z))) is not injective.

Now, consider the set Hom(Z,M2×2(C)) and the set Hom(FZ,FM2×2(C)). Since Z is cyclic, and since
ring homomorphisms must may unity elements to unity elements, it is clear that there is only one
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element in Hom(Z,M2×2(C)), namely, the morphism which maps z ∈ Z to zI2. Again consider the set
Hom(FZ,FM2×2(C)), which is also equal to

Hom({1,−1},GL2(C)).

But it is clear that there are several different elements in this set. For example, consider the morphism
which maps 1 to I2 and which maps −1 to diag(1,−1) ∈ GL2(C). This is certainly a group homomorphism,
but it is clear that nothing maps to this group homomorphism with respect to F , since there is only
one element in Hom(Z,M2×2(C))
Exercise 3.9. Show that for each n ≥ 1 the map GLn∶R → GLn(R) defines a functor from CRing to
Grp. [Define GLn on morphisms by applying each ring homomorphism to the entries of a matrix.]

Solution 3.10. Let n ∈ N. For every object R in CRing, we have that the general linear group
GLn(R) is indeed an object in Grp. Now, letting A and B be objects in CRing, and letting f be in
HomCRing(A,B), we have that GLn(f) may be defined by applying the ring homomorphism f to the
entries of a given matrix. Given matrices

⎛
⎜⎜⎜
⎝

x1,1 x1,2 ⋯ x1,n
x2,1 x2,2 ⋯ x2,n
⋮ ⋮ ⋱ ⋮

xn,1 xn,2 ⋯ xn,n

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

y1,1 y1,2 ⋯ y1,n
y2,1 y2,2 ⋯ y2,n
⋮ ⋮ ⋱ ⋮

yn,1 yn,2 ⋯ yn,n

⎞
⎟⎟⎟
⎠
∈ GLn(A) = GLn(A),

we have that:

GLn(f)
⎛
⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

x1,1 x1,2 ⋯ x1,n
x2,1 x2,2 ⋯ x2,n
⋮ ⋮ ⋱ ⋮

xn,1 xn,2 ⋯ xn,n

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

y1,1 y1,2 ⋯ y1,n
y2,1 y2,2 ⋯ y2,n
⋮ ⋮ ⋱ ⋮

yn,1 yn,2 ⋯ yn,n

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

= GLn(f)
⎛
⎜⎜⎜
⎝

∑n
k=1 x1,kyk,1 ∑n

k=1 x1,kyk,2 ⋯ ∑n
k=1 x1,kyk,n

∑n
k=1 x2,kyk,1 ∑n

k=1 x2,kyk,2 ⋯ ∑n
k=1 x2,kyk,n

⋮ ⋮ ⋱ ⋮
∑n
k=1 xn,kyk,1 ∑n

k=1 xn,kyk,2 ⋯ ∑n
k=1 xn,kyk,n

⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜⎜
⎝

f(∑n
k=1 x1,kyk,1) f(∑n

k=1 x1,kyk,2) ⋯ f(∑n
k=1 x1,kyk,n)

f(∑n
k=1 x2,kyk,1) f(∑n

k=1 x2,kyk,2) ⋯ f(∑n
k=1 x2,kyk,n)

⋮ ⋮ ⋱ ⋮
f(∑n

k=1 xn,kyk,1) f(∑n
k=1 xn,kyk,2) ⋯ f(∑n

k=1 xn,kyk,n)

⎞
⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜⎜
⎝

∑n
k=1 f(x1,kyk,1) ∑n

k=1 f(x1,kyk,2) ⋯ ∑n
k=1 f(x1,kyk,n)

∑n
k=1 f(x2,kyk,1) ∑n

k=1 f(x2,kyk,2) ⋯ ∑n
k=1 f(x2,kyk,n)

⋮ ⋮ ⋱ ⋮
∑n
k=1 f(xn,kyk,1) ∑n

k=1 f(xn,kyk,2) ⋯ ∑n
k=1 f(xn,kyk,n)

⎞
⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜⎜
⎝

∑n
k=1 f(x1,k)f(yk,1) ∑n

k=1 f(x1,k)f(yk,2) ⋯ ∑n
k=1 f(x1,k)f(yk,n)

∑n
k=1 f(x2,k)f(yk,1) ∑n

k=1 f(x2,k)f(yk,2) ⋯ ∑n
k=1 f(x2,k)f(yk,n)

⋮ ⋮ ⋱ ⋮
∑n
k=1 f(xn,k)f(yk,1) ∑n

k=1 f(xn,k)f(yk,2) ⋯ ∑n
k=1 f(xn,k)f(yk,n)

⎞
⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜⎜
⎝

f(x1,1) f(x1,2) ⋯ f(x1,n)
f(x2,1) f(x2,2) ⋯ f(x2,n)

⋮ ⋮ ⋱ ⋮
f(xn,1) f(xn,2) ⋯ f(xn,n)

⎞
⎟⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜⎜
⎝

f(y1,1) f(y1,2) ⋯ f(y1,n)
f(y2,1) f(y2,2) ⋯ f(y2,n)

⋮ ⋮ ⋱ ⋮
f(yn,1) f(yn,2) ⋯ f(yn,n)

⎞
⎟⎟⎟⎟
⎠

22



= GLn(f)
⎛
⎜⎜⎜
⎝

x1,1 x1,2 ⋯ x1,n
x2,1 x2,2 ⋯ x2,n
⋮ ⋮ ⋱ ⋮

xn,1 xn,2 ⋯ xn,n

⎞
⎟⎟⎟
⎠
⋅ GLn(f)

⎛
⎜⎜⎜
⎝

y1,1 y1,2 ⋯ y1,n
y2,1 y2,2 ⋯ y2,n
⋮ ⋮ ⋱ ⋮

yn,1 yn,2 ⋯ yn,n

⎞
⎟⎟⎟
⎠
.

This shows that GLn(f) is in HomGrp(GLnA,GLnB). Now, suppose that gf is a composition of mor-
phisms in CRing. Let f ∶A → B and let g∶B → C. Since gf is a ring homomorphism from A to C, we
have that GLn(gf) is a group homomorphism from GLn(A) to GLn(C). Given an input matrix

⎛
⎜⎜⎜
⎝

a1,1 a1,2 ⋯ a1,n
a2,1 a2,2 ⋯ a2,n
⋮ ⋮ ⋱ ⋮

an,1 an,2 ⋯ an,n

⎞
⎟⎟⎟
⎠
∈ GLn(A),

we have that:

GLn(gf)
⎛
⎜⎜⎜
⎝

a1,1 a1,2 ⋯ a1,n
a2,1 a2,2 ⋯ a2,n
⋮ ⋮ ⋱ ⋮

an,1 an,2 ⋯ an,n

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

gf(a1,1) gf(a1,2) ⋯ gf(a1,n)
gf(a2,1) gf(a2,2) ⋯ gf(a2,n)

⋮ ⋮ ⋱ ⋮
gf(an,1) gf(an,2) ⋯ gf(an,n)

⎞
⎟⎟⎟
⎠
.

Similarly, we have that

GLn(f)
⎛
⎜⎜⎜
⎝

a1,1 a1,2 ⋯ a1,n
a2,1 a2,2 ⋯ a2,n
⋮ ⋮ ⋱ ⋮

an,1 an,2 ⋯ an,n

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

f(a1,1) f(a1,2) ⋯ f(a1,n)
f(a2,1) f(a2,2) ⋯ f(a2,n)

⋮ ⋮ ⋱ ⋮
f(an,1) f(an,2) ⋯ f(an,n)

⎞
⎟⎟⎟
⎠
,

so that

GLn(g)GLn(f)
⎛
⎜⎜⎜
⎝

a1,1 a1,2 ⋯ a1,n
a2,1 a2,2 ⋯ a2,n
⋮ ⋮ ⋱ ⋮

an,1 an,2 ⋯ an,n

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

gf(a1,1) gf(a1,2) ⋯ gf(a1,n)
gf(a2,1) gf(a2,2) ⋯ gf(a2,n)

⋮ ⋮ ⋱ ⋮
gf(an,1) gf(an,2) ⋯ gf(an,n)

⎞
⎟⎟⎟
⎠
.

We thus have that
GLn(gf) = GLn(g)GLn(f),

as desired. Now, letting A be an object in Ring, consider the identity mapping 1A on A. It is clear that
GLn(1A) maps each matrix in GLn(A) to itself, so that GLn(1A) = In, as desired.

Exercise 3.11. Supply the details that show the double dual map satisfies the axioms of a functor.

Solution 3.12. The double dual map is described as follows in the class textbook. Let K be a field and
let K–fdVec be the category of all finite dimensional vector spaces over K. The double dual functor D2

is defined from K–fdVec to itself. Recall that the dual space V ∗ of V is defined as V ∗ = HomK(V,K).
Then D2 is defined on objects by mapping a vector space V to V ∗∗. If φ∶V →W is a linear transformation
of objects in K–fdVec, define

D2(φ)∶V ∗∗ →W ∗∗

so that
D2(φ)(Ev) = Eφ(v),
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where Ev denotes “evaluation at v” for v ∈ V . We proceed to check that the two functor axioms hold.
Suppose that gf is a composition of morphisms in K–fdVec. Let f ∶A → B and let g∶B → C. For an
“evaluation at A” object Ea in A∗∗, we have that D2(f)(Ea) = Ef(a). Similarly, we have that

D2(g)D2(f)(Ea) = D2(g)Ef(a) = Egf(a) = D2(gf)(Ea),

thus proving that the initial functor axiom holds. Letting A be an object in K–fdVec, letting 1A denote
the identity mapping on A, and letting Ea be as given above, we have that

D2(1A)(Ea) = E1A(a) = Ea,

which shows that
D2(1A) = 1D2A,

we desired.

Exercise 3.13. Let Nor–N be the category described above, and let F be the inclusion functor from
Nor–N into Grp. Describe a functor G from Nor–N into Grp such that the transformation η defined
by ηG∶G→ G/N is a natural transformation from F to G.

Solution 3.14. Letting N be a group, we have that Nor–N is the collection of all groups that contain
N as a normal subgroup, such that a morphism between objects A and B with respect to Nor–N is
any group homomorphism that maps N into N . We have previously shown that Nor–N is a category.
From the above definition for ηG, we have that G should be defined so that for an object M in Nor–N ,
G(M) = M/N . Furthermore, given a morphism f from M1 to M2, letting M1 and M2 be objects in
Nor–N , define

G(f)∶M1/N →M2/N
so that for m ∈M1, with mN ∈M1/N , we have that G(f)(mN) = f(m)N . We have that

G(f)ηM1 = ηM2F(f),

because if we let m be an object in FM1 =M1, we have that

ηM2F(f)m = ηM2f(m) = f(m)N

and
G(f)ηM1m = G(f)mN = f(m)N.

We observe that G(f) is indeed a morphism of groups, given that f is a morphism: letting m and m′

be elements in M1, so that mN and m′N are elements in the quotient group M1/N , we have that:

G(f)((mN)(m′N)) = G(f)(mm′N)
= f(mm′)N
= f(m)f(m′)N
= f(m)Nf(m′)N
= G(f)(mN)G(f)(m′N).

We should also show that G(f) is well-defined in the sense that an expression of the form G(f)(mN)
does not depend on any particular choice of the coset representative m. So, suppose that mN = m′N .
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We thus have that G(f)(mN) = f(m)N and G(f)(m′N) = f(m′)N . Since mN = m′N , we have that
there exists an element n ∈ N such that mn =m′. So, we have that

G(f)(m′N) = f(m′)N = f(mn)N = f(m)f(n)N.

But recall that the category Nor–N was constructed so that morphisms with respect to Nor–N must
map N into N . So, we have that f(n) = n′, for some element n′ ∈ N . We thus have that

G(f)(m′N) = f(m′)N = f(mn)N = f(m)f(n)N = f(m)n′N = f(m)N = G(f)(mN),

as desired.

3.2 Exercises from Section 10.1

In the following exercises R is a ring with 1 and M is a left R-module.

Exercise 3.15. Prove that 0m = 0 and (−1)m = −m for all m ∈M .

Solution 3.16. Observe that:
0m + 0m = (0 + 0)m = 0m.

Since
0m + 0m = 0m,

and since M is an abelian group, by adding the additive inverse of 0m to both sides of the above
equation, we have that 0m must be equal to the additive identity element in the underlying abelian
group of M , i.e., 0m = 0.

Now, recall that 1 denotes the underlying unity of the ring R. Similarly, −1 denotes the unique additive
inverse of 1 ∈ R, with respect to the underlying group structure on R. Again letting m ∈M be arbitrary,
we have that:

1m + (−1)m = (1 + (−1))m = 0m.

So, from the previous component of our solution, we find that:

1m + (−1)m = 0.

Now, recall that
1m =m,

by definition of a unital module. We thus have that:

m + (−1)m = 0.

But since M forms an additive abelian group, we have that (−1)m and m are additive inverses of one
another: that is: (−1)m is precisely the unique additive inverse −m of m ∈M , as desired.

Exercise 3.17. Prove that R× and M satisfy the two axioms for a group action of the multiplicative
group R× on the set M .

Solution 3.18. We have that (rs)m = r(sm) for r, s ∈ R× by definition of a module, letting m ∈M and
we have that 1m =m, again by definition of a module.
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Exercise 3.19. Assume that rm = 0 for some r ∈ R and some m ∈M with m ≠ 0. Prove that r does not
have a left inverse (i.e., there is no s ∈ R such that sr = 1).

Solution 3.20. As above, we assume that rm = 0, with r ∈ R, and m ∈M such that m ≠ 0. By way of
contradiction, suppose that there exists an element s in R such that sr = 1. From the equality

rm = 0,

we have that
s(rm) = s ⋅ 0 = 0,

and we thus obtain the equality whereby
(sr)m = 0.

Since sr = 1, we have that
1m = 0.

By definition of a module, we have that 1m = m. So, the equality 1m = 0 implies that m = 0, thus
contradicting that m is nonzero.

Exercise 3.21. Let M be the module Rn and let I1, I3, . . . , In be left ideals of R. Prove ithat the
following are submodules of M :

(a) {(x1, x2, . . . , xn) ∣ xi ∈ Ii}
(b) {(x1, x2, . . . , xn) ∣ xi ∈ R and x1 + x2 +⋯ + xn = 0}.

Solution 3.22. As we later discuss, the submodule criterion basically states that a subset N of an
R-module M is a submodule of M iff N is nonempty and x+ ry ∈ N for r ∈ R and x, y ∈ N . Since ideals
are nonempty, it is clear that {(x1, x2, . . . , xn) ∣ xi ∈ Ii} is nonempty. Let r be an element in R. Let
(y1, y2, . . . , yn) and (z1, z2, . . . , zn) be elements in {(x1, x2, . . . , xn) ∣ xi ∈ Ii}, with yi ∈ Ii and zi ∈ Ii for all
indices i. Now consider the expression r(z1, z2, . . . , zn). Since

r(z1, z2, . . . , zn) = (r ⋅ z1, r ⋅ z2, . . . , r ⋅ zn)

and since ideals of the form Ii are informally “closed under multiplication” by elements in R, we thus
have that r ⋅ zi ∈ Ii for each index i. Since yi ∈ Ii for all indices i, and since r ⋅ zi ∈ Ii for all i, we thus
have that yi + r ⋅ zi ∈ Ii for all i, as desired.

Now, consider the family

F = {(x1, x2, . . . , xn) ∣ xi ∈ R and x1 + x2 +⋯ + xn = 0}.

Since the ordered n-tuple consisting of 0-entries is in this family, we find that F is nonempty. Let
(y1, y2, . . . , yn) and (z1, z2, . . . , zn) be elements in this family, and let r be an element in R. Since
(z1, z2, . . . , zn) is in F , we have that z1 + z2 + ⋯ + zn = 0. By the distributivity axiom, we have that
r ⋅ z1 + r ⋅ z2 +⋯ + r ⋅ zn = r ⋅ 0 = 0. So, we have that (r ⋅ z1, r ⋅ z2, . . . , r ⋅ zn) is in F . Since

y1 + y2 +⋯ + yn = 0,

and since
r ⋅ z1 + r ⋅ z2 +⋯ + r ⋅ zn = 0

we have that
(y1 + r ⋅ z1) + (y2 + r ⋅ z2) +⋯ + (yn + r ⋅ zn) = 0,
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which shows that the ordered n-tuple

(y1 + r ⋅ z1, y2 + r ⋅ z2, . . . , yn + r ⋅ zn)

is in F , thus proving that F is a submodule, as desired.

Exercise 3.23. For any left ideal I of R define

IM = { ∑
finite

aimi ∣ ai ∈ I,mi ∈M}

to be the collection of all finite sums of elements of the form am where a ∈ I and m ∈ M . Prove that
IM is a submodule of M .

Solution 3.24. Recall that the submodule criterion basically states that a subset N of an R-module
M is a submodule of M iff N is nonempty and x+ ry ∈ N for r ∈ R and x, y ∈ N . So, let I be a left ideal
of R, and let IM be as given above. Letting ai ∈ I and mi ∈ M , let ∑finite aimi be an element in IM .
Similarly, letting bi ∈ I and ni ∈M , let ∑finite bini be in IM . Also, let r be an element in R. Since

r ⋅ ∑
finite

bini = ∑
finite

r ⋅ (bini) = ∑
finite

(rbi)ni,

and since bi is in the ideal I for all indices i, we have that rbi ∈ I for all i ∈ I. Since ∑finite(rbi)ni is a
finite sum of expressions of the form (rbi)ni for rbi ∈ I and ni ∈M , we have that r ⋅ ∑finite bini is in IM .
But since

∑
finite

aimi + ∑
finite

(rbi)ni

is a finite sum of expressions of the form ιµ for ι ∈ I and µ ∈M , we have that

∑
finite

aimi + ∑
finite

(rbi)ni

must be in IM . By the submodule criterion, we have that IM is a submodule of M .

Exercise 3.25. Show that the intersection of any nonempty collection of submodules of an R-module
is a submodule.

Solution 3.26. Let M be an R-module. Let I ≠ ∅ be an index set, and let Si be a submodule of M for
each index i in I. Now, consider the following expression:

⋂
i∈I

Si.

Now, let r be an element in R, and let s and t be elements in ⋂i∈I Si. Consider the expression rt. Since
t is in Si for i ∈ I, we have that rt is in Si for i ∈ I, since Si is closed under scalar multiplication for all
indices i. Since s ∈ Si for all i, and since rt is in Si for i ∈ I, we thus find that s + rt ∈ Si for all i, since
each expression of the form Si is closed under addition. Since s + rt ∈ Si for all i, by the submodule
criterion, we have that ⋂i∈I Si is a submodule of M , as desired.

Exercise 3.27. Let N1 ⊆ N2 ⊆ be an ascending chain of submodules of M . Prove that ⋃∞
i=1Ni is a

submodule of M .
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Solution 3.28. Let x and y be elements in ⋃∞
i=1Ni, and let r be an element in R. Let j1 and j2 be

indices such that x ∈ Nj1 and y ∈ Nj2 . We may assume without loss of generality that Nj1 ⊆ Nj2 . Since
Nj2 is a submodule of M , we have that Nj2 is closed under scalar multiplication, so that ry ∈ Nj2 . Since
x ∈ Nj1 ⊆ Nj2 , and since Nj2 is closed under addition, we thus have that x + ry ∈ Nj2 , as desired.

Exercise 3.29. An element m of the R-moduleM is called a torsion element if rm = 0 for some nonzero
element r ∈ R. The set of torsion elements is denoted

Tor(M) = {m ∈M ∣ rm = 0 for some nonzero r ∈ R}.

Prove that if R is an integral domain then Tor(M) is a submodule of M (called the torsion submodule
of M).

Solution 3.30. Suppose that R is an integral domain. By definition of an integral domain, we find
that R has to be a commutative ring with unity and no zero divisors. Let r be an element in R, and
let x and y be elements in Tor(M). Since y ∈ Tor(M), we have that there exists a nonzero scalar s2 in
R such that s2y = 0. Similarly, we have that there exists a nonzero scalar s1 ∈ R such that s1x vanishes.
Since R is an integral domain, and since s1 and s2 are both nonzero, we find that the product s1s2 must
be nonzero. Now, consider the expression x + ry. By the distributivity axiom, we have that

s1s2(x + ry) = (s1s2)x + (s1s2)ry

and since R, as an integral domain, is a commutative ring, we have that

s1s2(x + ry) = (s2s1)x + (s1rs2)y.

Since M is an R-module, we have that

s1s2(x + ry) = s2(s1x) + s1r(s2y).

Therefore,
s1s2(x + ry) = s2 ⋅ 0 + s1r ⋅ 0,

which shows that
s1s2(x + ry) = 0,

with s1s2 ≠ 0. So, by the submodule criterion, we have that Tor(M) forms a submodule.

Exercise 3.31. Give an example of a ring R and an R-moduleM such that Tor(M) is not a submodule.
[Consider the torsion elements in the R-module R.]

Solution 3.32. We have previously shown that if R is an integral domain then Tor(M) is a submodule
ofM . We begin by letting R denote the ring Z/15Z. We have that R is not an integral domain, since, for
example, the product 3 ⋅ 5 vanishes with respect to the ring Z/15Z. Now, letting M be equal to Z/15Z,
let the ring Z/15Z be considered as an R-module over itself. In this case, we have that Tor(M) is equal
to {0,3,5,6,9,10,12}. But this is clearly not a submodule, because it is not closed under addition, since,
for example, 3 and 5 are in Tor(M), but 8 is not in Tor(M), since the integer tuple

((8 ⋅ i) (mod 15) ∶ i = 1,2, . . . ,14)

is equal to
(8,1,9,2,10,3,11,4,12,5,13,6,14,7) .
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3.3 Exercises from Section 10.2

Throughout the following exercises, R denotes a ring with 1 and M is a left R-module.

Exercise 3.33. Use the submodule criterion to show that kernels and images of R-module homomor-
phisms are submodules.

Solution 3.34. The submodule criterion may be formulated in the following manner: Letting R be
a ring and letting M be an R-module, a subset N of M is a submodule of M iff N is nonempty and
x + ry ∈ N for r ∈ R and x, y ∈ N .

So, let M and N be modules, and let φ∶M → N be an R-module homomorphism. Since φ maps the
additive identity element in M to the additive identity element in N , we have that the kernel of φ is
nonempty. Let r ∈ R, and let x and y be elements in ker(φ). Since φ is a morphism, we have that
φ(x + ry) = φ(x) + φ(ry) = 0 + φ(ry) = φ(ry) = rφ(y) = r0 = 0, as desired.

Let M , N and φ be as given above. let x and y be elements in the image of φ. Let a and b be
elements in the domain of φ such that φ(a) = x and φ(b) = y. Since φ is a morphism, we have that
x + ry = φ(a) + rφ(b) = φ(a) + φ(rb) = φ(a + rb). This shows that x + ry must be in the image of φ.

Exercise 3.35. Show that the relation “is R-module isomorphic to” is an equivalence relation on any
set of R-modules.

Solution 3.36. Let ≅ denote the binary relation given above. Let S be a set of R-modules. Given an
element M in S, the identity mapping on M is an R-module isomorphism, so that M ≅M , thus proving
the reflexivity of M . Given elements M1 and M2 in S, and given an isomorphism φ from M1 to M2,
we have that φ is bijective, and that φ−1 is also an isomorphism, as may be verified, thus establishing
the symmetry of ≅. Finally, given elements M1, M2, and M3 in S, if M1 ≅ M2 and M2 ≅ M3, letting
φ∶M1 →M2 and letting ψ∶M2 →M3, then the composition ψ ○φ is also an isomorphism from M1 to M3,
as may be verified, thus proving the transitivity of ≅.

Exercise 3.37. Give an explicit example of a map from one R-module to another which is a group
homomorphism but not an R-module homomorphism.

Solution 3.38. Consider the polynomial ring Q[x]. Letting

anx
n + an−1xn−1 +⋯ + a1x + a0 ∈ Q[x],

we define
φ∶Q[x] → Q[x]

so that
φ(anxn + an−1xn−1 +⋯ + a1x + a0) = anxn+1 + anxn−1 +⋯ + a1x2 + a0.

Note that anxn + an−1xn−1 +⋯ + a1x + a0 and φ(anxn + an−1xn−1 +⋯ + a1x + a0) have the same constant
term. We claim that φ preserves addition. To show this, let

p(x) = anxn + an−1xn−1 +⋯ + a1x + a0 ∈ Q[x],

and let
q(x) = bmxm + bm−1xm−1 +⋯ + b1x + b0 ∈ Q[x],
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with m ≥ n. If m = n, then φ evaluated at the sum of the above polynomials is equal to:

(an + bn)xn+1 + (an−1 + bn−1)xn +⋯ + (a1 + b1)x2 + a0 + b0.

Since
φ(anxn + an−1xn−1 +⋯ + a1x + a0)

is equal to anxn+1 + an−1xn +⋯ + a1x2 + a0, and since

φ(bnxn + bn−1xn−1 +⋯ + b1x + b0)

is equal to bnxn+1+ bn−1xn+⋯+ b1x2+ b0, we find that φ preserves addition for equal-degree polynomials.
If m > n, then φ evaluated at p(x) + q(x) is equal to:

bmx
m+1 +⋯ + bn+1xn+2 + (an + bn)xn+1 +⋯ + (a1 + b1)x2 + a0 + b0.

In this case, since
φ(p(x)) = anxn+1 + an−1xn +⋯ + a1x2 + a0

and since
φ(q(x)) = bmxm+1 +⋯ + bn+1xn+2 + bnxn+1 +⋯ + b1x2 + b0,

we have that φ preserves addition in general. Also observe that φ(0) = 0. Letting the unital ring Q[x]
be regarded as a Q[x]-module over itself, we thus have that the mapping

φ∶Q[x] → Q[x]

given above is a map from one Q[x]-module to another which is a group homomorphism. However,
since xφ(1) = x ⋅ 1 = x, and since φ(x) = x2, we have that φ does not preserve scalar multiplication.
So, we have given an explicit example oif a map from one Q[x]-module to another which is a group
homomorphism but not an Q[x]-module homomorphism.

Exercise 3.39. Let A be any Z-module, let a be any element of A and let n be a positive integer. Prove
that the map φa∶Z/nZ → A given by φa(k) = ka is a well-defined Z-module homomorphism if and only
if na = 0. Prove that HomZ(Z/nZ,A) ≅ An, where An = {a ∈ A ∣ na = 0}, so that An is the annihilator
in A of the ideal (n) of Z.

Solution 3.40. We begin by proving the following proposition, letting A, a, and n be as given above.

Proposition 3.41. The map φa∶Z/nZ → A given by φa(k) = ka is a well-defined Z-module homomor-
phism if and only if na = 0.

Proof. (Ô⇒) First, suppose that the map φa∶Z/nZ→ A given by φa(k) = ka is a well-defined Z-module
homomorphism. Consider the expression φa(n). Since φa is well-defined map, we have that φa(n) = na.
Similarly, we have that φa(0) = 0 ⋅ a = 0. But since 0 = n, and since φa is well-defined, we have that
φa(n) = na = φa(0) = 0 ⋅ a = 0, as desired.

(⇐Ô) Conversely, suppose that na = 0. Now let k1 and k2 be elements in the given domain of φa, so
that the representative elements k1 and k2 are not necessarily equal. Suppose that k1 = k2. Since k1 and
k2 are equal in Z/nZ, we have that:

k1 ≡ k2(mod n).
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Equivalently, n divides k1 − k2. So, we have that there exists an element z in Z such that k1 = zn + k2.
Now, consider the expressions φa(k1) = k1a and φa(k2) = k2a. From the equality

k1a = (zn + k2)a

we have that
k1a = (zn)a + k2a.

Equivalently,
k1a = z(na) + k2a.

From our initial assumption whereby na = 0, we find that

k1a = k2a,

thus proving that φa is well-defined. We proceed to prove that φa is a Z-module homomorphism. Let
`1 and `2 be elements in Z/nZ. Let `1 = y1n + `1 and let `2 = y2n + `2. Since

`1 + `2 = (y1 + y2)n + `1 + `2,

we have that
`1 + `2 = `1 + `2.

We may thus show that φa preserves addition:

φa(`1 + `2) = φa(`1 + `2)
= (`1 + `2)a
= `1a + `2a
= φa(`1) + φa(`2).

Letting `1 be as given above, let s denote a scalar in Z. Recall that `1 = y1n + `1. Since s`1 = sy1n + s`1,
we have that s`1 = s`1. We can use this equality to show that φa preserves scalar multiplication:

φa(s`1) = φa(s`1)
= (s`1)a
= s(`1a)
= sφa(`1).

Since φa preserves addition and scalar multiplication, we have that φa is module homomorphism, as
desired.

We proceed to prove the isomorphic equivalence whereby HomZ(Z/nZ,A) ≅ An. Let ψ∶Z/nZ → A be a
Z-module homomorphism. Consider the expression ψ(1) ∈ A. We define the function

f ∶HomZ(Z/nZ,A) → An

so that
f(ψ) = ψ(1).
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We proceed to show that f is well defined in the sense that f(ψ) is an element in the given codomain
of f for each element ψ in the domain of f . Since ψ is a mapping from Z/nZ to A, we have that ψ(1)
is in A. Furthermore, since

nψ(1) = ψ(n1) = ψ(n) = ψ(0),
and since ψ is a morphism, we have that nψ(1) vanishes, as desired. Now, suppose that ψ = ψ′, letting
ψ and ψ′ be elements in the domain of f . Then f(ψ) = ψ(1) = ψ′(1) = f(ψ′), as desired. So, we have
shown that f is well-defined. Again letting ψ and ψ′ be elements in dom(f), suppose that f(ψ) = f(ψ′).
Then ψ(1) = ψ′(1). But then

sψ(1) = sψ′(1)
for each scalar s, so that

ψ(s1) = ψ′(s1)
for an arbitrary scalar s, with

ψ(s) = ψ′(s)
for each element s in Z/nZ. We thus have that

f(ψ) = f(ψ′) Ô⇒ ψ = ψ′,

thus proving the injectivity of f . Now, let a ∈ A be such that na = 0. From Proposition 3.41, we have
that the map φa∶Z/nZ→ A whereby φa(k) = ka is a well-defined Z-module homomorphism, since na = 0.
Since φa(1) = 1a = a, we have that f(φa) = a, the proving the surjectivity of f . So, we have thus far
shown that f is a well-defined bijective mapping. So, it remains to prove that f is a module morphism.
Letting ψ and ψ′ be elements in the domain of f , we have that:

f(ψ + ψ′) = (ψ + ψ′)(1)
= ψ(1) + ψ′(1)
= f(ψ) + f(ψ′).

Similarly, for a scalar s, we have that:

f(sψ) = (sψ)(1)
= sψ(1)
= s ⋅ f(ψ).

So, we have that HomZ(Z/nZ,A) ≅ An, as desired.

Exercise 3.42. Exhibit all Z-module homomorphisms from Z/30Z to Z/21Z.

Solution 3.43. A Z-module morphism φ∶Z/30Z→ Z/21Z is unique determined by the value of φ(1).

So, suppose that φ(1) = n. We thus have that φ(k) = kn, modulo 21, for each scalar k. In particular,
we have that φ(21) = 0, so that φ(29) = 8n, and φ(0) = 9n. But since φ is a morphism, we have that
9n = 0, modulo 21. This implies that n must be a multiple of 7. We thus find that φ(1) must be in
{0,7,14,21,28}. So, we find that there are a total of five Z-module homomorphisms from Z/30Z to
Z/21Z, as determined by the above condition whereby φ(1) must be in {0,7,14,21,28}.

Exercise 3.44. Prove that HomZ(Z/nZ,Z/mZ) ≅ Z/(n,m)Z.
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Solution 3.45. To prove the isomorphic equivalence whereby:

HomZ(Z/nZ,Z/mZ) ≅ Z/(n,m)Z,

our strategy is to construct an explicit isomorphism from HomZ(Z/nZ,Z/mZ) to Z/(n,m)Z. Now, let
φ be a Z-module homomorphism from Z/nZ to Z/mZ. For a natural number ` ∈ N, let the elements in
Z/`Z be denoted as integers, for the sake of clarity. Now, consider the expression φ(1) ∈ Z/mZ. Suppose
that φ(1) = a, for some element a in the codomain of φ. We thus find that:

φ(1) = a(mod m)
φ(2) = 2a(mod m)
⋮
φ(n − 1) = (n − 1)a(mod m)
φ(0) = (n ⋅ φ(1))(mod m)

But since φ is a Z-module homomorphism, we find that

n ⋅ φ(1) ≡ 0(mod m),

so that
m ∣ (n ⋅ φ(1)) .

We also have that 0 ≤ φ(1) <m. The number of values for φ(1) such that

m ∣ (n ⋅ φ(1)) .

and
0 ≤ φ(1) <m

must be equal to (m,n), as may be verified using the Fundamental Theorem of Arithmetic, in the
following manner: since

m ∣ (n ⋅ φ(1)) ,
we have that φ(1) may be an arbitrary integer multiple of m

gcd(n,m)
satisfying

0 ≤ φ(1) <m,

and this shows that φ(1) must be of the form i m
gcd(n,m)

for i ∈ N0 with

0 ≤ i m

gcd(n,m) <m,

which shows that the possible values for i ∈ N0 are precisely integers i ∈ N0 such that

0 ≤ i 1

gcd(n,m) < 1,

so that the possible values for i ∈ N0 are precisely integers i ∈ N0 such that

0 ≤ i < gcd(n,m).
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We thus observe that
∣HomZ(Z/nZ,Z/mZ)∣ = (n,m).

Furthermore, we have a complete classification of the morphisms in HomZ(Z/nZ,Z/mZ). In particular,
the Z-module homomorphisms in HomZ(Z/nZ,Z/mZ) are precisely Z-linear φ such that

φ(1) ∈ {0,1 ⋅ m

gcd(n,m) ,2 ⋅
m

gcd(n,m) , . . . , (gcd(n,m) − 1) ⋅ m

gcd(n,m)} .

For an integer i ∈ N0 such that i ∈ {0,1,2, . . . ,gcd(n,m) − 1}, let φi denote the morphism whereby
1↦ i ⋅ m

gcd(n,m)
. We thus have that:

HomZ(Z/nZ,Z/mZ) = {φ0, φ1, φ2, . . . , φgcd(n,m)−1}.

Now, let
Ψ∶HomZ(Z/nZ,Z/mZ) → Z/(n,m)Z

denote the mapping whereby
Ψ(φi) = i ∈ Z/(n,m)Z,

letting i be as given above, with i ∈ {0,1,2, . . . ,gcd(n,m)− 1}. We immediately see that Ψ is surjective,
since for j ∈ Z/(n,m)Z, we have that Ψ(φj) = j, with φj as an element in the domain of Ψ. Letting
i, j ∈ {0,1,2, . . . ,gcd(n,m) − 1}, we see that:

Ψ(φi) = Ψ(φj) Ô⇒ i = j
Ô⇒ i ⋅ m

gcd(n,m) = j ⋅ m

gcd(n,m)
Ô⇒ φi(1) = φj(1).

From the equality whereby φi(1) = φj(1), we find that φi = φj, since φi and φj are both Z-linear
morphisms. Consider the sum φ1 + φ1. The sum φ1 + φ1 evaluated at 1 must be equal to 2 ⋅ m

gcd(m,n) ,
the sum φ1 + φ1 + φ1 evaluated at 1 is equal to 3 ⋅ m

gcd(m,n) , and so forth. Continuing in this manner, we
find that Ψ must be Z-linear. Since Ψ must be bijective and Z-linear, we obtain the desired isomorphic
equivalence.

3.4 Exercises from Section 10.3

In the following exercises, R is a ring with 1 and M is a left R-module.

Exercise 3.46. Prove that if A and B are sets of the same cardinality, then the free modules F (A) and
F (B) are isomorphic.

Solution 3.47. This follows immediately from the results given in our solution to Exercise 1.9, letting
C be the category R-Mod of left R-modules.

Exercise 3.48. Assume R is commutative. Prove that Rn ≅ Rm if and only if n = m, i.e., two free
R-modules of finite rank are isomorphic if and only if they have the same rank. [Apply Exercise 12 of
Section 2 with I a maximal ideal of R. You may assume that if F is a field, then F n ≅ Fm if and only if
n =m, i.e., two finite dimensional vector spaces over F are isomorphic if and only if they have the same
dimension – this will be proved later in Section 11.1.]
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Solution 3.49. This is proven in our solution for Exercise 1.17.

Exercise 3.50. Show that the F [x]-modules in Exercises 18 and 19 of Section 1 are both cyclic.

Solution 3.51. Letting M denote an R-module, we recall that a submodule N of M is said to be cyclic
if there exists an element a ∈M such that N = Ra, that is, if N is generated by one element, with:

N = Ra = {ra ∣ r ∈ R}.

Exercise 18 from Section 1 is given as follows:

“Let F = R, let V = R2 and let T be the linear transformation from V to V which is rotation clockwise
about the origin by π/2 radians. Show that V and 0 are the only F [x]-submodules for this T .” (p. 344)

We can basically make R2 into an R[x]-module using the given linear map T . In particular, we can turn
R2 into an R[x]-module so that given a polynomial p(x) in R[x], and given a vector v in R2, we have
that the polynomial p(x) acts through substitution of the linear transformation T for x with respect to
p(x), and then by applying the resultant linear mapping to v.

So, we regard the plane R2 as an R[x]-module with respect to the linear map T , in the sense described
above. So, we need to show that there exists an element v ∈ R2 such that R[x]v is equal to R2.

We claim that the vector

v = [1
0
] ∈ R2

generates the R[x]-module R2 with respect to T . We thus find that

Tv = T ∣
v = T ([1

0
]) = [0

1
] ∈ R2

Basically, we can create an arbitrary point in the plane R2 as an R-linear combination of v and Tv. In
particular, letting a and b be arbitrary elements in R, so that

[a
b
] ∈ R2

is given by an arbitrary point in the plane, we find that:

(bx + a)v = (bT + a)v
= bT (v) + av

= bT ([1
0
]) + a [1

0
]

= b [0
1
] + a [1

0
]

= [0
b
] + [a

0
]

= [a
b
] ∈ R2.
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So, we have shown that each point in R2 must be an element in R[x]v. Conversely, we have that
R[x]v ⊆ R2, so that R[x]v = R2.

In the class textbook, Exercise 19 from Section 1 is given as follows:

“Let F = R, let V = R2 and let T be the linear transformation from V to V which is projection onto the
y-axis. Show that V , 0, the x-axis and teh y-axis are te only F [x]-submodules for this T .” (p. 344)

Letting T be as given in Exercise 19 from Section 1, we claim that the vector

w = [1
1
] ∈ R2

generates the R[x]-module R2 with respect to T . First of all, begin by observing that

Tw = T ∣
w = T ([1

1
]) = [0

1
] ∈ R2.

So, we find that:

(−x + 1)w = (−x + 1) [1
1
] = (−T + 1) [1

1
] = −T ([1

1
]) + [1

1
] = [ 0

−1
] + [1

1
] = [1

0
] .

So, since

(bx)w = [0
b
]

and since

(−ax + a)w = [a
0
] ,

we thus have that

(bx)w + (−ax + a)w = [a
b
] ∈ R2,

so that

((−a + b)x + a)w = [a
b
] ∈ R2,

which shows that [1
1
] generates R2 as an R[x]-module, with respect to the projection mapping T .

3.5 Exercises from Section 12.1

Exercise 3.52. LetM be a module over the integral domain R. Suppose x is a nonzero torsion element
in M . Show that x and 0 are “linearly dependent.” Conclude that the rank of Tor(M) is 0, so that in
particular any torsion R-module has rank 0.

Solution 3.53. Since x is a nonzero torsion element in M , we have that there exists a element r of the
ring R that is neither a left nor a right zero divisor such that rm = 0. Since r ≠ 0, we have that

rm + r0 = rm = 0,
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thus proving that x and 0 are linearly dependent.

Recall that for any integral domain R, the rank of an R-moduleM is the maximum number of R-linearly
independent elements of M . Since

Tor(M) = {x ∈M ∣ rx = 0 for some nonzero r ∈ R}.

But then Tor(M) cannot contain a linearly independent set with at least one element, since rx = 0 for
some nonzero r ∈ R for each element x in Tor(M).

Exercise 3.54. Letting M and R be as given above, show that the rank of M is the same as the rank
of the (torsion free) quotient M/TorM .

Solution 3.55. Again, for any integral domain R, the rank of an R-moduleM is the maximum number
of R-linearly independent elements of M . Suppose that the rank of M is n. Now, consider the quotient
module M/TorM . By way of contradiction, suppose that there exist n′ > n R-linearly independent
elements in M/TorM , so that

r1 (a1 +TorM) + r2 (a2 +TorM) +⋯ + rn′ (an′ +TorM) = 0 +TorM

implies that the above coefficients in R are all equal to 0. Equivalently,

r1a1 + r2a2 +⋯ + rn′an′ +TorM = 0 +TorM

implies that the above coefficients in R are all equal to 0. Equivalently, we have that if

r1a1 + r2a2 +⋯ + rn′an′ ∈ TorM

then the above R-coefficients all must be equal to 0. So, suppose that

r1a1 + r2a2 +⋯ + rn′an′ ∈ TorM.

Then the above R-coefficients must be equal to zero, and there exists an R-coefficient q such that

(qr1)a1 + (qr2)a2 +⋯ + (qrn′)an′ = 0.

But since n′ > n, we have that there exists an expression of the form qri which must be nonzero. But
this is impossible since ri = 0. So, we have shown that the rank n′ of M/TorM is less than or equal to
the rank n of M . Now, suppose that {b1, b2, . . . , bn} is a set of linearly independent elements in M . By
way of contradiction, suppose that it is not the case that

{b1 +TorM,b2 +TorM, . . . , bn +TorM}

is a set of linearly independent elements in M/TorM . So, we have that there exists a nontrivial linear
combination

s1 (b1 +TorM) + s2 (b2 +TorM) +⋯ + sn (bn +TorM) = 0 +TorM

of the elements in {b1 +TorM,b2 +TorM, . . . , bn +TorM} which vanishes. Since

s1b1 + s2b2 +⋯ + snbn ∈ TorM

we have that there exists a regular coefficient t in R such that

ts1b1 + ts2b2 +⋯ + tsnbn = 0.
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But recall that

s1 (b1 +TorM) + s2 (b2 +TorM) +⋯ + sn (bn +TorM) = 0 +TorM

is supposed to be a nontrivial linear combination of the elements in {b1+TorM,b2+TorM, . . . , bn+TorM}.
So, we may assume that si is nonzero, for some index i. But since t is regular, we have that t is not
a zero divisor. So, we have that si is nonzero, and thus tsi is nonzero. But this is impossible, since
{b1, b2, . . . , bn} is linearly independent. So, we have shown that n′ ≤ n, and we have shown that there is
a linearly independent n-set of elements in M/TorM , thus establishing the equality whereby n′ = n.

Exercise 3.56. Let M be a module over the integral domain R. Suppose that M has rank n and that
x1, x2, . . ., xn is any maximal set of linearly independent elements of M . Let N = Rx1 + . . .+Rxn be the
submodule generated by x1, x2, . . . , xn. Prove that N is isomorphic to Rn and that the quotient M/N
is a torsion R-module (equivalently, the elements x1, . . . , xn are linearly independent and for any y ∈M
there is a nonzero element r ∈ R such that ry can be written as a linear combination r1x1 + . . .+ rnxn of
te xi).

Solution 3.57. Given an integral domain R, the rank of an R-module M is the maximum number of
R-linearly independent elements of M . So, let M , R, n, etc., be as given in the above exercise, with
x1, x2, . . . , xn as a maximal set of linearly independent elements in M , and with

N = Rx1 +Rx2 +⋯ +Rxn.

To prove thatN ≅ Rn, we proceed to construct an explicit isomorphism φ∶N → Rn. Letting r1, r2, . . . , rn ∈
R, so that

r1x1 + r2x2 +⋯ + rnxn
is an arbitrary element in the domain of N . We define the mapping φ so that

φ(r1x1 + r2x2 +⋯ + rnxn) = (r1, r2, . . . , rn) ∈ Rn.

The injectivity of φ follows immediately from the linear independence of the set {x1, x2, . . . , xn}, and
the surjectivity of φ follows in a straightforward way from the definition of φ. We have that φ must
preserve addition, since

φ(r1x1 + r2x2 +⋯ + rnxn) + φ(s1x1 + s2x2 +⋯ + snxn)

is equal to
(r1, r2, . . . , rn) + (s1, s2, . . . , sn) = (r1 + s1, r2 + s2, . . . , rn + sn) ,

letting s1, s2, . . . , sn ∈ R. We also have that φ must preserve scalar multiplication, since, given a scalar
t ∈ R, we find that

t ⋅ φ(r1x1 + r2x2 +⋯ + rnxn)
is equal to

t ⋅ (r1, r2, . . . , rn) = (t ⋅ r1, t ⋅ r2, . . . , t ⋅ rn).
Accordingly, we find that φ is a bijective morphism, as desired.

The following definition is taken directly from the class textbook:

“An R-module M is called a torsion module if for each m ∈ M there is a nonzero element r ∈ R such
that rm = 0, where r may depend on m...” (p. 356)
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Now, recall that given an arbitrary submodule B of a module A, we can always form the quotient module
A/B. In particular, we find that the quotient module M/N is well-defined. The underlying set of this
quotient module consists of additive cosets of the form m +N for elements m ∈M .

So, we must show that for all m ∈M there exists a nonzero scalar y ∈ R ∖ {0} such that:

ym ∈ Rx1 +Rx2 +⋯ +Rxn.

By way of contradiction, suppose that there exists some m ∈M such that for all nonzero y ∈ R ∖ {0}

ym /∈ Rx1 +Rx2 +⋯ +Rxn.

Equivalently, there exists an element m ∈M such that for all y ∈ R ∖ {0} and r1, r2, . . . , rn ∈ R,

ym ≠ r1x1 + r2x2 +⋯ + rnxn.

But then we would have that the subset

{m,x1, x2, . . . , xn}

of M would have to be linearly independent with respect to M , because otherwise, there would exist a
nontrivial linear combination

zm + s1x1 + s2x2 +⋯ + snxn = 0

which vanishes, with z nonzero since {x1, x2, . . . , xn} is linearly independent, so that

zm = (−s1)x1 + (−s2)x2 +⋯ + (−sn)xn

contradicting that for all y ∈ R ∖ {0} and r1, r2, . . . , rn ∈ R,

ym ≠ r1x1 + r2x2 +⋯ + rnxn.

But then the maximality of x1, x2, . . . , xn} would be contradicted.

3.6 Exercises from Section 12.2

Exercise 3.58. Prove that similar linear transformations of V (or n × n matrices) have the same
characteristic and the same minimal polynomial.

Solution 3.59. Let A and B be n×n matrices such that A and B are similar. So, let C be a non-singular
matrix such that:

A = CBC−1.

Now, recall that the minimal polynomial µA(x) of A is the monic polynomial

µA(x) = xm + am−1xm−1 + am−2xm−2 +⋯ + a1x + a0

of minimal degree such that

Am + am−1Am−1 + am−2Am−2 +⋯ + a1A + a0In = 0,

and similarly for the minimal polynomial

µB(x) = x` + b`−1x`−1 + b`−2x`−2 +⋯ + b1x + b0
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for B, with:
B` + b`−1B`−1 + b`−2B`−2 +⋯ + b1B + b0In = 0.

Multiplying both sides of the above equality on the left by C and on the right by C−1, since Ai = CBiC−1

for i ∈ N0, we have that:
A` + b`−1A`−1 + b`−2A`−2 +⋯ + b1A + b0In = 0.

By minimality of µA, we have that µA∣µB. A symmetric argument shows that µB ∣µA, which shows that
µB = µA.

Now, consider the characteristic polynomial of B:

cB(x) = det(xI −B).

From the above equality, we have that:

det(C)cB(x)det(C−1) = det(C)det(xI −B)det(C−1).

Therefore,
cB(x) = det(C(xI −B)C−1).

Equivalently,
cB(x) = det(xI −CBC−1),

with
cB(x) = det(xI −A),

as desired.

Exercise 3.60. Let M be as in Lemma 19. Prove that the minimal polynomial of M is the least
common multiple of the minimal polynomials of A1, . . . ,Ak.

Solution 3.61. Lemma 19 from the class textbook is formulated in the following manner:

Lemma 19. Let a(x) ∈ F [x] be any monic polynomial.
(1) The characteristic polynomial of the companion matrix of a(x) is a(x).
(2) If M is the block diagonal matrix

M =
⎛
⎜⎜⎜
⎝

A1 0 . . . 0
0 A2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . Ak

⎞
⎟⎟⎟
⎠

given by the direct sum of matrices A1, A2, . . ., Ak then the characteristic polynomial of M is the
product of the characteristic polynomials of A1, A2, . . ., Ak.

By the above lemma, we have that the characteristic polynomial chx(M) of M is equal to:

chx(A1)chx(A2)⋯chx(Ak).

We know that the minimal polynomial mx(M) of M must divide

chx(A1)chx(A2)⋯chx(Ak).
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For an integer i ∈ N0, we have that:

M i =
⎛
⎜⎜⎜
⎝

Ai1 0 . . . 0
0 Ai2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . Aik

⎞
⎟⎟⎟
⎠
.

The minimal polynomial mx(A1) is the smallest polynomial which vanishes under A1. So, in order for
the upper-left block of M to vanish under a polynomial

p(x) = anxn + an−1xn−1 +⋯ + a1x + a0,

with

an

⎛
⎜⎜⎜
⎝

An1 0 . . . 0
0 An2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . Ank

⎞
⎟⎟⎟
⎠
+ an−1

⎛
⎜⎜⎜
⎝

An−11 0 . . . 0
0 An−12 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . An−1k

⎞
⎟⎟⎟
⎠
+⋯ + a0I = 0,

letting I denote an appropriate identity matrix, and letting 0 denote an appropriate zero matrix, we
have that the polynomial p(x) would have to be a multiple mx(A1), since we would have to have that

anA
n
1 + an−1An−11 +⋯ + a0I = 0.

Similarly, in order for a fixed block B of the block matrix M to vanish under a polynomial, we would
have that the minimal polynomial for B would have to divide this polynomial. So, given a polynomial
q(x) such that each block B of M vanishes with respect to q(x), we find that each minimal polynomial
for each block B of M would have to divide q(x). So, if M vanishes with respect to a polynomial q(x),
the polynomial q(x) must be a multiple of all of the minimal polynomials of all the blocks of M . Since
M vanishes under the minimal polynomial for M , we have that the minimal polynomial for M must be
a multiple of all of the minimal polynomials for all of the blocks ofM , and by minimality of the minimal
polynomial for M , we may conclude that the minimal polynomial of M is the least common multiple of
the minimal polynomials for the blocks of M .

3.7 Exercises from Section 12.3

Exercise 3.62. Suppose the vector space V is the direct sum of cyclic F [x]-modules whose annihilators
are (x+1)2, (x−1)(x2+1)2, (x4−1) and (x+1)(x2−1). Determine the invariant factors and elementary
divisors for V .

Solution 3.63. Our solution is based upon a solution given in the following link:

https://crazyproject.wordpress.com/2011/11/17/
compute-the-invariant-factors-and-elementary-divisors-of-a-given-module/

Letting V be as given above, we have that:

V = F [x]/⟨(x + 1)2⟩ ⊕ F [x]/⟨(x − 1)(x2 + 1)2⟩ ⊕ F [x]/⟨x4 − 1⟩ ⊕ F [x]/⟨(x + 1)(x2 − 1)⟩.

Our strategy is to apply the following result from the class textbook, which is a corollary to the Chinese
Remainder Theorem.
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“Proposition 16. Let g(x) be a nonconstant monic element of F [x] and let

g(x) = f1(x)n1f2(x)n2⋯fk(x)nk

be its factorization into irreducibles, where the fi(x) are distinct. Then we have the following isomor-
phism of rings:

F [x]/⟨g(x)⟩ ≅ F [x]/⟨f1(x)n1⟩ × F [x]/⟨f2(x)n2⟩ × ⋯ × F [x]/⟨fk(x)nk⟩.” (p. 313)

We also review the term invariant factor, as defined in the class textbook.

“Theorem 5. (Fundamental Theorem, Existence: Invariant Factor Form) Let R be a P.I.D. and let M
be a finitely generated R-module.

(1) Then M is isomorphic to the direct sum of finitely many cyclic modules. More precisely,

M ≅ Rr ⊕R/(a1) ⊕R/(a2) ⊕⋯⊕R/(am)

for some integer r ≥ 0 and nonzero elements a1, a2, . . . , am for R which are not units in R and which
satisfy the divisibility relations

a1 ∣ a2 ∣ ⋯ ∣ am.” (p. 462)

“Definition. The integer r in Theorem 5 is called the free rank or the Betti number of M and the
elements a1, a2, . . . , am ∈ R (defined up to multiplication by units in R) are called the invariant factors
of M .”

We also review the term elementary divisor, as defined in the class textbook.

“Theorem 6. (Fundamental Theorem, Existence: Elementary Divisor Form) Let R be a P.I.D. and let
M be a finitely generated R-module. Then M is the direct sum of a finite number of cyclic modules
whose annihilators are either (0) or generated by powers of primes in R, i.e.,

M ≅ Rr ⊕R/(pα1
1 ) ⊕R/(pα2

2 ) ⊕⋯⊕R/(pαtt )

where r ≥ 0 is an integer and pα1
1 , . . ., pαtt are positive powers of (not necessarily distinct) primes in R.”

(p. 464)

“Definition. Let R be a P.I.D. and let M be a finitely generated R-module as in Theorem 6. The
prime powers pα1

1 , . . ., pα1
t (defined up to multiplication by units in R) are called the elementary divisors

of M .” (p. 465)

Now, letting V be as given in the above exercise, recall that:

V = F [x]/⟨(x + 1)2⟩ ⊕ F [x]/⟨(x − 1)(x2 + 1)2⟩ ⊕ F [x]/⟨x4 − 1⟩ ⊕ F [x]/⟨(x + 1)(x2 − 1)⟩.

We proceed to consider two separate cases, namely, the case whereby x2 + 1 is irreducible in F [x], and
the case whereby x2 + 1 is reducible in F [x]. First suppose that x2 + 1 is irreducible in F [x]. So, in the
case whereby x2 + 1 is irreducible in F [x], according to Proposition 16 from the class textbook, we
find that the irreducible factors of V are:

(x + 1)(x − 1)
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(x + 1)2(x − 1)(x2 + 1)
(x + 1)2(x − 1)(x2 + 1)2

The elementary divisors are the prime power divisors of the irreducible factors3:

(x − 1)
(x − 1)
(x − 1)
(x + 1)
(x + 1)2

(x + 1)2

(x2 + 1)
(x2 + 1)2

Now, suppose that x2 + 1 is reducible in F [x]. We may deduce that there exists an element α ∈ F such
that x2 + 1 = (x + α)(x − α) = x2 − α2. Now, recall that

V = F [x]/⟨(x + 1)2⟩ ⊕ F [x]/⟨(x − 1)(x2 + 1)2⟩ ⊕ F [x]/⟨x4 − 1⟩ ⊕ F [x]/⟨(x + 1)(x2 − 1)⟩.

So, we have that the invariant factors are:

(x − 1)(x + 1)
(x − 1)(x + 1)2(x + α)(x − α)
(x − 1)(x + 1)2(x + α)2(x − α)2

The elementary divisors of V are:

x − 1

x − 1

x − 1

x + 1

(x + 1)2

(x + 1)2

x + α
(x + α)2

x − α
(x − α)2

3.8 Exercises from Section 10.5

Suppose that
3Another solution is given in : http://orion.math.iastate.edu/maddux/505-Spring-2010/allhw.3.pdf.
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is a commutative diagram of groups and that the rows are exact.

Exercise 3.64. With respect to the above diagram, if φ and α are surjective, and β is injective then γ
is injective. [If c ∈ kerγ, show there is a b ∈ B with φ(b) = c. Show that φ′(β(b)) = 0 and deduce that
β(b) = ψ′(a′) for some a′ ∈ A′. Show there is an a ∈ A with α(a) = a′ and that β(ψ(a)) = β(b). Conclude
that b = ψ(a) and hence c = φ(b) = 0.]

Solution 3.65. With respect to the above diagram, assume that φ and α are surjective, and assume
that β is injective. To prove that γ is injective, our strategy is to follow the method suggested above, by
proving that the kernel of γ is trivial. As above, assume that c ∈ ker(γ). Since φ is a surjective mapping
from B to C, and since the kernel of γ is contained in C, we have that there must be an element b in
the domain of φ such that φ(b) = c. Now, recall that c is an element in the kernel of γ, so that γ(c) = 0,
letting 0 denote the identity element of the groups presently under consideration. Since φ is a morphism,
and since γ(c) = 0, we have that:

φ(γ(c)) = φ(0) = 0.

Since
φ(γ(c)) = 0,

and since the above diagram is commutative, we may deduce that

φ′(β(b)) = 0.

Since the rows of the above diagram are exact, we have that:

im (ψ′) = ker (φ′) .

So, since
φ′(β(b)) = 0,

we have that β(b) must be an element in the kernel of φ′. Therefore, β(b) must be an element in im (ψ′).
So, there must exist some element a′ in A′ such that

β(b) = φ′(a′).

Now, recall that we assumed that α is surjective. Since a′ is an element in the codomain of α, there
must be an element a in A such that α(a) = a′. From the equality

β(b) = φ′(a′),

we thus find that
β(b) = φ′(α(a)).
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Since the above diagram commutes, we have that

β(b) = β(ψ(a)).

Since β is injective, we have that
b = ψ(a).

Therefore,
φ(b) = φ(ψ(a)).

That is,
c = φ(b) = φ(ψ(a)).

Now, since ψ(a) is in im (ψ) = ker (φ), we may conclude that φ(ψ(a)) = 0, so that c = 0, as desired.

Exercise 3.66. Prove that if β is surjective and if γ and ψ′ are injective then α is surjective.

Remark 3.67. The author previously constructed the following solution for an assigned problem in
MATH 6121. This solution is available through the course website http://garsia.math.yorku.ca/
~zabrocki/math6121f16/ for MATH 6121.

Solution 3.68. Since the bottom row forms an exact sequence, we have that an element b′ ∈ B′ is
mapped to eC′ iff it is in imψ′. Since the top row forms an exact sequence, we have that an element
b ∈ B is mapped to eC iff it is in imψ.

Now, since γ is injective, an element b ∈ B is mapped to eC′ through γ ○ φ iff it is in imψ.

So, since the given diagram commutes, with γ ○ φ = φ′ ○ β, we have that an element b ∈ B is mapped to
eC′ iff:

(i) b ∈ imψ; and

(ii) β(b) ∈ im(ψ′).

We claim that the image of β ○ ψ is equal to the image of ψ′. Given in element a ∈ A, we have that:

ψ(a) ∈ imψ = ker(φ).

Again by injectivity of γ, we find that ψ(a) must be mapped to eC′ . Given an element a ∈ A, we know
that ψ(a) is mapped to eC′ iff (β ○ ψ)(a) ∈ im(ψ′). So, this shows that im(β ○ ψ) ⊆ im(ψ′).

Now, by way of contradiction, suppose that there exists an element x ∈ im(ψ′) outside of im(β ○ψ). But
by surjectivity of β, there exists an element y ∈ B such that β(y) = x. But y would be mapped to eC′ y
would have to be in the image of ψ, so that β(y) ∈ im(β ○ ψ), contradicting our initial assumption that
β(y) /∈ im(β ○ ψ).

So, we have shown that im(β ○ ψ) = im(ψ′). So, for each element a′ ∈ A′, we have that

ψ′(a′) ∈ im(ψ′) = im(β ○ ψ),

so that there exists a corresponding element a ∈ A such that:

ψ(β(a)) = ψ′(a′).
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But since the given diagram commutes, we have that

ψ(β(a)) = ψ′(a′) = ψ′(α(a)).

By injectivity of ψ′, we have that:

ψ′(a′) = ψ′(α(a)) Ô⇒ a′ = α(a),

thus proving the surjectivity of α.

3.9 Exercises from Section 13.1

Exercise 3.69. Show that p(x) = x3 + 9x + 6 is irreducible in Q[x]. Let θ be a root of p(x). Find the
inverse of 1 + θ in Q(θ).
Solution 3.70. Letting p(x) = x3 + 9x + 6, begin by observing that p′(x) = 3x2 + 9 is always positive,
so that p(x) = x3 + 9x + 6 is strictly increasing. So, we have that p(x) = x3 + 9x + 6 has only one real
root. It is easily seen that 3

√
3− 32/3 is a root of p. If we accept that 3

√
3− 32/3 is irrational, we have that

the only real root of p is irrational. Alternatively, one may use the fact that a polynomial with integer
coefficients is irreducible over Q iff it is irreducible over Z.

Now, let θ be as given above, with θ as a root of p(x). Since Q(θ) is a field, we have that 1
1+θ is in Q(θ).

By the Euclidean algorithm, in Q[x], there are polynomials a(x) and b(x) such that

a(x)(1 + x) + b(x)(x3 + 9x + 6) = 1.

Let a and b be denoted as indicated below.

(c2x2 + c1 + c0)(x + 1) + b(x)(x3 + 9x + 6) = 1.

(θ + 1)3 = θ3 + 3θ2 + 3θ + 1

= 3θ2 − 6θ − 6

So

1

3
(θ + 1)3 = θ2 − 2θ − 2

(θ + 1)2 = θ2 + 2θ + 1

1

3
(θ + 1)3 − (θ + 1)2 = −4θ − 3

1

3
(θ + 1)3 − (θ + 1)2 + 4(θ + 1) = 1

So, from the above evaluation, we find that:

1

3
(θ + 1)2 − (θ + 1) + 4 = 1

θ + 1

That is, 1
θ+1 is equal to:

θ2

3
− θ

3
+ 10

3
.
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Exercise 3.71. Show that x3−2x−2 is irreducible over Q and let θ be a root. Compute (1+θ)(1+θ+θ2)
and 1+θ

1+θ+θ2 in Q(θ).

Solution 3.72. Let p(x) = x3 − 2x − 2. Then p′(x) = 3x2 − 2. Since p′(x) is only negative if x satisfies
the condition whereby −

√
2
3 < x <

√
2
3 . So, since p(x) is strictly increasing for ∣x∣ >

√
2
3 , it is easily seen

that p(x) has only one real rool, namely

1

3

3
√

27 − 3
√

57 +
3
√

9 +
√

57

32/3
= 1.76929...

Recall that a polynomial with integer coefficients is irreducible over Q iff it is irreducible over Z. Since
the only real root of p is the non-integer expression given above, we have that p is irreducible as an
element in Q[x], as desired.

Letting θ be a root of the given polynomial x3 − 2x − 2, expand the expression (1 + θ)(1 + θ + θ2) as
follows:

(1 + θ)(1 + θ + θ2) = 1 + 2θ + 2θ2 + θ3.
Since

θ3 − 2θ − 2 = 0,

we find that
θ3 = 2θ + 2,

we find that
(1 + θ)(1 + θ + θ2) = 3 + 4θ + 2θ2.

Now, to expand the expression
1 + θ

1 + θ + θ2
in Q(θ), we begin by expanding the expression

1

1 + θ + θ2

in Q(θ). So, it remains to find an expression of the form

aθ2 + bθ + c ∈ Q(θ)

such that
(aθ2 + bθ + c)(θ2 + θ + 1) = 1.

From the above equality, we have that:

aθ4 + aθ3 + aθ2 + bθ3 + bθ2 + bθ + cθ2 + cθ + c = 1.

From the above equation, we find that:

2a + 2b + c + 4aθ + 3bθ + cθ + 3aθ2 + bθ2 + cθ2 = 1.

We thus arrive at the following system of equalities:

2a + 2b + c = 1
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4a + 3b + c = 0

3a + b + c = 0

Solving the above system, we find that a = −2
3 , b = 1

3 , and c = 5
3 . Since

(−2

3
θ2 + 1

3
θ + 5

3
) (θ2 + θ + 1) = 1,

we find that
−2

3
θ2 + 1

3
θ + 5

3
= 1

θ2 + θ + 1
.

Therefore,

(1 + θ) (−2

3
θ2 + 1

3
θ + 5

3
) = 1 + θ

θ2 + θ + 1
.

Therefore,

−2θ3

3
− θ

2

3
+ 2θ + 5

3
= 1 + θ
θ2 + θ + 1

.

Equivalently,

−θ
2

3
+ 2θ

3
+ 1

3
= 1 + θ
θ2 + θ + 1

.

Exercise 3.73. Show that x3 + x + 1 is irreducible over F2 and let θ be a root. Compute the powers of
θ in F2(θ).

Solution 3.74. By way of contradiction, suppose that x3+x+1 is reducible over F2. We thus have that
x3 + x + 1 must be equal to a product of a degree-1 polynomial in F2[x] and a degree-2 polynomial in
F2[x]. By comparing the leading and constand coefficients of these polynomials, we have that

x3 + x + 1 = (x + 1)(x2 + cx + 1)

for some constant c. Expanding the above expression, we find that

x3 + x + 1 = x3 + (c + 1)x2 + (c + 1)x + 1.

But then c + 1 must be equal to 0, since the coefficient of x2 in the latter polynomial must be 0, but
c + 1 must also be equal to 1, as given by the coefficient of x in this polynomial. We thus arrive at a
contradiction.

Now, let θ denote a fixed root of the irreducible polynomial x3 + x + 1. Since

θ3 + θ + 1 = 0,

we have that
θ3 = θ + 1.

We may thus compute the initial powers of θ in the following manner:

θ = θ
θ2 = θ2

θ3 = θ + 1

θ4 = θ2 + θ
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θ5 = θ2 + θ + 1

θ6 = θ2 + 1

θ7 = 1.

From the above evaluations, we have that the following equalities hold for m ∈ N0:

θ7m+1 = θ
θ7m+2 = θ2

θ7m+3 = θ + 1

θ7m+4 = θ2 + θ
θ7m+5 = θ2 + θ + 1

θ7m+6 = θ2 + 1

θ7m+7 = 1.

Exercise 3.75. Prove directly that the map a + b
√

2↦ a − b
√

2 is an isomorphism of Q(
√

2) to itself.

Solution 3.76. Recall that Q(
√

2) consists precisely of expressions of the form a + b
√

2 for a, b ∈ Q.
Letting φ∶Q(

√
2) → Q(

√
2) denote the mapping whereby a + b

√
2 ↦ a − b

√
2, we have that φ is well-

defined in the sense that φ is defined for each element in the given domain of φ. Moreover, we find
that φ is well-defined in the sense that for each input element q in the domain of φ, φ(q) is in the given
codomain of φ. Given an arbitrary element c+d

√
2 in the codomain of φ, where c and d denote rational

numbers, we have that c−d
√

2 maps to c+d
√

2 ∈ cod(φ) with respect to φ, thus proving the surjectivity
of φ. Letting a1, a2, b1, b2 ∈ Q, suppose that:

φ(a1 + b1
√

2) = φ(a2 + b2
√

2).

Equivalently,
a1 − b1

√
2 = a2 − b2

√
2.

Comparing coefficients on both sides of the above equation, we may deduce that a1 = a2 and b1 = b2.
Therefore, a1 + b1

√
2 must be equal to a2 + b2

√
2, thus proving the injectivity of φ. So, it remains to

prove that φ is a ring homomorphism. As shown below, we find that φ preserves the underlying additive
binary operation on Q(

√
2):

φ((a1 + b1
√

2) + (a2 + b2
√

2)) = φ(a1 + a2 + (b1 + b2)
√

2)
= a1 + a2 − (b1 + b2)

√
2

= a1 + a2 − (b1
√

2 + b2
√

2)
= a1 + a2 − b1

√
2 − b2

√
2

= a1 − b1
√

2 + a2 − b2
√

2

= φ(a1 + b1
√

2) + φ(a2 + b2
√

2).

In a somewhat similar fashion, we find that φ preserves the underlying multiplicative binary operation
on Q(

√
2), as demonstrated below:

φ((a1 + b1
√

2) ⋅ (a2 + b2
√

2)) = φ(a1a2 + a2b1
√

2 + a1b2
√

2 + 2b1b2)
= φ(a1a2 + 2b1b2 + (a2b1 + a1b2)

√
2)

49



= a1a2 + 2b1b2 − (a2b1 + a1b2)
√

2

= a1a2 + 2b1b2 − a2b1
√

2 − a1b2
√

2

= a1a2 − a2b1
√

2 − a1b2
√

2 + 2b1b2

= (a1 − b1
√

2) ⋅ (a2 − b2
√

2)
= φ(a1 + b1

√
2) ⋅ φ(a2 + b2

√
2).

We thus have that φ is a bijective morphism, as desired.

Exercise 3.77. Suppose α is a rational root of a monic polynomial in Z[x]. Prove that α is an integer.

Solution 3.78. Letting α be as given above, suppose that α is a rational root of the monic polynomial

xn + zn−1xn−1 + zn−2xn−2 +⋯ + z1x + z0 ∈ Z[x],

letting n ∈ N, and letting z0, z1, . . . , zn−1 ∈ Z. Since α ∈ Q, we may write α = a
b , letting a ∈ Z, with

b ∈ Z ∖ {0}. We thus have that:

(a
b
)
n

+ zn−1 (
a

b
)
n−1

+ zn−2 (
a

b
)
n−2

+⋯ + z1 (
a

b
) + z0 = 0.

Let the fraction a
b be in lowest terms. Since

(a
b
)
n

+ zn−1 (
a

b
)
n−1

+ zn−2 (
a

b
)
n−2

+⋯ + z1 (
a

b
) + z0 = 0

we have that
(a
b
)
n

+ z

bn−1
= 0

for some integer z. But then
an

bn
+ bz
bn

= 0

so that
an = −bz.

If
a = ±pβ1α1

pβ2α2
⋯pβm1

αm1

is the prime factorization of a and
b = ±pδ1γ1pδ2γ2⋯p

δm2
γm2

is the prime factorization of b, so that

{pα1 , pα2 , . . . , pαm1
}

and
{pγ1 , pγ2 , . . . , pγm2

}
are disjoint, since

an = ±pnβ1α1
pnβ2α2

⋯pnβm1
αm1

we have that the prime factorization of z must contain pnβ1α1 p
nβ2
α2 ⋯p

nβm1
αm1

. But this shows that the absolute
value of an

z must be less than or equal to 1, thus proving that b ∈ {1,−1}, as desired.
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Exercise 3.79. Show that if α is a root of anxn+an−1xn−1+⋯+a1x+a0, then anα is a root of the monic
polynomial xn + an−1xn−1 + anan−2xn−2 +⋯ + an−2n a1x + an−1n a0.

Solution 3.80. Assume that α is a root of anxn + an−1xn−1 +⋯ + a1x + a0. We thus have that:

anα
n + an−1αn−1 +⋯ + a1α + a0 = 0.

Now, consider the following polynomial:

xn + an−1xn−1 + anan−2xn−2 +⋯ + an−2n a1x + an−1n a0.

Now, let the above expression be evaluated so that x = anα. So, we find that:

xn + an−1xn−1 + anan−2xn−2 +⋯ + an−2n a1x + an−1n a0

= (anα)n + an−1(anα)n−1 + anan−2(anα)n−2 +⋯ + an−2n a1(anα) + an−1n a0

= (anα)n + an−1an−1n αn−1 + an−2an−1n αn−2 +⋯ + an−1n a1α + an−1n a0

= annαn + an−1an−1n αn−1 + an−2an−1n αn−2 +⋯ + an−1n a1α + an−1n a0

= anan−1n αn + an−1an−1n αn−1 + an−2an−1n αn−2 +⋯ + an−1n a1α + an−1n a0

= an−1n (anαn + an−1αn−1 + an−2αn−2 +⋯ + a1α + a0)
= an−1n ⋅ 0
= 0.

Exercise 3.81. Prove that x3 − nx + 2 is irreducible for n ≠ −1,3,5.

Solution 3.82. In a previous solution, we showed that if α is a rational root of a monic polynomial in
Z[x], then α must be an integer. Now, suppose that x3 −nx+ 2 is not irreducible. Then x3 −nx+ 2 may
be written as a product of a degree-1 polynomial p(x) in Q[x] and a degree-2 element q(x) in Q[x].
But since x3 − nx + 2 is a monic polynomial with integer coefficients, we find that the rational root of
p(x) must be an integer. Write

x3 − nx + 2 = (x + z) (x2 + a
b
x + c

d
)

where a, b, c, d, z ∈ Z, and the fractions a
b and c

d are in lowest terms.

x3 − nx + 2 = x3 + (a
b
+ z)x2 + (a

b
z + c

d
)x + cz

d
.

Since a
b + z vanishes, we find that a

b = −z. So, we find that:

x3 − nx + 2 = x3 + (−z2 + c
d
)x + cz

d
.

Since
c

d
z = 2,

we have that
c

d
= 2

z
.
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But since −z2 + c
d is an integer, we have that c

d must be an integer. So, since 2
z must be an integer, we

have that z must be in {−2,−1,1,2}. So, since the coefficient of x in

x3 − nx + 2 = x3 + (−z2 + c
d
)x + cz

d
.

is equal to

−z2 + c
d
= −z2 + 2

z

and since z must be in {−2,−1,1,2}, we thus find that if x3 − nx + 2 is reducible as an element in Q[x],
then x3 − nx + 2 must be one of the following polynomials:

x3 − 5x + 2

x3 − 3x + 2

x3 + x + 2.

Contrapositively, if x3 − nx + 2 is such that n is not in {−1,3,5}, then x3 − nx + 2 is irreducible over Q.

Exercise 3.83. Prove that x5−ax−1 ∈ Z[x] is irreducible unless a = 0,2 or −1. The first two correspond
to linear factors, the third corresponds to the factorization (x2 − x + 1)(x3 + x2 − 1).

Solution 3.84. Assume that x5 −ax−1 is reducible. We first consider the case whereby x5 −ax−1 may
be written as a product of a degree-1 polynomial p(x) over Q and a degree-4 polynomial q(x) in Q[x].
We have previously shown that a rational root of a monic polynomial in Z[x] must be an integer. So,
the unique root of the degree-1 polynomial p(x) must be an integer, since the unique root of p(x) must
be a rational root of the monic polynomial x5 − ax − 1. Write:

x5 − ax − 1 = (x + z) (x4 + q3x3 + q2x2 + q1x + q0) ,

where z ∈ Z and q0, q1, q2, q3 ∈ Q. So, we find that:

x5 − ax − 1 = x5 + x4(z + q3) + (q2 + q3z)x3 + (q1 + q2z)x2 + (q0 + q1z)x + q0z.

That is,
x5 − ax − 1 = x5 + (q0 + q1z)x + q0z.

Since z is an integer, and since q0z = −1, we have that z ∈ {−1,1}. Writing z = ±1, we have that q0 = ∓1.
We thus arrive at the following equality:

x5 − ax − 1 = x5 + (∓1 + q1(±1))x − 1.

Since ∓1 + q1(±1) is an integer, we have that q1 must be an integer. Since ±1 + q3 = 0, we have that
q3 = ∓1. Since

q2 + q3(±1) = 0

we have that
q2 + (∓1)(±1) = 0.

Therefore,
q2 = 1.

Since
q1 + q2z = 0

52



we have that
q1 + ±1 = 0

so that
q1 = ∓1.

So, from the equality whereby

x5 − ax − 1 = x5 + (∓1 + q1(±1))x − 1.

we thus obtain the following equation:

x5 − ax − 1 = x5 + (∓1 + (∓1)(±1))x − 1.

Equivalently,
x5 − ax − 1 = x5 + (∓1 − 1)x − 1.

So, we find that −a ∈ {−2,0}. That is, a ∈ {0,2}.

Now suppose that x5 − ax − 1 may be written as a product of a degree-2 polynomial p(x) over Q and a
degree-4 polynomial q(x) over Q. Write:

x5 − ax − 1 = (x2 + q1x + q0)(x3 + r2x2 + r1x + r0).

Equivalently,

x5 − ax − 1 = q0r0 + q0r1x + q0r2x2 + q0x3 + q1r0x + q1r1x2 + q1r2x3 + q1x4 + r0x2 + r1x3 + r2x4 + x5.

That is,

x5 − ax − 1 = x5 + (q1 + r2)x4 + (q0 + q1r2 + r1)x3 + (q0r2 + q1r1 + r0)x2 + (q0r1 + q1r0)x + q0r0.

Since
−q1 = r2,

we have that:

x5 − ax − 1 = x5 + (q0 − q21 + r1)x3 + (−q0q1 + q1r1 + r0)x2 + (q0r1 + q1r0)x + q0r0.

Since
r0 = −

1

q0

we have that
q0 ∈ {−1,1},

with:
x5 − ax − 1 = x5 + (q0 − q21 + r1)x3 + (−q0q1 + q1r1 −

1

q0
)x2 + (q0r1 −

q1
q0

)x − 1.

Since
r1 = q21 − q0,

we find that:
x5 − ax − 1 = x5 + (−q0q1 + q1(q21 − q0) −

1

q0
)x2 + (q0(q21 − q0) −

q1
q0

)x − 1
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Since q0 ∈ {−1,1}, we may assume without loss of generality that q0 = 1, with:

x5 − ax − 1 = x5 + (−q1 + q1(q21 − 1) − 1)x2 + ((q21 − 1) − q1)x − 1.

Now, q1 must be an integer since q21 − q1 − 1 = −a. Since

−q1 + q1(q21 − 1) − 1 = 0,

we have that
−q1 + q1(q21 − 1) = 1,

so that q1 ∈ {−1,1}, since q1 divides 1. From the above equality, we thus have that q1 = −1. So, we have
that

−a = q21 − q1 − 1

and that q1 = −1, so that
a = −1

as desired.

3.10 Exercises from Section 13.2

Exercise 3.85. Let F be a finite field of characteristic p. Prove that ∣F∣ = pn for some positive integer
n.

Solution 3.86. Letting F be as given above, suppose that the cardinality of F is equal to m ∈ N. Since
F is of characteristic p, we have that the smallest natural number ` ∈ N such that

1 + 1 +⋯ + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
`

= 0

is such that ` = p. So, we find that the following expressions are pairwise distinct, as elements in F:

1,1 + 1, . . . ,1 + 1 +⋯ + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
`−1

,0.

It is possible that F consists precisely of the above expressions, in which case we find that F is of order
p. Now, suppose that it is not the case that F consists only of the following expressions:

1,1 + 1, . . . ,1 + 1 +⋯ + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p−1

,0.

So, suppose that F contains another element α, which is not equal to any of the above expressions. Since
the underlying multiplicative group F∗ of F is finite, we have that the order of α ≠ 0 as an element in
F∗ is finite. Let the order of α ∈ F∗ be denoted as kα = k ∈ N. So, we find that minimal polynomial
mα,Z/pZ(x) of α over Z/pZ is equal to xk − 1. So, we have that

[(Z/pZ)(α) ∶ Z/pZ] = k.

So, from the above equality, we have that the cardinality of (Z/pZ)(α) is pk. If F happens to be equal
to (Z/pZ)(α), then the cardinality of F is pk. Otherwise, F must contain another element α′ which is
not in (Z/pZ)(α). By repeating this argument inductively, we find that F must be of the form

(Z/pZ)(α,α′, α′′, . . . , α(r)).
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Since the order of (Z/pZ)(α) is pkα , writing

[(Z/pZ)(α,α′) ∶ (Z/pZ)(α)] = kα′ ,

we have that the order of (Z/pZ)(α,α′) must be pkαkα′ . Continuing in this manner inductively yields
the desired result.

Exercise 3.87. Let g(x) = x2 + x − 1 and let h(x) = x3 − x + 1. Obtain fields of 4, 8, 9 and 27 elements
by adjoining a root of f(x) to the field F where f(x) = g(x) or h(x) and F = F2 or F3. Write down
the multiplication tables for the fiels with 4 and 9 elements and show that the nonzero elements form a
cyclic group.

Solution 3.88. We begin by letting f(x) = g(x) = x2 +x− 1, and we let F be equal to F2. Let θ denote
a fixed root of x2+x−1. It is obvious that θ is not in F = F2, since 12+1−1 = −1 and since 02+0−1 = −1.
Letting the elements of F be denoted so that F = {0,1}, it is clear that the field F (θ) consists precisely
of the elements indicated below,

F (θ) = {0,1, θ, θ2 = θ + 1}.
Now, let f(x) = h(x) = x3 − x + 1, and let F = F2. Let θ be a fixed root of f(x) = h(x) = x3 − x + 1 =

x3 + x + 1. We claim that x3 − x + 1 is irreducible over F . To show this, suppose that,

x3 + x + 1 = (x2 + ax + 1)(x + 1).

That is,
x3 + x + 1 = x3 + x2(1 + a) + x(1 + a) + 1.

We have that 1 + a must be equal to 0, since the coefficient of x2 on the right-hand side of

x3 + x + 1 = x3 + x2(1 + a) + x(1 + a) + 1.

must be equal to 0, but we find that 1 + a must be equal to 1, thus yielding the desired contradiction.
Letting θ denote a fixed root of x3 +x+ 1, we find that x3 +x+ 1 is the minimal polynomial of θ over F .
So, since

[F (θ) ∶ F ] = deg mθ(x) = degθ,

we find that
[F (θ) ∶ F ] = 3,

so that the cardinality of F (θ) is equal to 23 = 8.
Again let f(x) = g(x) = x2 + x − 1. Now, let F = F3. Observe that as a polynomial over F = F3, we

find that f(x) is equal to x2 + x + 2. We claim that x2 + x + 2 is irreducible over F3. If

x2 + x + 2 = (x + a)(x + b)

then
x2 + x + 2 = x2 + (a + b)x + ab.

Then a + b = 1, and ab = 2. If a = 0 and b = 1 or vice-versa, then ab = 0; if a = 2 and b = 2, then ab = 1.
So, it is clear that x2 + x+ 2 is irreducible as an element in F [x]. So, letting θ be a root of this element
in F3[x], we find that the minimal polynomial of θ over F3 must be x2 + x + 2. Since

[F (θ) ∶ F ] = degmθ(x) = degθ,
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we have that
[F (θ) ∶ F ] = 2,

so that the cardinality of F (θ) must be equal to 32 = 9.
Now, let f(x) = h(x) = x3−x+1, and let F denote the field F3. We claim that x3−x+1 is irreducible

over F3. Observe that x3 − x + 1 is equivalent to x3 + 2x + 1 in F3[x]. By way of contradiction, suppose
that

x3 + 2x + 1 = (x + a)(x2 + bx + c),
so that

x3 + 2x + 1 = x3 + (a + b)x2 + (ab + c)x + ac.
Since the expression (a + b)x2 must vanish, we have that −a = b. We thus have that:

x3 + 2x + 1 = x3 + (−a2 + c)x + ac.

It cannot be the case that a = c = 1, because the expression (−a2 + c)x cannot vanish. It cannot be the
case that a = c = 2, because −22+2 = −4+2 = −2 = 1, modulo 3. We thus find that x3+2x+1 is irreducible
as an element in F3[x]. Letting α denote a fixed roow of x3 + 2x + 1, since

[F (α) ∶ F ] = deg mα(x) = degα,

we find that
[F (α) ∶ F ] = 3,

so that the cardinality of F (α) is 33 = 27.
We have previously noted that in the case whereby F = F2 and f(x) = g(x) = x2+x−1, we have that:

F (θ) = {0,1, θ, θ2 = θ + 1}.

So, from the above evaluation, we may compute the multiplication table for this order-4 field as follows.

○ 0 1 θ θ + 1
0 0 0 0 0
1 0 1 θ θ + 1
θ 0 θ θ + 1 1

θ + 1 0 θ + 1 1 θ

Now, consider the multiplication table obtained by restricting the above composition table to the
nonzero elements in F2(θ):

○ 1 θ θ + 1
1 1 θ θ + 1
θ θ θ + 1 1

θ + 1 θ + 1 1 θ

By comparing the above composition table with the following Cayley table for the additively cyclic
group Z/3Z of integers modulo 3, it is clear that (F3(θ))∗ ≅ Z/3Z.

○ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
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We again consider the case whereby f(x) = g(x) = x2 + x − 1 and F = F3. Letting θ denote a root of
f(x) = g(x) = x2 +x− 1 ∈ F3[x], we have previously noted that the field F (θ) consists of 9 elements. We
claim that the following expressions are pairwise distinct:

0,1,2, θ,2θ, θ + 1, θ + 2,2θ + 1,2θ + 2.

The above expressions are all degree-0 or degree-1 polynomial expressions in terms of θ, and since the
minimal polynomial for θ over F is quadratic, we have that it cannot be the case that two distinct
expressions among

0,1,2, θ,2θ, θ + 1, θ + 2,2θ + 1,2θ + 2

can be equal. Observe that since θ2 + θ − 1 = 0, we have that θ2 = 2θ + 1.

○ 0 1 2 θ 2θ θ + 1 θ + 2 2θ + 1 2θ + 2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 θ 2θ θ + 1 θ + 2 2θ + 1 2θ + 2
2 0 2 1 2θ θ 2θ + 2 2θ + 1 θ + 2 θ + 1
θ 0 θ 2θ 2θ + 1 θ + 2 1 θ + 1 2θ + 2 2
2θ 0 2θ θ θ + 2 2θ + 1 2 2θ + 2 θ + 1 1
θ + 1 0 θ + 1 2θ + 2 1 2 θ + 2 2θ θ 2θ + 1
θ + 2 0 θ + 2 2θ + 1 θ + 1 2θ + 2 2θ 2 1 θ
2θ + 1 0 2θ + 1 θ + 2 2θ + 2 θ + 1 θ 1 2 2θ
2θ + 2 0 2θ + 2 θ + 1 2 1 2θ + 1 θ 2θ θ + 2

Now, to show that the nonzero elements in the field of order 9 illustrated above forms a cyclic group,
it suffices to find a nonzero element which is of order 8 with respect to the underlying multiplicative
binary operation on this field. It is obvious that this element cannot be in {0,1,2}. We proceed to
apply a brute-force approach towards the problem of finding an element of this form, as suggested by
the following computations.

θ2 = 2θ + 1

θ3 = θ(2θ + 1)
= 2θ2 + θ
= 2(2θ + 1) + θ
= 4θ + 2 + θ
= 5θ + 2

= 2θ + 2

θ4 = θ(2θ + 2)
= 2θ2 + 2θ

= 2(2θ + 1) + 2θ

= 4θ + 2 + 2θ

= 6θ + 2

= 2

θ5 = 2θ

θ6 = 2θ2
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= 2(2θ + 1)
= 4θ + 2

= θ + 2

θ7 = θ(θ + 2)
= θ2 + 2θ

= 2θ + 1 + 2θ

= 4θ + 1

= θ + 1

θ8 = θ(θ + 1)
= θ2 + θ
= 2θ + 1 + θ
= 1.

So, since the multiplicative order of θ is 8, and since there are a total of 8 nonzero elements in F (θ), we
have that the nonzero elements in F (θ) form a cyclic group of order 8.

Exercise 3.89. Determine the minimal polynomial over Q for the element 1 + i.

Solution 3.90. Letting i denote the imaginary unit, consider the expression (1 + i)2. By the binomial
theorem, we find that:

(1 + i)2 = 1 + 2i + i2.
Equivalently,

(1 + i)2 = 2i.

Rewrite the above equality in the following manner:

(1 + i)2 = 2i + 2 − 2.

Equivalently,
(1 + i)2 = 2(i + 1) − 2.

Therefore,
(1 + i)2 − 2(i + 1) + 2 = 0.

So, we find that the expression 1 + i must be a root of the following polynomial:

x2 − 2x + 2 = 0.

The discriminant corresponding to the above quadratic equation is: −4. Consequently, the quadratic
polynomial x2 − 2x + 2 is irreducible as an element in Q[x]. Since 1 + i is a root of the irreducible
polynomial x2 − 2x+ 2, which is in Q[x], it is clear that the minimal polynomial over Q for the element
1 + i is x2 − 2x + 2.

Exercise 3.91. Determine the degree over Q of 2 +
√

3 and of 1 + 3
√

2 + 3
√

4.

Solution 3.92. To evaluate the degree over Q of 2+
√

3, we begin by evaluating the expression (2+
√

3)2
in the following manner:

(2 +
√

3)2 = 7 + 4
√

3.
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Now, consider the following equality:

(2 +
√

3)
2
− 4 (2 +

√
3) = −1.

We thus obtain the following equality:

(2 +
√

3)
2
− 4 (2 +

√
3) + 1 = 0.

We thus find that 2 +
√

3 is a root of the following polynomial:

x2 − 4x + 1 ∈ Q[x].

Since the discriminant of x2 − 4x + 1 ∈ Q[x] is equal to 12, it is clear that this polynomial is irreducible
as an element in Q[x]. So, we find that the degree over Q of 2+

√
3 is equal to 2 = deg(x2 − 4x+ 1). We

make use of a similar approach to compute the degree over Q of 1 + 3
√

2 + 3
√

4. Rewrite the expression

(1 + 3
√

2 + 22/3)
3
+ a (1 + 3

√
2 + 22/3)

2
+ b (1 + 3

√
2 + 22/3) + c

as follows:
(5a + b + c + 19) + (4a + b + 0c + 15) 3

√
2 + (3a + b + 0c + 12)22/3.

Now, suppose that the above expression vanishes. We thus arrive at the following system of equations:

5a + b + c + 19 = 0,

4a + b + 0 × c + 15 = 0,

3a + b + 0 × c + 12 = 0.

Equivalently,

5 × a + 1 × b + 1 × c = −19,

4 × a + 1 × b + 0 × c = −15,

3 × a + 1 × b + 0 × c = −12.

In matrix form, we have that:
⎡⎢⎢⎢⎢⎢⎣

5 1 1
4 1 0
3 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−19
−15
−12

⎤⎥⎥⎥⎥⎥⎦
.

Equivalently,
⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1 −1
0 −3 4
1 −2 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−19
−15
−12

⎤⎥⎥⎥⎥⎥⎦
.

Therefore,
⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−3
−3
−1

⎤⎥⎥⎥⎥⎥⎦
.

So, we have thus far shown that 1 + 3
√

2 + 22/3 is a root of the polynomial:

x3 − 3x2 − 3x − 1 ∈ Q[x].
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By way of contradiction, suppose that x3−3x2−3x−1 is not irreducible as an element in Q[x]. From this
assumption, we find that x3 − 3x2 − 3x − 1 may be written as a product of a degree-1 monic polynomial
p(x) in Q[x] and a degree-2 monic polynomial in Q[x]. Upon inspection of the graph of x3−3x2−3x−1,
we find that x3 − 3x2 − 3x − 1 has only one real root. Since 1 + 3

√
2 + 22/3 is a root of this polynomial, we

have that 1 + 3
√

2 + 22/3 is the unique real root of this polynomial. So, we have that 1 + 3
√

2 + 22/3 must
be a root of p(x), which is impossible, since p(x) is a degree-1 polynomial in Q[x], if we accept that
1 + 3

√
2 + 22/3 is irrational. Alternatively, one may make use of the fact that a rational root of a monic

polynomial in Z[x] must be an integer.

Exercise 3.93. Let F = Q(i). Prove that x3 − 2 and x3 − 3 are irreducible over F .

Solution 3.94. By way of contradiction, suppose that it is not the case that x3 − 2 is irreducible over
F = Q(i). We thus have that x3 − 2 may be written as a product of a monic degree-1 polynomial in
(Q(i))[x] and a monic degree-2 polynomial in (Q(i))[x], as indicated below, letting a, b, c, d, e, f ∈ Q:

x3 − 2 = (x + (a + ib)) (x2 + x(c + id) + (e + if)) .

We thus find that x3 − 2 is equal to:

x3 + (a + c + i(b + d))x2 + (ac + ibc + iad − bd + e + if)x + (ae + ibe + iaf − bf)

So, c = −a, and d = −b:

x3 + (−a2 − i2ab + b2 + e + if)x + (ae + ibe + iaf − bf)

Therefore, a2 − b2 = e. Similarly, f = 2ab. Since

ae − bf = −2

we have that
a(a2 − b2) − b(2ab) = −2.

Equivalently,
a3 − 3ab2 = −2.

Also, since be + af = 0, we have that

b(a2 − b2) + a(2ab) = 0,

so that
3a2b − b3 = 0.

Since a is rational, and since
a3 − 3ab2 = −2,

we have that b is nonzero. So we have that

3a2 = b2.

But this is impossible, since the above equality implies that
√

3a = b,

which is impossible, since a and b are both in Q. An identical argument may be applied for the other
given polynomial.
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Exercise 3.95. Prove directly from the definitions that the field F (α1, α2, . . . , αn) is the composite of
the fields F (α1), F (α2), . . ., F (αn).

Solution 3.96. We begin by presenting the following definition from the class textbook:

“Definition. Let K1 and K2 be two subfields of a field K. Then the composite field of K1 and K2,
denoted K1K2, is the smallest subfield of K containing both K1 and K2. Similarly, the composite of
any collection of subfields of K is the smallest subfield containing all the subfields.” (p. 528)

Since it was not specified otherwise, we may assume without loss of generality that there exists an
extension K of the field K such that α1, α2, . . . , αn ∈K. By definition, we have that the smallest subfield
of K containing both F and the elements α1, α2, . . ., αn is F (α1, α2, . . . , αn). In a similar fashion, we
have that the compositie

F (α1)F (α2)⋯F (αn)
of the fields F (α1), F (α2), . . ., F (αn), is precisely the smallest subfield of K containing: F (α1), F (α2),
. . ., F (αn). Using these definitions, we must prove that:

F (α1, α2, . . . , αn) = F (α1)F (α2)⋯F (αn).

Since F (α1, α2, . . . , αn) is a subfield of K containing αi and F , for each index i, and since F (αi) the
smallest subfield of K containing αi and F , we have that:

F (α1, α2, . . . , αn) ⊇ F (αi).

Now, since F (α1, α2, . . . , αn) is a subfield ofK containing F (α1), F (α2), . . ., F (αn), and since F (α1)F (α2)⋯F (αn)
is the smallest subfield of K containing F (α1), F (α2), . . ., F (αn), we thus arrive at the following inclu-
sion:

F (α1, α2, . . . , αn) ⊇ F (α1)F (α2)⋯F (αn).
Certainly, the composite field F (α1)F (α2)⋯F (αn) is a subfield ofK containing both F and the elements
α1, α2, . . ., αn. But, by definition, we have that F (α1, α2, . . . , αn) is the smallest subfield of K containing
both F and the elements α1, α2, . . ., αn, thus proving the reverse inclusion whereby

F (α1, α2, . . . , αn) ⊆ F (α1)F (α2)⋯F (αn),

as desired.

Exercise 3.97. Prove that Q(
√

2 +
√

3) = Q(
√

2,
√

3) [one inclusion is obvious, for the other consider
(
√

2 +
√

3)2, etc.]. Concluse that [Q(
√

2 +
√

3) ∶ Q] = 4. Find an irreducible polynomial satisfied by√
2 +

√
3.

Solution 3.98. Since Q(
√

2,
√

3) is the field generated by {
√

2,
√

3} over Q, we have that
√

2 +
√

3 is
in Q(

√
2,

√
3), so that

Q(
√

2 +
√

3) ⊆ Q(
√

2,
√

3).
To prove the reverse inclusion, we begin by considering the expression (

√
2 +

√
3)3. Expanding this

expression using the binomial theorem, we find that:

(
√

2 +
√

3)
3
= 11

√
2 + 9

√
3.
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Therefore,

−1

2
(
√

2 +
√

3)
3
+ 11

2
(
√

2 +
√

3) =
√

3.

This proves that
√

3 is in Q(
√

2 +
√

3). In a somewhat similar fashion, we find that:

1

2
(
√

2 +
√

3)
3
− 9

2
(
√

2 +
√

3) =
√

2.

We accordingly deduce that
√

2 ∈ Q(
√

2+
√

3). So, since Q(
√

2+
√

3) which contains each element in Q
and which contains

√
2 and

√
3, we find that each element in Q(

√
2 +

√
3) must be in Q(

√
2,

√
3), thus

proving the reverse inclusion whereby:

Q(
√

2 +
√

3) ⊇ Q(
√

2,
√

3).

We thus arrive at the following equality:

Q(
√

2 +
√

3) = Q(
√

2,
√

3).

Now, to compute the dimension of Q(
√

2+
√

3) as a Q-vector space, it remains to compute the dimension
of Q(

√
2,

√
3) as a vector space over Q. We thus proceed to consider the following tower of fields.

Q(
√

2,
√

3)
RRRRRRRRRRR

Q(
√

2)
RRRRRRRRRRR
Q

Since the minimal polynomial of
√

2 over Q is m√
2,Q(x) = x2 − 2, we find that:

[Q(
√

2) ∶ Q] = deg(m√
2,Q(x)) = 2.

Now, consider the minimal polynomial of
√

3 over Q(
√

2). Since
√

3 satisfies the degree-2 polynomial
x2 − 3 over Q(

√
2), and since elements in Q(

√
2) are of the form a + b

√
2 for rational numbers a and b,

it is evident that
m√

3,Q(
√
2)(x) = x2 − 3,

so that
[Q(

√
2,

√
3) ∶ Q(

√
2)] = deg(m√

3,Q(
√
2)(x)) = 2.

We thus find that:

[Q(
√

2,
√

3) ∶ Q] = [Q(
√

2,
√

3) ∶ Q(
√

2)][Q(
√

2) ∶ Q] = 2 × 2 = 4.

So, we thus arrive at the following:

[Q(
√

2 +
√

3) ∶ Q] = [Q(
√

2,
√

3) ∶ Q] = 4.
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Letting a, b, c, d ∈ Q, assume that the following expression vanishes:

(
√

2 +
√

3)
4
+ a (

√
2 +

√
3)

3
+ b (

√
2 +

√
3)

2
+ c (

√
2 +

√
3) + d.

Equivalently,
49 + 20

√
6 + 11

√
2a + 9

√
3a + 5b + 2

√
6b +

√
2c +

√
3c + d.

Equivalently,
(11a + c)

√
2 + (9a + c)

√
3 + (2b + 20)

√
6 + 5b + d + 49 = 0.

Therefore,
(11a + c)

√
2 + (9a + c)

√
3 + (2b + 20)

√
6 + 5b + d = −49.

So, we arrive at the following system of equations, presented in matrix form:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

11 0 1 0
9 0 1 0
0 2 0 0
0 5 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c
d

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−20
−49

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the 4 × 4 matrix given in the above equality is invertible, we have that:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c
d

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

11 0 1 0
9 0 1 0
0 2 0 0
0 5 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−20
−49

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Equivalently,
⎛
⎜⎜⎜
⎝

a
b
c
d

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0
−10
0
1

⎞
⎟⎟⎟
⎠
.

So, we may deduce that
√

2 +
√

3 is a root of the following degree-4 polynomial:

x4 − 10x2 + 1.

That is,
(
√

2 +
√

3)
4
− 10 (

√
2 +

√
3)

2
+ 1 = 0.

Since
[Q(

√
2 +

√
3) ∶ Q] = 4,

we find that the degre of the minimal polynomial of
√

2 +
√

3 over Q is 4. So, since x4 − 10x2 + 1 is a
monic degree-4 polynomial over Q with

√
2+

√
3 as a root, we may accordingly deduce that m√

2+
√
3,Q(x)

is equal to x4 − 10x2 + 1.

Exercise 3.99. Let F be a field of characteristic ≠ 2. Let D1 and D2 be elements of F , neither of which
is a square in F . Prove that F (

√
D1,

√
D2) is of degree 4 over F if D1D2 is not a square in F and is of

degree 2 over F otherwise. When F (
√
D1,

√
D2) is of degree 3 over F the field is called a biquadratic

extension of F .
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Solution 3.100. Letting F , D1, and D2 be as given above, first suppose that D1D2 is not a square in
F . We proceed to consider the following tower of fields.

F (
√
D1,

√
D2)RRRRRRRRRRR

F (
√
D1)RRRRRRRRRRR
F

Now, consider the dimension of F (
√
D1) as a vector space over F . Recall that D1 is not a square in

F . We thus have that
√
D1 is not an element in F . Therefore, F (

√
D1) is not equal to F . That is,

[F (
√
D1) ∶ F ] is not equal to 1. Now, observe that

√
D1 is a root of the polynomial x2 −D1 ∈ F [x].

Since
√
D1 cannot be a root of a degree-1 polynomial in F [x], and since

√
D1 is a root of the degree-2

polynomial
x2 −D1 ∈ F [x],

we may accordingly deduce that the minimal polynomial m√
D1,F

(x) of
√
D1 over F is equal to x2−D1 ∈

F [x]. We thus find that:
[F (

√
D1) ∶ F ] = deg(m√

D1,F
(x)) = 2.

Now, consider the dimension of F (
√
D1,

√
D2) as a vector space over F (

√
D1). Recall that we are

working under the assumption that D1D2 is not a square in F . We thus have that D1 and D2 must be
distinct. Observe that

√
D2 is a root of the polynomial x2 −D2 ∈ F (

√
D1)[x].

By way of contradiction, suppose that
√
D2 is also a root of a degree-1 polynomial in F (

√
D1)[x],

i.e., that
√
D2 is in F (

√
D1). We thus have that

√
D2 may be written as f1 + f2

√
D1, letting f1 and f2

be elements in F . Since √
D2 = f1 + f2

√
D1,

we find that
D2 = (f1 + f2

√
D1)

2
,

so that
D2 = f 2

1 + 2f1f2
√
D1 + f 2

2D1.

Equivalently,
D2 − f 2

1 − f 2
2D1 = 2f1f2

√
D1.

Observe that the expression 2 does not vanish in F , under our assumption that F is not of characteristic
2. We claim that f1 is nonzero, because otherwise, we would have that

D2 = f 2
2D1,

so that
D1D2 = f 2

2D
2
1,

which is impossible, since D1D2 is not a square in F . A symmetric argument shows that f2 is nonzero.
Since f1 and f2 are both nonzero elements in the field F , and since the field F is not of characteristic 2,
we thus obtain the equality whereby

1

2
⋅ 1

f1
⋅ 1

f2
⋅ (D2 − f 2

1 − f 2
2D1) =

√
D1.

64



But this contradicts that D1 is not a square in F .
So, we have thus far shown that

√
D2 is a root of the degree-2 polynomial x2 −D2 ∈ F (

√
D1)[x],

and that
√
D2 is not a root of any degree-1 polynomial in F (

√
D1)[x]. Accordingly, we deduce that the

minimal polynomial m√
D2,F (

√
D1)

(x) of
√
D2 over F (

√
D1) is equal to x2 −D2 ∈ F (

√
D1)[x]. We thus

find that:
[F (

√
D1,

√
D2) ∶ F (

√
D1)] = deg(m√

D2,F (
√
D1)

(x)) = 2.

So, we find that:
[F (

√
D1,

√
D2) ∶ F (

√
D1)][F (

√
D1) ∶ F ] = 2 ⋅ 2,

as desired.
Now, suppose that D1D2 is a square in F . By repeating a previous argument, we find that [F (

√
D1) ∶

F ] = 2. Now, consider the degree of F (
√
D1,

√
D2) over F (

√
D1). Suppose that D1D2 = f 2, letting f

be an element in F . Since D1 is not a square in F , we have that D1 is nonzero. So, we have that:

D2 =
f 2

D1

.

Therefore, √
D2 =

f√
D1

∈ F (
√
D1).

Since
√
D2 is in F (

√
D2), it is clear that F (

√
D1)(

√
D2) must be equal to F (

√
D1), so that

[F (
√
D1,

√
D1) ∶ F (

√
D1)][F (

√
D1) ∶ F ] = 1 ⋅ 2 = 2,

as desired.

Exercise 3.101. Let F be a field of characteristic ≠ 2. Let a, b be elements of the field F with b not a
square in F . Prove that a necessary and sufficient condition for

√
a +

√
b = √

m +√
n for some m and

n in F is that a2 − b is a square in F . Use this to determine when the field Q(
√
a +

√
b) (a, b ∈ Q) is

biquadratic over Q.

Solution 3.102. (Ô⇒) First suppose that there exist elements m and n in F such that
√
a +

√
b =√

m+√
n, letting F be as given above, as a field such that the characteristic of F is not equal to 2, with

a and b as elements in F . By squaring both sides of the equation
√
a +

√
b =

√
m +

√
n,

we obtain the equality whereby
a +

√
b =m + n + 2

√
mn.

Observe that since the field F is such that the characteristic of F is not equal to 2, we have that the
expression 2

√
mn does not vanish. The vanishing of 2

√
mn would contradict that

√
b /∈ F . So, we obtain

the equality given below, where the expression
√

4mn cannot be equal to 0:

a +
√
b =m + n +

√
4mn.

Since a, m, and n are elements in the base field F , and since
√
b is not in F , we have that

√
4mn is not

in F . So, by considering both sides of the equality

a +
√
b =m + n +

√
4mn
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in terms of an F -basis for some appropriate algebraic extension of F , we may conclude that

a =m + n

and that √
b =

√
4mn,

with
b = 4mn.

Now, consider the expression a2 − b. We have that

a2 − b = (m + n)2 − 4mn,

so that
a2 − b =m2 − 2mn + n2 = (m − n)2 = (n −m)2

thus proving that a2 − b is a square with respect to the field F .

(⇐Ô) Conversely, assume that a2 − b is a square with respect to the field F . So, there exists some
element f in F such that

a2 − b = f 2.

Now, letting m and n denote indeterminates in F , consider the following system of linear equations:

m − n = f
m + n = a.

It is natural to appeal to the fact that the characteristic of F is not equal to 2. Adding the equations
m − n = f and m + n = a, we find that

2m = f + a,
with 2 ∈ F as a unit in F , i.e., with 2 ∈ F as an invertible element in F . Since 2 is a unit in F , from the
equality

2m = f + a
we find that

m = 1

2
(f + a) .

By subtracting the equation m − n = f from m + n = a, we have that

2n = a − f.

Again since the element 2 ∈ F is a unit in F , we have that

n = 1

2
(a − f) .

So, we have shown that there exist elements m and n in F such that:

m − n = f
m + n = a.
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From the equality
a2 − b = f 2,

we have that
a2 − b = (m − n)2.

We thus have that
a2 − b =m2 − 2mn + n2.

Equivalently,
a2 − b =m2 + 2mn + n2 − 4mn.

That is,
a2 − b = (m + n)2 − 4mn.

But we also have that a =m + n, which shows that

b = 4mn,

so that √
b =

√
4mn.

Since a is equal to m + n, we have that

a +
√
b =m + n + 2

√
mn.

Equivalently,
a +

√
b = (

√
m +

√
n)2,

so that √
a +

√
b =

√
m +

√
n,

as desired.

We thus proceed to apply the above results to determine when the field Q(
√
a +

√
b) (a, b ∈ Q) is

biquadratic over Q.

First of all, if b is a square, then we have that a +
√
b is an element in Q, so that the extension field

Q(
√
a +

√
b) in this case is an extension of Q of degree 2. In this trivial case, the extension Q(

√
a +

√
b)

is not biquadratic, since a biquadratic extension from a base field must be of degree 4.

Now, assume that b is not a square. Given elements x and y in Q such that
√
x+√

y is not in Q, consider
the field Q(√x +√

y). Since
(
√
x +√

y)(
√
x −√

y) = x − y ∈ Q,
and since

√
x +√

y is not an element in Q, we have that

√
x −√

y = x − y√
x +√

y
∈ Q (

√
x +√

y) .

Since
√
x +√

y and
√
x −√

y are both elements in Q (√x +√
y), we have that

√
x and √

y are both in
Q (√x +√

y), so we have that:
Q(

√
x,

√
y) ⊆ Q (

√
x +√

y) .
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Conversely, we have that an arbitrary expression of the form

q1 + q2 (
√
x +√

y)

for elements q1, q2 ∈ Q, we have that

q1 + q2 (
√
x +√

y) = q1 + q2
√
x + q2

√
y ∈ Q(

√
x,

√
y),

thus establishing the reverse inclusion whereby:

Q(
√
x,

√
y) ⊇ Q (

√
x +√

y) .

We have thus proven the following proposition.

Proposition 3.103. Given elements x and y in Q such that
√
x +√

y is not in Q,

Q(
√
x,

√
y) = Q (

√
x +√

y) .

Now, recall that we are currently considering the case whereby b is not a square. From our previous
results, we have that there exist rational numbers m and n such that

√
a +

√
b =

√
m +

√
n

if and only if a2 − b is a square in Q. But since we are working under the assumption that b is not a
square, we have that there exist rational numbers m and n such that

√
a +

√
b =

√
m +

√
n

if and only if there exist rational numbers m and n such that
√
m +√

n /∈ Q and
√
a +

√
b =

√
m +

√
n.

So, we have that there exist rational numbers m and n such that

Q(
√
m,

√
n) = Q(

√
a +

√
b)

if and only if a2 − b is a square in Q. Since we are working under the assumption that b is not a square,
we have that there exist non-square rational numbers m and n such that

Q(
√
m,

√
n) = Q(

√
a +

√
b)

if and only if a2 − b is a square in Q, in which case

m = 1

2
(a ±

√
a2 − b)

and
n = 1

2
(a ∓

√
a2 − b) .

So, from our results given in the previous exercise, we have that Q(
√
a +

√
b) is a biquadratic extension

of Q if and only if: a2 − b is a square in Q and b
4 is not a square in Q. But recall that we let b be such

that b is not a square in Q. We may conclude that: Q(
√
a +

√
b) is a biquadratic extension of Q if and

only if: b is not a square in Q and a2 − b is a square in Q.
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3.11 Exercises from Section 13.3

Problem 3.104. Prove that it is impossible to construct the regular 9-gon.

Solution 3.105. We begin by observing that each interior angle within a regular 9-gon is equal to
(360

9
)○. That is, each interior angle within a regular 9-gon is equal to 40○. As discussed in the class

textbook, if an angle θ can be constructed using a compass and straightedge, then cos(θ) can also
be constructed. Conversely, if cos(θ) can be constructed, then the angle θ can be constructed. The
following fundamental result concerning straightedge and compass constructions is taken from the class
textbook, Dummit and Foote’s Abstract Algebra:

“Proposition 23. If the element α ∈ R is obtained from a field F ⊂ R be a series of compass and
straightedge constructions then [F (α) ∶ F ] = 2k for some integer k ≥ 0.” (p. 533)

Now, by way of contradiction, suppose that it is possible to construct a regular 9-gon. In order to
construct a regular 9-gon using a straightedge and compass, one would need to construct angles of the
form 2π

9 . So, from our initial assumption, we have that the angle 2π
9 is constructible. Equivalently,

cos (2π
9
) is constructible. By the triple angle formula for the cosine function, we find that:

cos 3α = 4cos3 α − 3cos α,

for an input angle α. We thus have that:

cos(2π

3
) = 4cos3 (2π

9
) − 3cos(2π

9
) .

Equivalently,

−1

2
= 4cos3 (2π

9
) − 3cos(2π

9
) .

So, we find that cos (2π
9
) is a root of the following polynomial:

4x3 − 3x + 1

2
∈ Q[x].

Equivalently, cos (2π
9
) is a root of the following polynomial:

8x3 − 6x + 1 ∈ Q[x].

We claim that the above polynomial is irreducible over Q. By way of contradiction, suppose that the
above polynomial may be written as

8x3 − 6x + 1 = (q1x + q2) (q3x2 + q4x + q5) ,

where qi ∈ Q for each index i. By dividing by an appropriate nonzero rational number, if necessary, we
may assume without loss of generality that the degree-1 factor in the above equality is monic:

8x3 − 6x + 1 = (x + q2) (8x2 + q4x + q5) .

In a similar fashion, we find that:

8x3 − 6x + 1 = (x + q2) (8x2 + q4x +
1

q2
) .
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Let q2 = a
b where a and b are integers, such that b is nonzero and a

b is in lowest terms. Also, let q4 = c
d ,

where c and d are integers, so that d is nonzero and c
d is in lowest terms:

8x3 − 6x + 1 = (x + a
b
)(8x2 + c

d
x + b

a
) .

Equivalently,

8x3 − 6x + 1 = 8x3 + (8a

b
+ c
d
)x2 + (ac

bd
+ b
a
)x + 1.

Since 8a
b + c

d vanishes, we have that −8a
b = c

d . Therefore,

8x3 − 6x + 1 = 8x3 + (−8a2

b2
+ b
a
)x + 1.

That is,

8x3 − 6x + 1 = 8x3 + (−8a3 + b3
ab2

)x + 1.

Since −8a3+b3

ab2 is equal to −6, we have that

−8a3 + b3 = −6 ⋅ ab2.

Therefore,
(−8a3 + b3) (mod a) ≡ (−6 ⋅ ab2) (mod a).

That is,
b3 ≡ 0(mod a),

contradicting that a and b are relatively prime, as may be verified using the Fundamental Theorem of
Arithmetic. So, we have thus far shown that cos (2π

9
) is a root of the following irreducible element in

the polynomial ring Q[x]:
8x3 − 6x + 1 ∈ Q[x].

We may, accordingly, deduce that:

mcos( 2π
9
),Q(x) = x3 −

3

4
x + 1

8
.

Therefore,

[Q(cos(2π

9
)) ∶ Q] = deg mcos( 2π

9
),Q(x) = 3.

But this contradicts that cos (2π
9
) is constructible, according to Proposition 23.

Exercise 3.106. Prove that Archimedes’ construction actually trisects the angle θ. [ Note the isosceles
triangles in (Figure 5 on page 535 of Dummit and Foote’s Abstract Algebra) to prove that β = γ = 2α. ]

Solution 3.107. Figure 5 on page 535 of Dummit and Foote’s Abstract Algebra will henceforth be
referred to as Figure 5. With respect to this figure, let A denote the illustrated point of intersection
closest to α, let B denote the illustrated point of intersection closest to β, let G denote the point of
intersection closest to γ, and let T denote the point of intersection closest to θ. Also, let L and R
respectively denote the left-hand and right-hand intersections of the given semi-circle and the given
horiztonal line. We know that

∥AB∥ = ∥BT ∥,
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so the triangle ∆ABT must be an isoceles triangle. Therefore, we may deduce that:

∠BAT = ∠BTA.

That is,
α = ∠BTA.

Therefore,
α +∠BTG + θ = ∠BTA +∠BTG + θ.

Therefore,
α +∠BTG + θ = 180○.

Equivalently,
α + (180○ − β − γ) + θ = 180○.

But since
∥BT ∥ = ∥TG∥,

we find that β = γ. Therefore,
α + (180○ − 2β) + θ = 180○.

We know that
β + (180○ − 2α) = 180○,

as is easily seen by considering the interior angles in ∆ABT . We thus arrive at the equality whereby.

β = 2α.

So, from the above equality, together with the equality whereby

α + (180○ − 2β) + θ = 180○,

we observe that the equality
α + (180○ − 4α) + θ = 180○

holds. Therefore,
α − 4α + θ = 0.

Therefore,
θ = 3α,

as desired.

Exercise 3.108. Prove that Conway’s construction indicated in the text actually constructs 2k1/3 and
2k2/3. [One method: let (x, y) be the coordinates of the point C, a the distance from B to C and b the
distance from A to D; use similar triangles to prove (a) y

1 =
√
1−k2

1+a , (b) x
a = b+k

1+a , (c)
y
x−k =

√
1−k2

3k , and also
show that (d) (1 − k2) + (b + k)2 = (1 + a)2; solve these equations for a and b.]

Solution 3.109. Our strategy is based on the method given above. We introduce some additional
notation which is useful for our purposes. let a perpendicular line segment passing through C = (x, y)
intersect AD at a point P . Let the previously unlabeled vertex of the triangle illustrated in Fig. 4 on
page 535 of Dummit & Foote’s Abstract Algebra be labeled as U .
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(a) Consider the triangles ∆UBD and ∆PCD. Of course, ∠BDU = ∠CDP . Also, we have that
∠CPD = ∠BUD = 90○. We may thus deduce that ∆UBD ∼ ∆PCD. Since ∆UBD and ∆PCD are
similar triangles, we have that:

∥BD∥
∥BU∥ = ∥CD∥

∥CP ∥ .

Equivalently,
a + 1√
1 − k2

= 1

y
,

with √
1 − k2
a + 1

= y,

as desired.

(b) Now, let Q denote the point of intersection obtained by extending a perpendicular line passing
through C = (x, y) to BU . Now, consider the triangles ∆BCQ and ∆BDU . Since ∠QBC = ∠UBD
and since ∠BQC = ∠BUD = 90○, we find that ∆BCQ ∼ ∆BDU . So, since

∥QC∥
∥BC∥ = ∥UD∥

∥BD∥ .

Equivalently,
x

a
= k + b

1 + a,

as desired.

(c) Now, let R denote the previously unlabeled point of intersection given by the triangle which has two
sides lengths which are respectively equal to k and 1

3

√
1 − k2 and which has U and A as endpoints. Now,

consider the triangles ∆UAR and ∆ACP . Since

∠UAR = ∠PAC

and since
∠CPA = ∠AUR = 90○,

we may deduce that ∆UAR and ∆ACP are similar triangles. So, since

∥CP ∥
∥AP ∥ = ∥UR∥

∥UA∥

we find that
y

x − k =
1
3

√
1 − k2
k

,

so that
y

x − k =
√

1 − k2
3k

,

as desired.

(d) We apply the Pythagorean theorem with respect to the triangle ∆UBD. Since

∠DUB = 90○
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we have that:
∥UD∥2 + ∥UB∥2 = ∥BD∥2.

Equivalently,
(k + b)2 + (1 − k2) = (a + 1)2,

as desired.

The remainder of our solution is based on a solution given in the following link:

https://positron0802.files.wordpress.com/2017/01/
abstract-algebra-dummit-foote-chapter-13-field-theory-solutions.pdf

From (a), we have that y =
√
1−k2

1+a , so that:

y(1 + a) =
√

1 − k2. (3.1)

From (c) we have that y
x−k =

√
1−k2

3k , so that:

3ky

x − k =
√

1 − k2. (3.2)

So, from (3.1) and (3.2) together, we have that:

y(1 + a) = 3ky

x − k . (3.3)

So, from (3.3), we have that:
(1 + a)(x − k) = 3k. (3.4)

From (b), we have that
x

a
= b + k

1 + a.

Therefore,

x = a(b + k)
1 + a .

So, from (3.4) together with the equality x = a(b+k)
1+a , we have that:

(1 + a) (a(b + k)
1 + a − k) = 3kÔ⇒

a(b + k) − k(1 + a) = 3kÔ⇒
a(b + k) = 3k + k(1 + a) Ô⇒
a(b + k) = 4k + akÔ⇒

b + k = 4k + ak
a

.

From (d), we have that: (1 − k2) + (b + k)2 = (1 + a)2. So, from (d) together with the equality

b + k = 4k + ak
a

,
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we obtain the following:

(1 − k2) + (b + k)2 = (1 + a)2Ô⇒

(1 − k2) + (4k + ak
a

)
2

= (1 + a)2Ô⇒

a2(1 − k2) + (4k + ak)2 = a2(1 + a)2Ô⇒
a2 − a2k2 + 16k2 + 8ak2 + a2k2 = a4 + 2a3 + a2Ô⇒
− a2k2 + 16k2 + 8ak2 + a2k2 = a4 + 2a3Ô⇒
16k2 + 8ak2 = a4 + 2a3Ô⇒
a4 + 2a3 − 8ak2 − 16k2 = 0.

We find that 2k2/3 is a root of the equation

a4 + 2a3 − 8ak2 − 16k2 = 0,

which shows that Conway’s construction indicated in the text actually constructs 2k2/3, with a = 2k2/3.
Now, recall that

b + k = 4k + ak
a

.

We thus have that
b = 4k + (2k2/3)k

(2k2/3) − k.

This shows that
b = 2

3
√
k

may be constructed according to Conway’s construction,

3.12 Exercises from Section 13.4

Exercise 3.110. Determine the splitting field and its degree over Q for x4 − 2.

Solution 3.111. From the equality x4 = 2, we have that x2 = ±
√

2. From this latter equality, we find
that the roots of x4 − 2 ∈ Q[x] are precisely the elements in the set

{ 4
√

2, i
4
√

2,− 4
√

2,−i 4
√

2},

where i denotes the imaginary unit. So, it is clear that the splitting field of x4 − 2 ∈ Q[x] over Q is
precisely Q( 4

√
2, i). Now, consider the degree of this splitting field over Q. To compute this degree, we

proceed to consider the following otwer of fields.

Q(i)( 4
√

2) ≅ Q( 4
√

2)(i) ≅ Q(i, 4
√

2) ≅ Q( 4
√

2, i)
RRRRRRRRRRR

Q(i)
RRRRRRRRRRR
Q
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It is obvious that the minimal polynomial of the imaginary unit over Q is x2 + 1 ∈ Q[x]. Accordingly,
we find that:

[Q(i) ∶ Q] = deg (mi,Q(x)) = 2.

We thus proceed to consider the minimal polynomial of 4
√

2 over the field Q(i). Certainly, x = 4
√

2
satisfies the equality whereby x4 − 2 = 0. We claim that x4 − 2 = 0 is irreducible as an element in
(Q(i)) [x]. To show this, since x4 − 2 splits as

x4 − 2 = (x − 4
√

2) (x − i 4
√

2) (x + 4
√

2) (x + i 4
√

2) ,

if x4 − 2 actually were reducible as an element in (Q(i)) [x], then one of the following products would
have to be an element in (Q(i)) [x].

(x + i 4
√

2)
(x + 4

√
2)

(x + 4
√

2)(x + i 4
√

2)
(x − i 4

√
2)

(x − i 4
√

2)(x + i 4
√

2)
(x − i 4

√
2)(x + 4

√
2)

(x − i 4
√

2)(x + 4
√

2)(x + i 4
√

2)

Expand the above products as follows.

(x + i 4
√

2)
(x + 4

√
2)

x2 + 4
√

2(1 + i)x +
√

2i

(x − i 4
√

2)
x2 +

√
2

x2 + 4
√

2(1 − i)x −
√

2i

x3 + 4
√

2x2 +
√

2x + 23/4

But since elements in Q(i) are of the form a + bi for a, b ∈ Q, and since
√

2 and 4
√

2 are irrational, it is
clear that the above expanded products are not in (Q(i)) [x]. Since 4

√
2 is a root of x4 − 2 and since

x4−2 is irreducible over the field Q(i), we find that the minimal polynomial of 4
√

2 over Q(i) is precisely
x4 − 2 ∈ (Q(i)) [x], so that:

[Q(i)( 4
√

2) ∶ Q(i)] = deg m 4√2,Q(i)(x) = deg (x4 − 2) .

We thus find that the degree sequence associated with the tower of fields given above is as indicated
below.

Q(i)( 4
√

2) ≅ Q( 4
√

2)(i) ≅ Q(i, 4
√

2) ≅ Q( 4
√

2, i)
RRRRRRRRRRR
4
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Q(i)
RRRRRRRRRRR
2

Q

Therefore,
[Q(i, 4

√
2) ∶ Q] = [Q(i, 4

√
2) ∶ Q(i)][Q(i) ∶ Q] = 4 ⋅ 2 = 8.

We thus have that the degree of the splitting field for x4−2 over Q is 8. We conclude by remarking that
this computation agrees with Proposition 26 from Dummit & Foote’s Abstract Algebra, which states
that a splitting field for a polynomial of degree m over a field F is of degree at most m! over F , with
8 ≤ 4! = 24.

Exercise 3.112. Determine the splitting field and its degree over Q for x4 + 2.

Solution 3.113. Consider the polynomial equation whereby x4 = −2. From the equality whereby
x4 = −2, we obtain the equation x2 = ±

√
−2. So, we have that x2 = ±i

√
2. So, since

x2 = (±1) ⋅ i ⋅
√

2

we have that
x = ±

√
±1 ⋅

√
i ⋅ 4

√
2.

Equivalently,

x = ±
√
±1 ⋅ (1 + i√

2
) ⋅ 4

√
2.

So, from the above discussion, we find that the roots of the given polynomial are precisely the elements
in the following set:

{1 − i
4
√

2
,−1 + i

4
√

2
,−1 − i

4
√

2
,
1 + i
4
√

2
} .

Since
1 − i
4
√

2
+ 1 + i

4
√

2
= 23/4,

and since
1 − i
4
√

2
− 1 + i

4
√

2
= −i23/4,

it is clear that the splitting field of x4 + 2 ∈ Q[x] over Q is equal to:

Q(23/4, i).

By repeating the argument given in Solution 3.111, we find that the degree of the splitting field of the
given polynomial over Q is also equal to 8.

Exercise 3.114. Determine the splitting field and its degree over Q for x4 + x2 + 1.

Solution 3.115. Let y be such that y = x2. So, we have that the given polynomial x4 + x2 + 1 ∈ Q[x]
may be rewritten as y2 + y + 1. Letting y2 + y + 1 = 0, by the quadratic formula, we find that:

y = −1 ±
√
−3

2
.
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So, we find that the roots of the polynomial x4 + x2 + 1 are given by the following expression:

x = ±
√

−1 ±
√
−3

2
.

That is, the roots of the given polynomial are given by the following expression:

x = ±
√
−1 ± i

√
3√

2
.

We focus our attention towards the following roots.

α =
√
−1 − i

√
3√

2
β =

√
−1 + i

√
3√

2
.

With respect to the above notation, we have that the roots of the given polynomial are precisely ±α
and ±β.

Using a trigonometric argument, it is easily seen that

α = 1

2
− i

√
3

2

and that

β = 1

2
+ i

√
3

2
.

So, in this case, it is clear that the splitting field of x4 + x2 + 1 over Q is equal to Q(i
√

3). Since
(i
√

3)2 = −3, it is obvious that the degree of Q(i
√

3) over the base field Q is equal to 2. That is, the
splitting field of Q(i

√
3) of the given polynomial is of degree 2 over Q.

Exercise 3.116. Determine the splitting field and its degree over Q for x6 − 4.

Solution 3.117. We begin by considering the roots of the given polynomial x6 − 4 ∈ Q[x]. From the
equation

x6 − 4 = 0

we find that
x6 = 4,

which implies that
x3 = ±2.

So, we see that the roots of the given polynomial consist of the solutions for

x3 = 2,

together with the solutions for
x3 = −2.

So, it is natural to consider the cubic roots of unity, as well as the cubic roots of −1. Through the use
of a trigonometric argument, it is easily seen that the cubic roots of unity are precisely the elements in
the following set:

{1,−1

2
+

√
3

2
i,−1

2
−

√
3

2
i} .
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A symmetric argument reveals that the cubic roots of −1 consist of the elements in the following set:

{−1,
1

2
+

√
3

2
i,

1

2
−

√
3

2
i} .

So, it is clear that the roots of the given polynomial are precisely the elements in the following set.

{ 3
√

2,(−1

2
+

√
3

2
i) 3

√
2,(−1

2
−

√
3

2
i) 3

√
2,− 3

√
2,(1

2
+

√
3

2
i) 3

√
2,(1

2
−

√
3

2
i) 3

√
2} .

We may deduce that the splitting field of the given polynomial over Q is precisely:

Q( 3
√

2, i
√

3).

It is easily seen that the degree of Q( 3
√

2, i
√

3) over Q is 6, as may be verified by appealing to the
irrationality of 3

√
2, and by showing that x3 + 3 is irreducible over Q( 3

√
2).

Exercise 3.118. Let K be a finite extension of F . Prove that K is a splitting field over F if and only
if every irreducible polynomial in F [x] that has a root in K splits completely in K[x]. [Use Theorems
8 and 27.]

Solution 3.119. Theorem 8 is formulated in the following manner in the class textbook.

“Theorem 8. Let φ∶F ∼Ð→ F ′ be an isomorphism of fields. Let p(x) ∈ F [x] be an irreducible polynomial
and let p′(x) ∈ F ′[x] be the irreducible polynomial obtained by applying the map φ to be coefficients of
p(x). Let α be a root of p(x) (in some extension of F ) and let β be a root of p′(x) (in some extension
of F ′). Then there is an isomorphism

σ∶F (α) ∼Ð→ F ′(β)
α ↦ β

mapping α to β and extending φ, i.e., such that σ restricted to F is the isomorphism φ.” (p. 519)

Theorem 27 from the class textbook is given as follows.

“Theorem 27. Let φ∶F ∼Ð→ F ′ be an isomorphism of fields. Let f(x) ∈ F [x] be a polynomial and let
f ′(x) ∈ F ′[x] be the polynomial obtained by applying φ to the coefficients of f(x). Let E be a splitting
field for f(x) over F and let E′ be a splitting field for f ′(x) over F ′. Then the isomorphism extends to
an isomorphism σ∶E ∼Ð→ E′, i.e., σ restricted to F is the isomorphism φ:

σ∶E ∼Ð→ E′

∣ ∣

φ∶F ∼Ð→ F ′” (p. 541)

Now, to prove the biconditional statement given in the above exercise, we begin by proving the “forwards”
direction for this statement, letting K and F be as given above, with K as a finite extension of F . Our
solution is based on a corresponding solution given in the following link.

https://positron0802.files.wordpress.com/2017/01/
abstract-algebra-dummit-foote-chapter-13-field-theory-solutions.pdf
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(Ô⇒) Assume that K is a splitting field over F , letting f(x) be an element in the polynomial ring F [x]
such that K is the splitting field of f(x) over F . Let g(x) be an irreducible polynomial in F [x], and
let α be a root of g(x) such that α ∈ K. Now, let β be an arbitrary root of g(x). So, it remains to
prove that β must be in K. Since g(x) is an irreducible polynomial in F [x], we have that there exists
an isomorphism of the following form:

σ∶F (α) ∼Ð→ F ′(β)
α ↦ β

, Now, since K is a splitting field over F , and since and since α is a root of g(x) with α ∈ K, we have
that K = K(α) is the splitting field of f(x) over F (α). Similarly, K(β) is the splitting field of f(x)
over F (β). So, since

σ∶F (α) ∼Ð→ F ′(β)
α ↦ β

is an isomorphism of fields, by Theorem 27, we have that the field isomorphism σ extends to an
isomorphism φ∶K(α) →K(β). We thus have that

[K ∶ F ] = [K(α) ∶ F ] = [K(β) ∶ F ].

We can conclude that K =K(β), so that β ∈K.

(⇐Ô) Conversely, assume that every irreducible polynomial in F [x] that has a roto in K splits com-
pletely in K[x]. Recall that K is a finite extension of F . We thus have that K = F (α1, α2, . . . , αn)
for some α1, α2, . . . , αn. For each index i, let pi denote the minimal polynomial of αi over F , and let
f = p1p2⋯pn. Now, since each element of the form αi is in K, from our initial assumption, we have
that each polynomial of the form pi must split completely in K. So, f splits completely in K and K is
generated over F by the roots of f . So, K is the splitting field of f over F .

3.13 Exercises from Section 13.5

Exercise 3.120. Prove that the derivative Dx of a polynomial satisfies Dx(f(x) + g(x)) = Dx(f(x)) +
Dx(g(x)) and Dx(f(x)g(x)) =Dx(f(x))g(x) +Dx(g(x))f(x) for any two polynomials f(x) and g(x).

Solution 3.121. As above, let f(x) and g(x) be polynomials. Let F be a field, and let f(x) and g(x)
be elements in the polynomial ring F [x]. Let these polynomials be denoted as follows, letting n and m
be such that n,m ∈ N0:

f(x) = anxn + an−1xn−1 +⋯ + a1x + a0,
g(x) = bmxm + bm−1xm−1 +⋯ + b1x + b0.

We may assume without loss of generality that n ≥ m, as a symmetric argument works in the case
whereby n ≤ m. Evaluate the coefficients of the expression f(x) + g(x) as indicated in the following
manner:

f(x) + g(x) =
anx

n + ⋯ + am+1x
m+1 + (am + bm)xm + ⋯ + (a1 + b1)x + (a0 + b0) .
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Apply the operator Dx to both sides of the above equality:

Dx (f(x) + g(x)) =
annx

n−1 + ⋯ + am+1(m + 1)xm + (am + bm)mxm−1 + ⋯ + (a1 + b1) .

Since
f(x) = anxn + an−1xn−1 +⋯ + a1x + a0

and
g(x) = bnxm + bm−1xm−1 +⋯ + b1x + b0

we find that Dx(f(x)) and Dx(g(x)) may be evaluated as follows:

Dx(f(x)) = annxn−1 + an−1 (n − 1)xn−2 +⋯ + a1,
Dx(g(x)) = bmmxm−1 + bm−1 (m − 1)xm−2 +⋯ + b1.

Now, recall that we are working under the assumption that n ≥m. From the inequality (n − 1) ≥ (m − 1)
together with the above formulas for Dx(f(x)) and Dx(g(x)), we have that Dx(f(x))+Dx(g(x)) must
be equal to:

annx
n−1 + ⋯ + am+1(m + 1)xm + (am + bm)mxm−1 + ⋯ + (a1 + b1) ,

as desired.

It is convenient to denote f(x) and g(x) as follows:

f(x) =
n

∑
i=0

aix
i,

g(x) =
m

∑
j=0

bjx
j.

The coefficients in the product

f(x)g(x) = (
n

∑
i=0

aix
i)(

m

∑
j=0

bjx
j)

may be defined using an appropriate convolution operation. For the sake of convenience, we may adopt
the convention whereby ai vanishes for i ∈ Z such that i > n or i < 0, and we may let bj be equal to 0 for
integers j such that j > m of j < 0. So, the above product may be denoted in terms of formal sums or
generating series:

f(x)g(x) = (∑
i≥0

aix
i)(∑

j≥0

bjx
j) .

We thus obtain the following equality:

f(x)g(x) =
∞

∑
k=0

(
k

∑
`=0

ak−`b`)xk.

Therefore,

Dx (f(x)g(x)) =
∞

∑
k=0

(
k

∑
`=0

ak−`b`)kxk−1.
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Similarly, since

Dx (f(x)) =
∞

∑
i=0

aiix
i−1

we have that

Dx (f(x)) g(x) = (
∞

∑
i=0

aiix
i−1)(

∞

∑
j=0

bjx
j)

so that

Dx (f(x)) g(x) = (
∞

∑
i=0

ai+1(i + 1)xi)(
∞

∑
j=0

bjx
j) .

Symmetrically,

f(x)Dx (g(x)) = (
∞

∑
i=0

aix
i)(

∞

∑
j=0

bj+1(j + 1)xj) .

So, since

Dx (f(x)) g(x) =
∞

∑
k=0

(
k

∑
`=0

a`+1(` + 1)bk−`)xk

and since

f(x)Dx (g(x)) =
∞

∑
k=0

(
k

∑
`=0

a`bk−`−1(k − ` − 1))xk,

we have that the coefficient of xk in the sum of the above two expressions is equal to
k

∑
`=0

a`+1(` + 1)bk−` +
k

∑
`=0

a`bk−`−1(k − ` − 1).

The above expression is equal to:
k+1

∑
`=1

a`(`)bk−`−1 +
k

∑
`=0

a`bk−`−1(k − ` − 1).

Rewrite the above summation as follows:
k+1

∑
`=0

a`(`)bk−`−1 +
k

∑
`=0

a`bk−`−1(k − ` − 1).

The above expression is equal to:
k+1

∑
`=0

a`(`)bk−`−1 +
k+1

∑
`=0

a`bk−`−1(k − ` − 1).

The above is equal to:
k+1

∑
`=0

a`bk−`−1(k − 1).

Rewrite the above summation as follows:

(k − 1)
k+1

∑
`=0

a`bk−`−1.

Comparing coefficients of the above form with the coefficients in

Dx (f(x)g(x)) =
∞

∑
k=0

(
k

∑
`=0

ak−`b`)kxk−1

completes our proof.
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Exercise 3.122. Find all irreducible polynomials of degrees 1, 2 and 4 over F2 and prove that their
product is x16 − x.

Solution 3.123. Trivially, degree-1 polynomials are irreducible. So, the elements x and x + 1 = x − 1
in F2[x] are irreducible. Now, consider the degree-2 irreducible elements in F2[x]. The non-irreducible
degree-2 elements in F2[x] are:

x ⋅ x = x2,
x ⋅ (x + 1) = x2 + x,and
(x + 1) ⋅ (x + 1) = x2 + 1.

This shows that the only polynomial of degree 2 in F2[x] that is irreducible over F2 is x2 + x + 1. Now,
consider the degree-4 non-irreducible elements in F2[x], which are given below.

(x2) (x2) = x4

(x2) (x2 + 1) = x4 + x2

(x2) (x2 + x) = x4 + x3

(x2) (x2 + x + 1) = x4 + x3 + x2

(x2 + 1) (x2 + 1) = x4 + 1

(x2 + 1) (x2 + x) = x4 + x3 + x2 + x
(x2 + 1) (x2 + x + 1) = x4 + x3 + x + 1

(x2 + x) (x2 + x) = x4 + x2

(x2 + x) (x2 + x + 1) = x4 + x
(x2 + x + 1) (x2 + x + 1) = x4 + x2 + 1

(x) (x3) = x4

(x) (x3 + 1) = x4 + x
(x) (x3 + x) = x4 + x2

(x) (x3 + x + 1) = x4 + x2 + x
(x) (x3 + x2) = x4 + x3

(x) (x3 + x2 + 1) = x4 + x3 + x
(x) (x3 + x2 + x) = x4 + x3 + x2

(x) (x3 + x2 + x + 1) = x4 + x3 + x2 + x
(x + 1) (x3) = x4 + x3

(x + 1) (x3 + 1) = x4 + x3 + x + 1

(x + 1) (x3 + x) = x4 + x3 + x2 + x
(x + 1) (x3 + x + 1) = x4 + x3 + x2 + 1

(x + 1) (x3 + x2) = x4 + x2

(x + 1) (x3 + x2 + 1) = x4 + x2 + x + 1

(x + 1) (x3 + x2 + x) = x4 + x
(x + 1) (x3 + x2 + x + 1) = x4 + 1
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So, from the above computations, we find that the only degree-4 irreducible elements in F2[x] are as
follows.

x4 + x + 1

x4 + x3 + 1

x4 + x3 + x2 + x + 1

So, from the above computations, we find that the product of all irreducible polynomials of degrees 1,
2 and 4 over F2 is equal to the following expression.

x(x + 1)(x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1).

Expand the above product without reducing the resultant coefficients as elements in F2:

x16 + 4x15 + 8x14 + 12x13 + 18x12 + 26x11 + 32x10 + 34x9 + 34x8 + 32x7 + 26x6 + 18x5 + 12x4 + 8x3 + 4x2 + x.

Modulo 2, the above expression reduces to

x16 + x = x16 − x,

as desired.

Exercise 3.124. Prove that d divides n if and only if xd − 1 divides xn − 1. [Note that if n = qd+ r then
xn − 1 = (xqd+r − xr) + (xr − 1).]

Solution 3.125. (Ô⇒) Assume that d divides n. Now, consider the following product of polynomials:

(xd − 1) (xn−d + xn−2d +⋯ + xn−(nd −1)d + 1) .

Expanding the above product, we obtain:

xn + xn−d +⋯ + x2d + xd

− xn−d − xn−2d −⋯ − xd − 1.

We find that the above summation telescopes, with

(xd − 1) (xn−d + xn−2d +⋯ + xn−(nd −1)d + 1) = xn − 1,

which shows that xd − 1 divides xn − 1.

(⇐Ô) Conversely, assume that xd − 1 divides xn − 1. Let n = qd + r, where q and r are elements in N0

such that r satisfies: 0 ≤ r < d. Now, consider the following product:

(xd − 1) (xn−d + xn−2d +⋯ + xn−qd + 1) .

Expanding the above product, we obtain:

xn + xn−d +⋯ + xn−qd+d + xd

− xn−d − xn−2d −⋯ − xn−qd − 1.
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Simplifying the above summation, we find that

(xd − 1) (xn−d + xn−2d +⋯ + xn−qd + 1)

is equal to:
(xn − 1) + (xd − xr) .

But from our initial assumption that xd − 1 divides xn − 1 together with the equality

(xd − 1) (xn−d + xn−2d +⋯ + xn−qd + 1) = (xn − 1) + (xd − xr) ,
we may deduce that xd − 1 must divide xd − xr. But since 0 ≤ r < d, we may deduce that r = 0, so that d
divides n.

3.14 Exercises from Section 13.6

Exercise 3.126. Suppose m and n are relatively prime positive integers. Let ζm be a primitive mth

root of unity and let ζn be a primitive nth root of unity. Prove that ζmζn is a primitive mnth root of
unity.

Solution 3.127. Recall that a generator of the cyclic group of all nth roots of unity is called a primitive
nth root of unity. As above, let m and n be elements in N such that the greatest common divisor of m
and n is equal to 1. Also, let ζm and ζn be as given above. We thus have that ζm is a generator of the
cyclic group of all mth roots of unity, and we have that ζn is a generator of the cyclic group of all nth
roots of unity. Now, consider the expression ζmζn. Since the underlying multiplicative operation of the
algebraically closed field C is commutative, we have that:

(ζmζn)mn = ζmnm ζmnn = (ζmm)n (ζnn)
m = 1m ⋅ 1n = 1,

thus establishing that the product ζmζn of ζm and ζn is an (mn)th root of unity. We claim that ζmζn
generates the multiplicative group consisting of the (mn)th roots of unity. To prove this, it suffices to
prove that the order of ζmζn is equal to mn. For a natural number ` ∈ N, we have that

ζ`mζ
`
n = (ζmζn)` .

Since ζm is a primitive mth root of unity, we have that each power of ζm is an mth root of unity. Also,
since ζn is a primitive nth root of unity, we have that each power of ζn is an nth root of unity. Since m
and n are relatively prime, it is easily seen that the only mth root of unity which is also an nth root of
unity is 1, as may be verified by considering the minimal polynomial of a given mth root of unity and
the minimal polynomial of an arbitrary nth root of unity. Conversely, the only nth root of unity which
is also an mth root of unity is 1. So, letting ` ∈ N be as given above, if

ζ`mζ
`
n = (ζmζn)` = 1,

then since ζ`n must be a multiplicative inverse of ζ`m and vice-versa, we may thus deduce that

ζ`m = ζ`n = 1.

Since ζm is a primitive mth root of unity, the equality ζ`m = 1 implies that ` must be a multiple of m. A
symmetric argument shows that ` must be a multiple of n. We have previously shown that ζnζm to the
power of mn is equal to 1, but since

ζ`mζ
`
n = (ζmζn)` = 1

implies that ` must be a multiple of m and a multiple of n, we have that the smallest nonzero power
k ∈ N such that ζmζn is equal to 1 is k =mn. So, the order of ζmζn is mn, as desired.
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Exercise 3.128. Let ζn be a primitive nth root of unity and let d be a divisor of n. Prove that ζdn is a
primitive (n/d)th root of unity.

Solution 3.129. Recall that a generator of the cyclic group of all nth roots of unity is called a primitive
nth root of unity. So, let ζn be as given above, with ζn as a primitive nth root of unity. We thus have
that ζn is a generator of the cyclic group of all nth roots of unity, so that

{ζn, ζ2n, . . . , ζn−1n ,1 = ζnn}

is a multiplicative cyclic group consisting of n distinct elements, with ζ in ≠ ζjn for distinct natural numbers
i and j which are such that i, j ≤ n. As above, we let d be a divisor of n. We may assume without loss
of generality that d ∈ N. Now, consider the expression ζdn, and consider the multiplicative subgroup

⟨ζdn⟩ ≤ {ζn, ζ2n, . . . , ζn−1n ,1 = ζnn}

generated by ζdn. We have that

⟨ζdn⟩ = {ζdn, ζ2dn , . . . , ζ
(n
d
−1)d

n , ζ
(n
d
)d

n }

so that
⟨ζdn⟩ = {ζdn, ζ2dn , . . . , ζ

(n
d
−1)d

n , ζnn} ,

with
⟨ζdn⟩ = {ζdn, ζ2dn , . . . , ζ

(n
d
−1)d

n ,1} .

We claim that the cyclic group of all (n
d
)th roots of unity consists precisely of the elements in the

underlying set of ⟨ζdn⟩. To show this, begin by letting γ denote an arbitrary (n
d
)th root of unity. So, we

find that γ
n
d = 1. From the equality γ

n
d = 1, we observe that γn = 1, and we find that γ is an nth root of

unity. But recall that ζn is a generator of the cyclic group of all nth roots of unity. So, we observe that
there must exist a natural number i ≤ n such that γ = ζ in. Since

γ
n
d = ζ i

n
d
n = 1

we may deduce that ind is an integer multiple of n, so that d evenly divides i. In other words, i must be
a multiple of d, which shows that γ must be in:

⟨ζdn⟩ = {ζdn, ζ2dn , . . . , ζ
(n
d
−1)d

n ,1} .

Conversely, let j be a natural number satisfying the inequality whereby j ≤ n, so that ζdjn is an arbitrary
elements in the following cyclic subgroup:

⟨ζdn⟩ = {ζdn, ζ2dn , . . . , ζ
(n
d
−1)d

n ,1} .

We claim that ζdjn is an (n
d
)th root of unity. This is clear, since we have that

(ζdjn )
n
d = ζjnn = 1,

as desired.
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Exercise 3.130. Prove that if a field contains the nth roots of unity for n odd then it also contains the
2nth roots of unity.

Solution 3.131. Assume that a field F contains the nth roots of unity for n. Now, let γ be an arbitrary
2nth root of unity. We thus have that:

γ2n = 1.

Equivalently,
γ2n − 1 = 0.

Therefore,
(γn − 1)(γn + 1) = 0.

There are two cases to consider. First, suppose that γn − 1 = 0. Then γ is an nth root of unity, so that
γ is in F , as desired. Now, suppose that γn − 1 ≠ 0. So, from the equality

(γn − 1)(γn + 1) = 0.

we have that
γn + 1 = 0,

so that
γn = −1.

Therefore,
−(γn) = 1.

But recall that n is assumed to be odd. For the sake of clarity, write n = 2m + 1. Since

−(γ2m+1) = 1.

we have that
((−1) ⋅ γ)2m+1 = 1,

so that
(−γ)n = 1.

So, we have that −γ is an nth root of unity. But recall that we assumed that the field F contains the
nth roots of unity. We thus have that −γ must be in F . But since F is a field, F must be closed under
additive inverses, so that γ ∈ F , as desired.

Exercise 3.132. Prove that if n = pkm where p is a prime and m is relatively prime to p then there are
precisely m distinct nth roots of unity over a field of characteristic p.

Solution 3.133. Our solution is based on a solution given in the following link:

https://positron0802.files.wordpress.com/2017/01/
abstract-algebra-dummit-foote-chapter-13-field-theory-solutions.pdf

Let F denote a fixed field of characteristic p. The roots of the polynomial xn − 1 as an element in F [x]
are precisely the roots of:

xp
km − 1 = (xm − 1)p

k

∈ F [x].
So, we thus have that the roots of unity over F are the roots of xm − 1 over F . Given that p and m are
relatively prime, we have that xm − 1 and mxm−1 are relatively prime. So, we have that xm − 1 has no
multiple roots. Therefore, the m distinct roots of xm − 1 are precisely the nth roots of unity over F .
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3.15 Exercises from Section 14.1

Exercise 3.134. Show that if the field K is generated over F by the elements α1, . . . , αn then an
automorphism σ of K fixing F is uniquely determined by σ(α1), . . ., σ(αn). In particular show that an
automorphism fixes K if and only if it fixes a set of generators for K.

Solution 3.135. Assume that the field K is generated over F by the elements α1, . . . , αn, with:

K = F (α1, . . . , αn) .

So, we have that K consists precisely of expressions of the form

f1α
i1
1 ⋯αinn +⋯ + fmαj11 ⋯α

jn
n

g1α
k1
1 ⋯αknn +⋯ + gm′α`11 ⋯α`nn

where f1, fm, g1, etc., are in F , and where expressions of the form i1, in, etc., are element in N0 =
N ∪ {0}, and where the above denominator is nonzero. That is, elements of K are precisely quotients
of F -linear combinations of products consisting of elements in {α1, . . . , αn} by nonzero quotients of F -
linear combinations of products consisting of elements in {α1, . . . , αn}. So, letting σ be an arbitrary
automorphism of K fixing F , since σ is a ring homomorphism fixing F , we have that

σ ( f1α
i1
1 ⋯αinn +⋯ + fmαj11 ⋯α

jn
n

g1α
k1
1 ⋯αknn +⋯ + gm′α`11 ⋯α`nn

)

must be equal to
f1σ(α1)i1⋯σ(αn)in +⋯ + fmσ(α1)j1⋯σ(αn)jn
g1σ(α1)k1⋯σ(αn)kn +⋯ + gm′σ(α1)`1⋯σ(αn)`n

.

So, the value of

σ ( f1α
i1
1 ⋯αinn +⋯ + fmαj11 ⋯α

jn
n

g1α
k1
1 ⋯αknn +⋯ + gm′α`11 ⋯α`nn

)

is determined by expressions of the form σ(α1), σ(α2), . . ., σ(αn). Since an element in the domain
of σ may be written so as to contain each element in {α1, . . . , αn} in a nontrivial way, we have that
the behavior of σ is precisely determined by the values of σ(α1), σ(α2), . . ., σ(αn). Observe that the
bijectivity of σ was not used with respect to the above argument.

Now, suppose that σ is an automorphism fixing K, letting K be as given above. So, σ(αi) must be
equal to αi for each index i. Conversely, suppose that σ(αi) = αi, where σ is an automorphism on K. If
we also let σ fix the elements of F , then since

σ ( f1α
i1
1 ⋯αinn +⋯ + fmαj11 ⋯α

jn
n

g1α
k1
1 ⋯αknn +⋯ + gm′α`11 ⋯α`nn

)

equals
f1σ(α1)i1⋯σ(αn)in +⋯ + fmσ(α1)j1⋯σ(αn)jn
g1σ(α1)k1⋯σ(αn)kn +⋯ + gm′σ(α1)`1⋯σ(αn)`n

.

we have that σ must be the identity automorphism.

Exercise 3.136. Let G ≤ Gal(K/F ) be a subgroup of the Galois group of the extensiuon K/F and
suppose σ1, . . . , σk are generators for G. Show that the subfield E/F is fixed by G if and only if it is
fixed by the generators σ1, . . ., σk.
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Solution 3.137. Consider the field extension K/F . Since the Galois group Gal(K/F ) is presently
under consideration, we have that K is Galois over F , i.e., that K/F is a Galois extension, so that the
equality

∣Aut (K/F )∣ = [K ∶ F ]
holds. Since K/F is Galois, we have that the group Aut(K/F ) of automorphisms of K leaving F fixed
is referred to as the Galois group of K/F and is denoted as Gal(K/F ). We remark that K/F is a finite
extension. As above, we assume that σ1, . . ., σk are generators for the subgroup G ≤ Gal(K/F ).

(Ô⇒) Assume that the subfield E/F is fixed by G. Since E/F is fixed by G, we have that each element
of G fixes E/F . So, in particular, generators of G fix E/F .

(⇐Ô) Conversely, assume that the subfield E/F is fixed by the given generators σ1, . . ., σk for G. Since

G = ⟨σ1, . . . , σk⟩ ,

we find that: given an arbitrary element g ∈ G, we may write g as

g = σj1i1⋯σ
jn
in

for some natural number n ∈ N, where

i1, i2, . . . , in ∈ {1,2, . . . , k}

and
j1, j2, . . . , jn ∈ Z.

Now, given a generator ρ in the generating set

{σ1, . . . , σk} ⊆ Gal(K/F ),

we have that ρ fixes each element in F , and we have that ρ is such that ρ(e) = e for each element e ∈ E,
as we are working under the assumption that the subfield E of K is fixed by G. Since

∀e ∈ E ρ(e) = e

we have that
∀e ∈ E ρ−1(e) = e,

which shows that E/F is also fixed by ρ−1. An inductive argument shows that E/F is fixed by each
expression of the form ρz for z ∈ Z. So, letting

g = σj1i1⋯σ
jn
in

be as given above, as an arbitrary element in G, and letting e ∈ E be arbitrary, we find that:

g(e) = σj1i1⋯σ
jn−1
in−1σ

jn
in
(e)

= σj1i1⋯σ
jn−1
in−1 (e)

= σj1i1⋯σ
jn−2
in−2 (e)

= ⋯
= e.
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Exercise 3.138. Let τ be the map τ ∶C→ C defined by τ(a + bi) = a − bi (complex conjugation). Prove
that τ is an automorphism of C.

Solution 3.139. Let a, b, c, d ∈ R, so that a+bi and c+di are arbitrary elements in the field C of complex
numbers. Consider the mapping τ evaluated at the sum of a + bi and c + di:

τ (a + bi + c + di) = τ (a + c + bi + di)
= τ (a + c + (b + d)i)
= a + c − (b + d)i
= a + c − bi − di
= a − bi + c − di
= τ (a + bi) + τ (c + di) .

So, we find that complex conjugation preserves addition. Now, consider the mapping τ evaluated at the
product of a + bi and c + di:

τ ((a + bi) (c + di)) = τ (ac + adi + bci − bd)
= τ (ac − bd + adi + bci)
= τ (ac − bd + (ad + bc)i)
= ac − bd − (ad + bc)i
= ac − bd − adi − bci
= ac − adi − bci − bd
= (a − bi) (c − di)
= τ (a + bi) τ (c + di) .

Also, we have that τ(1) is equal to 1, from the definition of τ . So, we find that τ is a ring homomorphism
from C to C. That is, τ is a field homomorphism from C to C. Now, to prove that τ is an automorphism4,
we must prove that τ is bijective. Given an arbitrary element c + di in the codomain C of τ , we have
that c − di maps to c + di under τ , thus establishing the surjectivity of τ . Now, suppose that

τ(a + bi) = τ(c + di).

From the equality
a − bi = c − di

we have that
Re(a − bi) = Re(c − di)

and that
Im(a − bi) = Im(c − di),

so that a and c must be equal, and b and d must be such that b = d. So, we have that

τ(a + bi) = τ(c + di) Ô⇒ a + bi = c + di,

as desired.
4See https://en.wikipedia.org/wiki/Automorphism.
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Exercise 3.140. Determine the fixed field of complex conjugation on C.

Solution 3.141. We begin by recalling the following proposition from the class textbook.

“Proposition 3. Let H ≤ Aut(K) be a subgroup of the group of automorphisms of K. Then the
collection F of elements of K fixed by all the elements of H is a subfield of K.” (p. 560)

As stated in the class textbook, “Note that it is not important in this proposition that H actually be a
subgroup of Aut(K) – the collection of elements of K fixed by all the elements of a subset of Aut(K) is
also a subfield of K.” (p. 560)

Now, consider the field C of complex numbers, and consider the singleton set {σ} consisting of the
C-automorphism given by complex conjugation. The fixed field of complex conjugation on C consists
precisely of elements of the form

a + bi ∈ C
such that a, b ∈ R, and such that

a + bi = a − bi.
So, we find that the collection of elements of C fixed by the complex conjugation automorphism consists
precisely of elements of the form

a + bi ∈ C
such that a is in R and such that

Im(a + bi) = Im(a − bi) = b = −b.

From the above equalities, we have that the fixed field of complex conjugation on C is R.

Exercise 3.142. Prove that Q(
√

2) and Q(
√

3) are not isomorphic.

Solution 3.143. By way of contradiction, suppose that there exists a bijective ring homomorphism φ
from Q(

√
2) to Q(

√
3). Since φ is a bijective ring homomorphism, we have that φ(q) = q for each element

q in the prime field Q, as may be verified inductively, using equalities such as φ(1) = 1, φ(1 + 1) = 1 + 1,
etc. Now, since (

√
2)2 = 2, we have that φ(

√
2)2 = 2. But then

√
2 or −

√
2 would have to be in the

codomain of φ, Q(
√

3). That is, we would have that
√

2 = q1 + q2
√

3

for some elements q1 and q2 in Q. If we accept that
√

2
3 is irrational, then we have that q1 is nonzero.

If we accept that
√

2 is irrational, we have that q2 is nonzero. So, since

2 = q21 + 2
√

3q1q2 + 3q22

and since q2 and q2 are nonzero, if we accept that
√

3 is irrational, we arrive at a contradiction.

Exercise 3.144. Determine the automorphisms of the extension Q( 4
√

2)/Q(
√

2) explicitly.

Solution 3.145. Let σ be an automorphism of Q( 4
√

2) fixing Q(
√

2). Observe that the field Q( 4
√

2)
is the splitting field for the polynomial x4 − 2 over Q. So, we have that σ must permute the roots of
x4−2. But furthermore, σ must map

√
2 to

√
2, and must map −

√
2 to −

√
2. So, σ is either the identity

automorphism, or σ maps 4
√

2 to − 4
√

2 and maps − 4
√

2 to its additive inverse.
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Exercise 3.146. Let k be a field. Show that the mapping φ∶k[t] → k[t] defined by φ(f(t)) = f(at + b)
for fixed a, b ∈ k, a ≠ 0 is an automorphism of k[t] which is the identity on k.

Solution 3.147. Let k and φ be as given above, letting a, b ∈ k be fixed. Let f(t) and g(t) be polynomials
in the domain of φ. Let f = f(t) be denoted as

f(t) = antn + an−1tn−1 +⋯ + a1t + a0

and let g = g(t) be denoted as

g(t) = bmtm + bm−1tm−1 +⋯ + b1t + b0.

We may assume without loss of generality that n ≥m. Let the sum of f and g be denoted as follows:

f(t) + g(t) = ⋯ + (am + bm)tm +⋯ + (a0 + b0).

So, we have that

φ(f(t) + g(t)) = ⋯ + (am + bm)(at + b)m + (am−1 + bm−1)(at + b)m−1 +⋯ + (a0 + b0).

Expanding each expression of the form

(ai + bi)(at + b)i = ai(at + b)i + bi(at + b)i

and rearranging the resultant terms, we see that φ(f(t) + g(t)) is equal to φ(f(t)) + φ(g(t)). Now,
consider the product of f and g. It is convenient for our purposes to let ai vanish for i > n, and to let
bi vanish for i >m. We thus have that

(
∞

∑
i=0

ait
i) ⋅ (

∞

∑
j=0

bjt
j) =

∞

∑
k=0

(
k

∑
`=0

a`bk−`) tk.

So, we have that

φ((
∞

∑
i=0

ait
i) ⋅ (

∞

∑
j=0

bjt
j)) =

∞

∑
k=0

(
k

∑
`=0

a`bk−`)(at + b)k.

Through essentially the same convolution formula, we have that this is also equal to

(
∞

∑
i=0

ai(at + b)i) ⋅ (
∞

∑
j=0

bj(at + b)j) ,

which shows that φ is a ring homomorphism, since φ(1) = 1. So, it remains to show that φ is bijective.

Let g = g(t) be an arbitrary element in the codomain of φ. Now, consider the expression g ( t−ba ). This
is a well-defined polynomial in k, since k is a field and since a is nonzero. We have that

φ(g (t − b
a

)) = g (at + b − b
a

) = g (t) ,

thus proving the surjectivity of φ. So, it remains to prove that φ is injective. Since φ is a ring homo-
morphism, it remains to prove that the kernel of φ is trivial. So, it remains to prove that the following
set is trivial:

ker(φ) = {f(t) ∈ k[t] ∶ f(at + b) = 0} .
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But if we let f be denoted as
f(t) = antn + an−1tn−1 +⋯ + a1t + a0

we have that
f(at + b) = an(at + b)n + an−1(at + b)n−1 +⋯ + a1(at + b) + a0 = 0.

Recall that a is nonzero. Since

f(at + b) = an(at + b)n + an−1(at + b)n−1 +⋯ + a1(at + b) + a0 = 0,

by the binomial theorem, the coefficient of tn in the expansion of the above formula would have to
be equal to ana, so that an would have to be equal to 0, since a is nonzero. Repeating this agument
inductively shows that f must be trivial, as desired.

So, we have thus far shown that φ is an automorphism on k[t]. Now, consider the behaviour of φ on k.
We have that φ(f(t)) = f(at+b) for each element f(t) in the domain of φ. So, for a constant polynomial
c in the domain of φ, we have that

φ(c) = c∣
at+b

= c,

which shows that φ is the identity on k.

Exercise 3.148. Conversely, let φ be an automorphism of k[t] which is the identity on k. Prove that
there exist a, b ∈ k with a ≠ 0 such that φ(f(t)) = f(at + b) as in the previous exercise.

Solution 3.149. As above, let φ be an automorphism of k[t] which is the identity on k. So, we have
that φ(c) = c for each constant polynomial c in k[t]. Now, consider the mapping φ evaluated at the
polynomial t ∈ k[t]. We have that φ(t) cannot be equal to a constant polynomial, since φ is bijective
and since φ(c) = c for each constant polynomial c in k[t]. By way of contradiction, suppose that the
degree of φ(t) is greater than or equal to 2. But then given a non-constant polynomial

f(t) = antn + an−1tn−1 +⋯ + a1t + a0

in k[t], we have that the degree of φ(f(t)) would have to be strictly greater than n, which would mean
that no element in the domain of φ would map to a degree-1 polynomial under φ, contradicting the
surjectivity of φ. So, since the degree of φ(t) cannot be strictly less than 1 and cannot be strictly
greater than 1, we may deduce that the degree of φ(t) is equal to 1, so that there exist a, b ∈ k with
a ≠ 0 such that φ(t) = at + b. So, given a non-constant polynomial

f(t) = antn + an−1tn−1 +⋯ + a1t + a0

in k[t], since φ is a ring homomorphism, we have that:

φ(f(t)) = φ(antn + an−1tn−1 +⋯ + a1t + a0)
= φ(antn) + φ(an−1tn−1) +⋯ + φ(a1t) + φ(a0)
= φ(an)φ(tn) + φ(an−1)φ(tn−1) +⋯ + φ(a1)φ(t) + φ(a0)
= anφ(tn) + an−1φ(tn−1) +⋯ + a1φ(t) + a0
= anφ(t)n + an−1φ(t)n−1 +⋯ + a1φ(t) + a0
= an(at + b)n + an−1(at + b)n−1 +⋯ + a1(at + b) + a0
= f(at + b).
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Exercise 3.150. The following exercises determine Aut(R/Q). Prove that any σ ∈ Aut(R/Q) takes
squares to squares and takes positive reals to positive reals. Conclude that a < b implies σa < σb for
every a, b ∈ R.

Solution 3.151. Let σ denote an element in Aut(R/Q). Now, let r ∈ R, so that r2 is a square in R.
Since σ is a ring homomorphism, we have that

σ(r2) = σ(r)2,

so that σ sends squares to squares. Now, recall that σ is a field automorphism. So, we have that
σ(0) = 0. Since

σ(r2) = σ(r)2,
for positive s = r2 = (√s)2 > 0, we have that σ(s) = σ(r)2 is positive, by bijectivity of σ, since σ(0) = 0.
Now, letting a and b be elements in R, assume that a < b. Equivalently, 0 < b − a. So, since b − a is
positive, we have that 0 < σ(b − a). Since σ is a ring homomorphism, we have that 0 < σ(b) − σ(a).
Therefore, σ(a) < σ(b).

Exercise 3.152. Letting σ be as given above, prove that − 1
m < a − b < 1

m implies − 1
m < σa − σb < 1

m for
every positive integer m. Conclude that σ is a continuous map on R.

Solution 3.153. Letting m be a positive integer, assume that − 1
m < a − b < 1

m . So, we have that

−1 <ma −mb < 1.

First suppose that ma −mb is positive. Then

−1 < σ(ma −mb) < σ(1),

from our results from Exercise 3.150. Furthermore, since σ is a field automorphism, we have that σ
must map the multiplicative identity element in its domain to 1, so that

−1 < σ(ma −mb) < 1.

Since σ is a ring homomorphism, we have that

−1 < σ(m)σ(a) − σ(m)σ(b) < 1,

and since σ(m) is positive from our results from Exercise 3.150, we have that

− 1

σ(m) < σ(a) − σ(b) < 1

σ(m) .

Now, recall that m ∈ N is a positive integer. Since σ is a field automorphism, we have that

σ(m) = σ
⎛
⎜
⎝

1 + 1 +⋯ + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m∈N

⎞
⎟
⎠

= σ(1) + σ(1) +⋯ + σ(1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m∈N

= 1 + 1 +⋯ + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m∈N
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=m.

So, since

− 1

σ(m) < σ(a) − σ(b) < 1

σ(m) ,

we have that
− 1

m
< σa − σb < 1

m
,

as desired. So, for all ε > 0, letting m ∈ N be such that 1
m < ε, and letting δ > 0 be such that δ = 1

m , we
have that if

−δ < a − b < δ
then

−ε < σa − σb < ε,
thus proving that σ is continuous on R.

Exercise 3.154. Prove that any continuous map on R which is the identity on Q is the identity map,
and hence Aut(R/Q) = 1.

Solution 3.155. Let f ∶R → R be a continuous map which is the identity on Q. So, we have that
f(q) = q for all q ∈ Q ⊆ R. Now, let i be an irrational number in the domain of f . We can find a rational
number r which is arbitrarily close to i, and we can formalize this idea using Dedekind cuts and Cauchy
sequences. So, we can construct a sequence

(r1, r2, . . .)

of rational numbers such that limj→∞ rj = i. Since f is continuous, we have that limj→∞ f(rj) = f(i) = i,
as desired. We have shown that if σ is an element in Aut(R/Q), then σ must be continuous. So, given
that σ ∈ Aut(R/Q), we have that σ must be continuous and must be the identity on Q, which shows
that σ must be the identity on R.

Exercise 3.156. Prove that the automorphisms of the rational function field k(t) which fix k are
precisely the fractional linear transformations determined by t ↦ at+b

ct+d for a, b, c, d ∈ k, ad − bc ≠ 0 (so
f(t) ∈ k(t) maps to f(at+bct+d)).

Solution 3.157. Suppose that σ is an automorphism of the rational function field k(t) which fixes k.
Consider the expression σ(t). We know that σ(α) = α for each constant α in k, and since σ is bijective,
we have that σ(t) cannot be equal to a constant in k. Now, by way of contradiction, suppose that σ(t)
is equal to a rational function of the form p(t)

q(t) where p(t) and q(t) are both polynomials in k[x] such
that the degree of p(t) is greater than or equal to 2, and such that the fraction p(t)

q(t) is written in lowest
terms. But then a rational function of the form

αt + β
γt + δ

would be mapped to
α (p(t)q(t)) + β

γ (p(t)q(t)) + δ
,

94



with p(t)
q(t) written in lowest terms, letting

α(
p(t)
q(t) )+β

γ(
p(t)
q(t) )+δ

also be written in lowest terms. So,

αt + β
γt + δ

would have to be mapped to a quotient involving a polynomial of degree at least two, in lowest terms,
and a symmetric argument applies in the case whereby q(t) is of degree greater than or equal to 2. More
generally, a quotient of the form r(t)

s(t) would have to be mapped to a quotient involving a polynomial of
degree at least 2n, in lowest terms, letting r(t) or s(t) be of degree n ∈ N. But then nothing would be
mapped to nonconstant quotients of polynomials of degree at most 1 by linear polynomials, contradicting
the bijectivity of σ. So, from the above discussion, we have that σ(t) must be mapped to an expression
of the form at+b

ct+d , where a, b, c, d ∈ k. In order for σ to be bijective, we must have that the restriction of
σ to well-defined quotients of the form

αt + β
γt + δ

is bijective, from our previous discussion. By way of contradiction, suppose that ad = bc. From the
equality ad = bc, we have that σ would have to map t to the following:

at + b
ct + d = adt + bd

d(ct + d)

= bct + bd
d(ct + d)

= b(ct + d)
d(ct + d)

= b
d
.

But this is impossible, since σ(t) cannot be a constant in k, by bijectivity of σ.

Exercise 3.158. Determine the fixed field of the automorphism t↦ t + 1 of k(t).

Solution 3.159. Let σ∶k(t) → k(t) denote the automorphism on k(t) whereby t ↦ t + 1. Observe that
each element in k is fixed by this morphsim. Now, consider the set of all elements in k(t) that are fixed
by this morphism. Let

f(t) = antn + an−1tn−1 +⋯ + a1t + a0
be a polynomial in k[t], and let

g(t) = bmtm + bm−1tm−1 +⋯ + b1t + b0

be a nonzero polynomial in k[t], so that f(t)
g(t) is an element in k(t). Let the quotient f(t)

g(t) be in lowest
terms. Now, suppose that this element is fixed under the morphism σ given above. We thus have that

antn + an−1tn−1 +⋯ + a1t + a0
bmtm + bm−1tm−1 +⋯ + b1t + b0

is equal to
an(t + 1)n + an−1(t + 1)n−1 +⋯ + a1(t + 1) + a0
bm(t + 1)m + bm−1(t + 1)m−1 +⋯ + b1(t + 1) + b0

.
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Expanding the numerator and the denominator of this latter rational expression using the binomial
theorem, we see that this polynomial may be written as

f(t) + α(t)
g(t) + β(t)

where the degree of α is strictly less than the degree of f and the degree of β is strictly less than the
degree of g. So, unless f and g are both constant polynomials, it would be impossible for

f(t)
g(t)

to be equal to
f(t) + α(t)
g(t) + β(t) ,

because if
f(t)g(t) + f(t)β(t) = f(t)g(t) + g(t)α(t)

then
f(t)β(t) = g(t)α(t)

so that
f(t)
g(t) = α(t)

β(t)
which contradicts that f and g are in lowest terms, since the degree of α is strictly less than that of f ,
and the degree of β is strictly less than g. So, we have that the fixed field of the given morphism is k.

Exercise 3.160. Let K be an extension of the field F . Let φ∶K → K ′ be an isomorphism of K with
a field K ′ which maps F to the subfield F ′ of K ′. Prove that the map σ ↦ φσφ−1 defines a group
isomorphism Aut(K/F ) ∼Ð→ Aut(K ′/F ′).

Solution 3.161. Define the mapping

Ψ∶Aut(K/F ) → Aut(K ′/F ′)

so that: given an arbitrary element σ in Aut(K/F ), Ψ(σ) = φσφ−1, where φ is as given above, with
φ∶K → K ′ as an isomorphism of K to K ′ which maps F to the subfield F ′ of K ′. We observe that
Ψ is well-defined in the sense that φ is invertible so that the composition φσφ−1 is well-defined as a
mapping from K ′ to K ′. Furthermore, since φ, σ, and φ−1 are all isomorphisms, we have that φσφ−1 is
an isomorphism from K ′ to K ′. That is, φσφ−1 is an automorphism on K ′. We claim that φσφ−1 fixes
F ′. Since φ maps F to the subfield F ′ of K ′, we may deduce that φ−1 maps F ′ to F . Now, recall that
σ is an element in Aut(K/F ). So, we find that σ maps F to F . Again since φ maps F to F ′, we may
conclude that the product φσφ−1 maps F ′ to F ′. So, we have thus far shown that the mapping Ψ given
above is well-defined in the sense that Ψ(σ) is an element in the given codomain of Ψ for each element
σ in the domain of Ψ.

Now, let σ and ρ be elements in the domain of Ψ, and consider the composition σ ○ ρ:

Ψ (σ ○ ρ) = φ ○ σ ○ ρ ○ φ−1

= φ ○ σ ○ φ−1 ○ φ ○ ρ ○ φ−1

96



= (φ ○ σ ○ φ−1) ○ (φ ○ ρ ○ φ−1)
= Ψ (σ) ○Ψ (ρ) .

So, we have that Ψ is a group homomorphism, as desired. Letting σ and ρ be as given above, we have
that:

Ψ (σ) = Ψ (ρ) Ô⇒ φσφ−1 = φρφ−1

Ô⇒ φ−1φσφ−1 = φ−1φρφ−1

Ô⇒ σφ−1 = ρφ−1

Ô⇒ σφ−1φ = ρφ−1φ
Ô⇒ σ = ρ.

So, we have that Ψ is injective. Now, let θ be an arbitrary element in the codomain of Ψ. So, we have
that θ is an automorphism on K ′ fixing F ′. Since φ−1θφ is an isomorphism from K to K fixing F , we
have that φ−1θφ is in the domain of Ψ, and we have that Ψ evaluated at φ−1θφ is θ.

3.16 Exercises from Section 14.2

Exercise 3.162. Determine the minimal polynomial over Q for the element
√

2 +
√

5.

Solution 3.163. Let the element
√

2 +
√

5 be denoted as α =
√

2 +
√

5. By the binomial theorem, we
have that:

α2 = 2
√

2
√

5 + 7.

So, we have that
α2 − 7 = 2

√
2
√

5.

That is,
(α2 − 7)2 = 40.

So, we have that
α4 − 14α2 + 9 = 0.

So, we find that α is a root of the following degree-4 polynomial in Q[x]:

x4 − 14x2 + 9 ∈ Q[x].

Letting x2 be denoted as γ, from the equation

x4 − 14x2 + 9 = 0

we have that
γ2 − 14γ + 9 = 0

so that

x = ±
√

14 ±
√

160

2
.

No root of the form

x = ±
√

14 ±
√

160

2
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and no product of two distinct roots of the form

x = ±
√

14 ±
√

160

2

is rational. This shows that the minimal polynomial for
√

2 +
√

5 over Q is equal to x4 − 14x2 + 9.

Exercise 3.164. Determine the minimal polynomial over Q for the element 1 + 3
√

2 + 3
√

4.

Solution 3.165. Let 1 + 3
√

2 + 3
√

4 be denoted as α. We thus have that

α − 1 = 3
√

2 + 3
√

4

so that
α − 1 = 3

√
2 + ( 3

√
2)2.

Therefore,
α − 1 = 3

√
2(1 + 3

√
2).

By the binomial theorem, we find that:

1

2
(α − 1)3 = 2 + 3( 3

√
2)2 + 3

3
√

2 + 1.

Therefore,
1

2
(α − 1)3 − 3 = 3( 3

√
2)2 + 3

3
√

2.

Since α − 1 = 3
√

2 + ( 3
√

2)2, we have that

1

2
(α − 1)3 − 3 = 3(α − 1).

That is,
(α − 1)3 = 6α.

That is,
α3 − 3α2 − 3α − 1 = 0.

We thus have that 1 + 3
√

2 + 3
√

4 is a root of the following polynomial in Q[x]:

x3 − 3x2 − 3x − 1 ∈ Q[x].

Since x3 − 3x2 − 3x − 1 is a degree-3 polynomial in Q[x], if this polynomial were reducible over Q, then
x3 − 3x2 − 3x − 1 would have to factor into a degree-1 polynomial in Q[x] and a degree-2 polynomial in
Q[x]. By the quadratic formula, we have that 1 + 3

√
2 + 3

√
4 cannot be a root of a quadratic element

in Q[x], which shows that x3 − 3x2 − 3x − 1 must be irreducible as an element in Q[x]. We may thus
conclude that the monic polynomial x3 − 3x2 − 3x − 1 is the minimal polynomial over Q for the element
1 + 3

√
2 + 3

√
4.

Exercise 3.166. Determine the Galois group of (x2 − 2)(x2 − 3)(x2 − 5). Determine all the subfields of
the splitting field of this polynomial.
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Solution 3.167. We begin by recalling some definitions from the class textbook.

“Definition. Let K/F be a finite extension. Then K is said to be Galois over F and K/F is a Galois
extension if ∣Aut(K/F )∣ = [K ∶ F ]. If K/F is Galois the group of automorphisms Aut(K/F ) is called
the Galois group of K/F , denoted Gal(K/F ).” (p. 562)

“Definition. If f(x) is a separable polynomial over F , then the Galois group of f(x) over F is the
Galois group of the splitting field of f(x) over F .” (p. 563)

Now, consider the given polynomial (x2−2)(x2−3)(x2−5) as an element in Q[x]. This polynomial does
not have any repeated roots, so (x2 − 2)(x2 − 3)(x2 − 5) is a separable polynomial over Q. So, we have
that the Galois group of f(x) = (x2 − 2)(x2 − 3)(x2 − 5) over Q is the Galois group of the splitting field
of f(x) over Q.

Now, consider the splitting field of f(x) over Q. Since the roots of (x2−2)(x2−3)(x2−5) are precisely the
elements in {±

√
2,±

√
3,±

√
5}, we have that the splitting field of f(x) over Q is precisely Q(

√
2,

√
3,

√
5).

So, we need to evaluate the following group of automorphisms:

Aut(Q(
√

2,
√

3,
√

5)/Q).

Now, let σ be an element in Aut(Q(
√

2,
√

3,
√

5)/Q). Since (
√

2)2 = 2, and since σ is a ring homomor-
phism fixing the base field Q, we have that

σ ((
√

2)2) = (σ(
√

2))
2
= σ(2) = 2.

So, we have that σ(
√

2) ∈ {
√

2,−
√

2}. In a similar fashion, we have that σ(
√

3) ∈ {
√

3,−
√

3} and
that σ(

√
5) ∈ {

√
5,−

√
5}. So, we obtain a total of 8 automorphisms in Aut(Q(

√
2,

√
3,

√
5)/Q). For

a bit word w in {000,001, . . . ,111}, letting wi denote the it letter in w from the left, let σw be such
that σw(

√
2) = (

√
2,−

√
2)w1+1, σw(

√
3) = (

√
3,−

√
3)w2+1, and σw(

√
5) = (

√
5,−

√
5)w3+1. Given an

automorphism σ in Aut(Q(
√

2,
√

3,
√

5)/Q), we have that σ ○ σ must be the identity automorphism on
Aut(Q(

√
2,

√
3,

√
5)/Q), since if σ(

√
2) =

√
2 then σ2(

√
2) =

√
2, if σ(

√
2) = −

√
2 then σ2(

√
2) =

√
2,

etc. In general, if a group G is such that g2 = e for each element g in G, then G must be abelian, as
may be verified by noting that for elements a and b in G, we have that abab = e implies that ba = ab.
So, we have that Aut(Q(

√
2,

√
3,

√
5)/Q) is an abelian group of order 8 such that σ2 is the identity

automorphism on Aut(Q(
√

2,
√

3,
√

5)/Q) for each element σ in Aut(Q(
√

2,
√

3,
√

5)/Q). So, we have
that:

Gal(Q(
√

2,
√

3,
√

5)/Q) ≅ (Z/2Z) × (Z/2Z) × (Z/2Z) .
Now, consider the subgroups of Gal(Q(

√
2,

√
3,

√
5)/Q). The subgroups of this group are listed below.

{σ000}
{σ000, σ001}
{σ000, σ010}
{σ000, σ011}
{σ000, σ100}
{σ000, σ101}
{σ000, σ110}
{σ000, σ111}
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{σ000, σ001, σ010, σ011}
{σ000, σ001, σ100, σ101}
{σ000, σ001, σ110, σ111}
{σ000, σ010, σ100, σ110}
{σ000, σ010, σ101, σ111}
{σ000, σ011, σ100, σ111}
{σ000, σ011, σ101, σ110}
{σ000, σ001, σ010, σ011, σ100, σ101, σ110, σ111}

So, it remains to determine the fixed fields corresponding to the above subgroups. Of course, the fixed
field for the trivial subgroup is Q(

√
2,

√
3,

√
5). In general, an element in Q(

√
2,

√
3,

√
5) is of the

following form:

q1 + q2
√

2 + q3
√

3 + q4
√

5 + q5
√

2
√

3 + q6
√

2
√

5 + q7
√

3
√

5 + q8
√

2
√

3
√

5.

So, the fixed field for {σ000, σ001} is equal to Q(
√

2,
√

3). Similarly, the fixed field for {σ000, σ010} is
Q(

√
2,

√
5).

Now, the elements in the subfield fixed by all of the elements in {σ000, σ011} are precisely elements of
the following form:

q1 + q2
√

2 + q7
√

3
√

5 + q8
√

2
√

3
√

5.

So, the subfield fixed by all of the elements in {σ000, σ011} is equal to Q(
√

2,
√

15). Similarly, the subfield
field by all of the elements in {σ000, σ100} is equal to Q(

√
3,

√
5).

Now, consider the elements in the subfield fixed by all of the elements in {σ000, σ101}. These elements
are precisely elements of the form

q1 + q3
√

3 + q6
√

2
√

5 + q8
√

2
√

3
√

5.

So, the subfield fixed by all of the elements in {σ000, σ101} is equal to Q(
√

3,
√

10). Similarly, the subfield
fixed by all of the elements in {σ000, σ110} is Q(

√
5,

√
6). Now, consider the subfield fixed by all of the

elements in {σ000, σ111}. An element

q1 + q2
√

2 + q3
√

3 + q4
√

5 + q5
√

2
√

3 + q6
√

2
√

5 + q7
√

3
√

5 + q8
√

2
√

3
√

5

in Q(
√

2,
√

3,
√

5) is fixed by all of the elements in {σ000, σ111} if and only if this element is of the form:

q1 + q5
√

2
√

3 + q6
√

2
√

5 + q7
√

3
√

5,

for q1, q5, q6, q7 ∈ Q. Now, consider the following computations.

(
√

2
√

3) ⋅ (
√

2
√

5) = 2
√

3
√

5

(
√

2
√

3) ⋅ (
√

3
√

5) = 3
√

2
√

5

(
√

2
√

5) ⋅ (
√

3
√

5) = 5
√

2
√

3

From the above computations, we find that the subfield of Q(
√

2,
√

3,
√

5) fixed by all of the elements
in {σ000, σ111} is equal to Q(

√
2
√

3,
√

2
√

5,
√

3
√

5). So, we have thus far established the following
correspondences.
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Subgroup of Galois group Fixed field
{σ000} Q(

√
2,

√
3,

√
5)

{σ000, σ001} Q(
√

2,
√

3)
{σ000, σ010} Q(

√
2,

√
5)

{σ000, σ011} Q(
√

2,
√

15)
{σ000, σ100} Q(

√
3,

√
5)

{σ000, σ101} Q(
√

3,
√

10)
{σ000, σ110} Q(

√
5,

√
6)

{σ000, σ111} Q(
√

6,
√

10,
√

15)

Now, consider the subfield of Q(
√

2,
√

3,
√

5) fixed by all of the elements of {σ000, σ001, σ010, σ011}. Now,
recall that an element in Q(

√
2,

√
3,

√
5) must be of the following form:

q1 + q2
√

2 + q3
√

3 + q4
√

5 + q5
√

2
√

3 + q6
√

2
√

5 + q7
√

3
√

5 + q8
√

2
√

3
√

5.

Elements fixed by σ001 must be of the following form:

q1 + q2
√

2 + q3
√

3 + q5
√

2
√

3.

Elements fixed by σ001 and σ010 must be of the following form:

q1 + q2
√

2.

Elements of this form must be fixed by σ011. So, we have that the subfield fixed by the Klein four-
subgroup {σ000, σ001, σ010, σ011} is equal to Q(

√
2). Similarly, the subfield fixed by the Klein four-

subgroup {σ000, σ001, σ100, σ101} is Q(
√

3). Now, consider the subfield fixed by all of the morphisms in
{σ000, σ001, σ110, σ111}. An element in Q(

√
2,

√
3,

√
5) is fixed by σ111 if and only if it is of the form

q1 + q5
√

2
√

3 + q6
√

2
√

5 + q7
√

3
√

5.

So, an element in Q(
√

2,
√

3,
√

5) is fixed by both σ111 and σ001 if and only if it is of the form

q1 + q5
√

2
√

3.

So, we find that the subfield fixed by all of the elements in the {σ000, σ001, σ110, σ111} is equal to Q(
√

6).
We omit explanations for the remaining computations for this problem. All of the possible subfields are
listed in the following table.
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Subgroup of Galois group Fixed field
{σ000} Q(

√
2,

√
3,

√
5)

{σ000, σ001} Q(
√

2,
√

3)
{σ000, σ010} Q(

√
2,

√
5)

{σ000, σ011} Q(
√

2,
√

15)
{σ000, σ100} Q(

√
3,

√
5)

{σ000, σ101} Q(
√

3,
√

10)
{σ000, σ110} Q(

√
5,

√
6)

{σ000, σ111} Q(
√

6,
√

10,
√

15)
{σ000, σ001, σ010, σ011} Q(

√
2)

{σ000, σ001, σ100, σ101} Q(
√

3)
{σ000, σ001, σ110, σ111} Q(

√
6)

{σ000, σ010, σ100, σ110} Q(
√

5)
{σ000, σ010, σ101, σ111} Q(

√
10)

{σ000, σ011, σ100, σ111} Q(
√

15)
{σ000, σ011, σ101, σ110} Q(

√
30)

{σ000, σ001, σ010, σ011, σ100, σ101, σ110, σ111} Q

Exercise 3.168. Let p be a prime. Determine the elements of the Galois group of xp − 2.

Solution 3.169. Let p
√

2 denote the unique real pth root of xp − 2. Letting ζp denote a fixed primitive
pth root of unity, we have that the roots of xp − 2 are precisely:

ζp
p
√

2, ζ2p
p
√

2, . . . , ζp−1p
p
√

2,
p
√

2.

We thus find that xp − 2 has no repeated roots, so that xp − 2 is separable over Q. The splitting field of
xp − 2 over Q is equal to:

Q(ζp, p
√

2).
Given an automorphism σ of Q(ζp, p

√
2) fixing Q, we have that σ must permute the roots of xp − 2. In

particular, we have that the behaviour of σ is entirely determined by the values of σ(ζp) and σ( p
√

2).
Since p is a prime, we have that there are p − 1 possible choices for the value of σ(ζp). There are also p
choices for the value of σ( p

√
2). So, the Galois group for xp − 2 consists of p(p − 1) elements, given by

p − 1 possible choices for the value of σ(ζp), and p choices for the value of σ( p
√

2).

Exercise 3.170. Prove that the Galois group of xp − 2 for p a prime is isomorphic to the group of

matrices (a b
0 1

) were a, b ∈ Fp, a ≠ 0.

Solution 3.171. Given an element ζ ip in {ζp, ζ2p , . . . , ζp−1p }, with i ∈ {1,2, . . . , p−1}, and given an element
ζjp

p
√

2 in
{ζp p

√
2, ζ2p

p
√

2, . . . , ζp−1p
p
√

2,
p
√

2},
with j ∈ {0,1,2, . . . , p − 1}, let σi,j denote the unique element in the Galois group for xp − 2 mapping ζp
to ζ ip, and mapping p

√
2 to ζjp p

√
2. Let the elements in Fp be denoted in the following manner:

Fp = {0,1, . . . , p − 1}.
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Let Ψ denote the mapping from the Galois group of xp − 2 to

{(a b
0 1

) ∶ a, b ∈ Fp, a ≠ 0} ,

such that Ψ maps σi,j to (i j
0 1

). We remark that this mapping is well-defined in the sense that the

expression (i j
0 1

) is such that the index i is required to be nonzero. Now, let i1 and i2 be indices

in {1,2, . . . , p − 1}, and let j1 and j2 be indices in {0,1,2, . . . , p − 1}. Now, consider the composition
σi1,j1 ○ σi2,j2 . Since σi2,j2 maps ζp to ζ i2p , we have that σi1,j1 ○ σi2,j2 maps ζp to ζ i1i2(mod p)

p . Since σi2,j2
maps p

√
2 to ζj2p p

√
2, and since σi1,j1 is a morphism, we have that the composition σi1,j1 ○ σi2,j2 maps p

√
2

to ζ(i1j2+j1)(mod p)
p

p
√

2. So, the mapping Ψ evaluated at the composition σi1,j1 ○ σi2,j2 is equal to

(i1i2(mod p) (i1j2 + j1)(mod p)
0 1

) .

Now, consider the matrix product Ψ(σi1,j1)Ψ(σi2,j2), which is equal to:

(i1 j1
0 1

)(i2 j2
0 1

) = (i1i2(mod p) (i1j2 + j1)(mod p)
0 1

) .

We thus have that Ψ is a well-defined group homomorphism from the Galois group of xp − 2 to

{(a b
0 1

) ∶ a, b ∈ Fp, a ≠ 0} .

It is obvious that Ψ is injective, since if

Ψ(σi1,j1) = Ψ(σi2,j2)

then

(i1 j1
0 1

) = (i2 j2
0 1

) ,

so tat i1 = i2 and j1 = j2. Since Ψ is an injective mapping between two sets of equal cardinality, we have
that Ψ is bijective. Since Ψ is also a morpism, we thus have that Ψ is a group isomorphism, as desired.

Exercise 3.172. Let K = Q( 8
√

2, i), and let F1 = Q(i), F2 = Q(
√

2), F3 = Q(
√
−2). Prove that

Gal(K/F1) ≅ Z8, Gal(K/F2) =D8, Gal(K/F3) = Q8.

Solution 3.173. Our solution is inspired in part by a corresponding solution given in the following link.

http://sporadic.stanford.edu/Math121/Solutions5.pdf

Let σ be an element in Aut (K/F1). We have that the behaviour of σ is completely determined by the
value of σ( 8

√
2). Since the minimal polynomial for 8

√
2 over Q(i) is equal to x8 − 2 ∈ Q(i)[x], letting ζ8

denote a primitive 8th root of unity, we have that:

σ( 8
√

2) ∈ { 8
√

2, ζ8
8
√

2, ζ28
8
√

2, . . . , ζ78
8
√

2} .
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Since there are 8 possible choices for the value of σ( 8
√

2), we may conclude that:

∣Aut(K/F1)∣ = 8.

Now, since
K = Q( 8

√
2, i) ≅ Q(i)( 8

√
2),

we may, accordingly, identify the fields K and Q(i)( 8
√

2).

Q(i)( 8
√

2)
RRRRRRRRRRR

Q(i)

Since the minimal polynomial for 8
√

2 over Q(i) is x8 − 2, we thus have that:

[Q(i)( 8
√

2) ∶ Q(i)] = degm 8√2,Q(i)(x) = 8.

So, since
[K ∶ F1] = ∣Aut(K/F1)∣ ,

we find that K is a Galois extension of F1. We also note that we have shown that the Galois group
Gal(K/F1) must be of order 8.

Since
(i + 1)2 = 2i

we have that √
i = i + 1√

2
.

Since
(
√
i)

2
= i

and
(
√
i)

4
= −1

and
(
√
i)

8
= 1,

it is easily seen that i+1√
2
is a primitive 8th root of unity. Let

ζ8 =
i + 1√

2
=
√

2(i + 1

2
) ,

with
σ( 8

√
2) ∈ { 8

√
2, ζ8

8
√

2, ζ28
8
√

2, . . . , ζ78
8
√

2} ,

as above.

Now, let ρ denote the unique element in Gal(Q(i)( 8
√

2)/Q(i)) such that:

ρ( 8
√

2) =
√

2(i + 1

2
)( 8

√
2) .
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Now, consider the following computations:

ρ( 8
√

2) =
√

2(i + 1

2
)( 8

√
2)

ρ(ρ( 8
√

2)) = ρ(
√

2) (i + 1

2
)ρ ( 8

√
2)

= (i + 1

2
)(ρ ( 8

√
2))

5

= −i 8
√

2

ρ(ρ(ρ( 8
√

2))) = ρ(−i 8
√

2)
= ρ(−i)ρ( 8

√
2)

= −iρ( 8
√

2)

=
√

2(1 − i
2

)( 8
√

2)

ρ(ρ(ρ(ρ( 8
√

2)))) = ρ(
√

2) (1 − i
2

)ρ ( 8
√

2)

= (1 − i
2

)(ρ ( 8
√

2))
5

= (1 − i
2

)(
√

2(i + 1

2
)( 8

√
2))

5

= − 8
√

2.

So, we have shown that the element ρ given above is such that the order of ρ as an element in the Galois
group Gal(Q(i)( 8

√
2)/Q(i)) is strictly greater than 4. So, by Lagrange’s theorem, since

∣Gal(Q(i)( 8
√

2)/Q(i))∣ = 8,

we may deduce that the order of ρ in the Galois group Gal(Q(i)( 8
√

2)/Q(i)) is equal to 8, so that
Gal(Q(i)( 8

√
2)/Q(i)) must be a cyclic group of order 8.

Essentially, the same kind of approach may be used to evaluate the latter two Galois group given in the
above exercise. We omit the computational details involved for these latter evaluations.

3.17 Exercises From Section 14.3

Exercise 3.174. Factor x8 − x into irreducibles in Z[x] and in F2[x].

Solution 3.175. We begin by factoring x8 − x into irreducibles in Z[x]. The expression x8 − x may be
written as x(x7 − 1). This can further be factored as

x(x − 1) (x6 + x5 + x4 + x3 + x2 + x + 1) .

From Section 13.6 of the class textbook, we have that the 7th cyclotomic polynomial Φ7(x) is equal to

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1,
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and by Theorem 41 from Section 13.6 of the class textbook, we know that, in general, the cyclotomic
polynomial Φn(x) is an irreducible monic polynomial in Z[x]. So, we have that our factorization of
x8 − x as

x(x − 1) (x6 + x5 + x4 + x3 + x2 + x + 1) .
is a factorization into irreducibles.

We proceed to regard x8 − x as an element in F2[x], and we again consider the factorization x8 − x =
x(x7 − 1). We observe that this factorization may be rewritten in the following manner:

x8 − x = x(x7 − 1) = x(x7 + 1).

Now, observe that:
(x6 + x5 + x4 + x3 + x2 + x + 1)(x + 1) = x7 + 1,

since coefficients are being reduced modulo 2. We thus have that:

x8 − x = x(x + 1)(x6 + x5 + x4 + x3 + x2 + x + 1).

By way of contradiction, suppose that x6 + x5 + x4 + x3 + x2 + x + 1 can be factored into a product of a
degree-1 polynomial and a degree-5 polynomial. Such a factorization would have to be of the following
form:

(x + 1)(x5 + ax4 + bx3 + cx2 + dx + 1).
The coefficient of x5 in the expansion of the above product is equal to (1 + a). Therefore, a = 0:

(x + 1)(x5 + bx3 + cx2 + dx + 1).

The coefficient of x4 is equal to b = 1:

(x + 1)(x5 + x3 + cx2 + dx + 1).

The coefficient of x3 is equal to 1 + c, so c = 0:

(x + 1)(x5 + x3 + dx + 1).

The coefficient of x2 is equal to d, so d = 1:

(x + 1)(x5 + x3 + x + 1).

But if we expand the above product, we have

x6 + x5 + x4 + x3 + x2 + 1,

and we thus have a contradiction. Now, suppose that x6 + x5 + x4 + x3 + x2 + x + 1 can be written as a
product of a degree-2 polynomial and a degree-4 polynomial, as below:

(x2 + ax + 1)(x4 + bx3 + cx2 + dx + 1).

The coefficient of x5 in the expansion of the above product is equal to b + a = 1. The coefficient of x4 in
the expansion of the above product is equal to c+ab+ 1 = 1. So, c+ab = 0. Since b+a = 1, with a, b ∈ F2,
we have that either a = 1 and b = 0, or vice-versa. So, we have that c = 0:

(x2 + ax + 1)(x4 + bx3 + dx + 1).
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The coefficient of x3 in the expansion of the above product is d + b = 1. The coefficient of x2 in the
expansion of the above product is 1 + ad = 1, so that ad = 0. Since a + b = 1, and since d + b = 1, we have
that d = a. Since ad = 0 and since d = a, we can conclude that a = d = 0:

(x2 + 1)(x4 + bx3 + 1).

Since a + b = 1, we have that b = 1:
(x2 + 1)(x4 + x3 + 1).

Expanding the above product, we find that

(x2 + 1)(x4 + x3 + 1) = x6 + x5 + x4 + x3 + x2 + 1.

Finally, suppose that x6+x5+x4+x3+x2+x+1 can be written as the product of two degree-3 polynomials,
as below:

(x3 + ax2 + bx + 1)(x3 + cx2 + dx + 1).
The coefficient of x5 in the expansion of the above product is equal to c + a = 1. The coefficient of x4
in the expansion of the above product is equal to d + ac + b = 1. The coefficient of x3 in the expansion
of the above product is equal to 1 + ad + bc + 1 = 1. The coefficient of x2 in the expansion of the above
product is equal to a + bd + c = 1. The coefficient of x in te expansion of the above product is b + d = 1.
So, we arrive at the following system of equations:

b + d = 1

a + bd + c = 1

1 + ad + bc = 0

d + ac + b = 1

c + a = 1.

If a = 1, then we have that

b = 0

bd = 0

d = 1

d + b = 1

c = 0.

Then
(x3 + x2 + 1)(x3 + x + 1)

would be equal to

x6 + x5 + x4 + 3x3 + x2 + x + 1 = x6 + x5 + x4 + x3 + x2 + x + 1,

as desired. So, we have thus far shown that the expression x8 − x may be factored as follows:

x8 − x = x(x + 1)(x3 + x2 + 1)(x3 + x + 1).

If the polynomial (x3 + x2 + 1) were reducible as an element in F2[x], then we would have that:

(x3 + x2 + 1) = (x2 + ax + 1)(x + 1).
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Then the coefficient of x2 would be equal to 1 + a = 1, so that a = 0. But then

(x2 + 1)(x + 1) = x3 + x2 + x + 1,

and we arrive at a contradiction. If the polynomial (x3 + x + 1) were reducible as an element in F2[x],
then we would have that:

x3 + x + 1 = (x2 + ax + 1)(x + 1).
The coefficient of x2 would be 1 + a = 0, so that a = 1 ∈ F2. But then

(x2 + x + 1)(x + 1) = x3 + 1,

and we again arrive at a contradiction. So, we have shown that the factorization of x8−x into irreducibles,
as an element in F2[x] is such that:

x8 − x = x(x + 1)(x3 + x2 + 1)(x3 + x + 1).

If we expand
x8 − x = x(x + 1)(x3 + x2 + 1)(x3 + x + 1)

as an element in Z[x], we obtain

x8 + 2x7 + 2x6 + 4x5 + 4x4 + 2x3 + 2x2 + x,

and this reduces to x8 − x modulo 2.

Exercise 3.176. Write out the multiplication table for F4 and F8.

Solution 3.177. In order to perform explicit computations with respect to the elements in the finite field
F4, it is natural to let the field F4 be denoted as a quotient ring. As stated in the class textbook, “The
importance of having irreducible polynomials at hand is that they give a representation of the finite fields
Fpn (as quotients Fp[x]/(f(x)) for f(x) irreducible of degree n) conducive to explicit computations.” (p.
587) So, we begin by determining a degree-2 irreducible polynomial in F2[x]. Consider the polynomial
x2+x+1 as an element in F2[x]. By way of contradiction, suppose that this poylnomial is not irreducible
in F2[x]. So, have that x2 + x + 1 could be written as a product of two degree-1 polynomials p1 and p2
in F2[x]. Since the leading coefficient of x2 + x + 1 is equal to 1, we have that the leading coefficients of
both p1 and p2 must be equal to 1. But since the constant term of x2 + x + 1 is also equal to 1, we may,
accordingly, deduce that the leading term of both p1 and p2 is equal to 1. But since p1 and p2 are both
degree-1 polynomials, we may deduce that

p1 = p2 = x + 1,

so that
p1p2 = (x + 1)2 = x2 + 2x + 1 = x2 + 1,

which is impossible, since x2 + 1 is not equal to x2 + x + 1. So, we have thus far shown that:

F4 = F2[x]/(x2 + x + 1).

Let I denote the principal ideal (x2 + x + 1) ⊆ F2[x]. Let the additive identity element 0 + I be denoted
as 0. Let the multiplicative identity element 1 + I be denoted as 1. Now, consider the element

x + I = x + ⟨x2 + x + 1⟩,
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letting ideals be denoted using the brackets ⟨ and ⟩, for the sake of clarity. Now, consider the square of
this element:

(x + ⟨x2 + x + 1⟩)2 = x2 + ⟨x2 + x + 1⟩.
Since

x2 + x + 1 + ⟨x2 + x + 1⟩ = 0 + ⟨x2 + x + 1⟩,
we have that

x + 1 + ⟨x2 + x + 1⟩ = x2 + ⟨x2 + x + 1⟩.
Letting x + I be denoted as x, and letting

x + 1 + ⟨x2 + x + 1⟩ = x2 + ⟨x2 + x + 1⟩

be denoted as x + 1 = x2, letting a coset of the form α+ I be denoted as α, for an element α in F2[x], we
have that the elements in F2[x]/⟨x2 + x + 1⟩ are precisely the elements in {0,1, x, x + 1}. So, using the
structure endowed upon F2[x]/⟨x2+x+1⟩, we may compute the multiplication table for F4, as suggested
as follows.

∗ 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1

x 0 x x + 1 1
x + 1 0 x + 1 1 x

As discussed in the class textbook, the polynomial x3 + x + 1 is irreducible as an element in F2[x]. We
thus have that the field F8 is isomorphic to the quotient ring F2[x]/⟨x3 + x + 1⟩, so we may identify the
field F8 with the quotient ring F2[x]/⟨x3 + x + 1⟩. Now, compute the elements in this ring:

0 + ⟨x3 + x + 1⟩ = x3 + x + 1 + ⟨x3 + x + 1⟩
1 + ⟨x3 + x + 1⟩ = x3 + x + ⟨x3 + x + 1⟩
x + ⟨x3 + x + 1⟩ = x3 + 1 + ⟨x3 + x + 1⟩
x + 1 + ⟨x3 + x + 1⟩ = x3 + ⟨x3 + x + 1⟩
x2 + ⟨x3 + x + 1⟩ = x3 + x2 + x + 1 + ⟨x3 + x + 1⟩
x2 + 1 + ⟨x3 + x + 1⟩ = x3 + x2 + x + ⟨x3 + x + 1⟩
x2 + x + ⟨x3 + x + 1⟩ = x3 + x2 + 1 + ⟨x3 + x + 1⟩
x2 + x + 1 + ⟨x3 + x + 1⟩ = x3 + x2 + ⟨x3 + x + 1⟩

Using the above cosets, we may construct a multiplication table for F8, as indicated below. Given a
coset of the form c + ⟨x3 + x + 1⟩, we denote this coset as c, letting c be a polynomial in F2[x].

∗ 0 1 x x + 1 x2 x2 + 1 x2 + x x2 + x + 1

0 0 0 0 0 0 0 0 0

1 0 1 x x + 1 x2 x2 + 1 x2 + x x2 + x + 1

x 0 x x2 x2 + x x + 1 1 x2 + x + 1 x2 + 1

x + 1 0 x + 1 x2 + x x2 + 1 x2 + x + 1 x2 1 x

x2 0 x2 x + 1 x2 + x + 1 x2 + x x x2 + 1 1

x2 + 1 0 x2 + 1 1 x2 x x2 + x + 1 x + 1 x2 + x
x2 + x 0 x2 + x x2 + x + 1 1 x2 + 1 x + 1 x x2

x2 + x + 1 0 x2 + x + 1 x2 + 1 x 1 x2 + x x2 x + 1
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Exercise 3.178. Prove that an algebraically closed field must be infinite.

Solution 3.179. By way of contradiction, suppose that there exists an algebraically closed field which
is finite. But finite fields must be of the form Fpn . So, suppose that Fpn is algebraically closed, for some
natural number n ∈ N. We know that Fpn+1 properly contains Fpn , and we have that Fpn+1 is the splitting
field for xpn+1 −x over Fp. In other words, Fpn+1 contains some roots of xpn+1 −x which are not contained
in Fpn , thus contradicting that Fpn is algebraically closed.

Exercise 3.180. Construct the finite field of 16 elements and find a generator for the multiplicative
group. How many generators are there?

Solution 3.181. As discussed in the class textbook, we have that

F16 ≅ F2[x]/⟨x4 + x3 + 1⟩,

so we may regard the finite field F16 as being the same as the quotient ring F2[x]/⟨x4 + x3 + 1⟩. So, we
have that the following set of distinct elements is equal to the underlying set of F2[x]/⟨x4 + x3 + 1⟩:

{0+⟨x4+x3+1⟩,1+⟨x4+x3+1⟩, x+⟨x4+x3+1⟩, x+1+⟨x4+x3+1⟩, x2+⟨x4+x3+1⟩, . . . , x3+x2+x+1+⟨x4+x3+1⟩}.

Given a polynomial c in F2[x], let the coset c + ⟨x4 + x3 + 1⟩ be denoted as c. We claim that x is a
generator for the underlying multiplicative group on

F16 ≅ F2[x]/⟨x4 + x3 + 1⟩.

To show this, we proceed to consider the following computations.

(x)1 = x
x ⋅ x = x2

x ⋅ x2 = x3

x ⋅ x3 = x3 + 1

x ⋅ (x3 + 1) = x3 + x + 1

x ⋅ (x3 + x + 1) = x3 + x2 + x + 1

x ⋅ (x3 + x2 + x + 1) = x2 + x + 1

x ⋅ (x2 + x + 1) = x3 + x2 + x
x ⋅ (x3 + x2 + x) = x2 + 1

x ⋅ (x2 + 1) = x3 + x
x ⋅ (x3 + x) = x3 + x2 + 1

x ⋅ (x3 + x2 + 1) = x + 1

x ⋅ (x + 1) = x2 + x
x ⋅ (x2 + x) = x3 + x2

x ⋅ (x3 + x2) = 1

We have shown that the order of x as an element in the underlying multiplicative group of F16 is equal
to 15. So, the collection

{1, x, (x)2, . . . , (x)14}
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forms a multiplicative cyclic group, and the generators of this group consist of expressions of the form
(x)i where i ∈ N is such that i ≤ 14 and such that i and 15 are relatively prime. So, the generators for
this cyclic group are: x, (x)2, (x)4, (x)7, (x)8, (x)11, (x)13, (x)14. So, there are a total of 8 generators
for the multiplicative group.

3.18 Exercises from Section 14.4

Exercise 3.182. Determine the Galois closure of the field Q(
√

1 +
√

2) over Q.
Solution 3.183. The following is from the class textbook.

“Let E/F be any finite separable extension. Then E is contained in an extension K which is Galois over
F and is minimal in the sense that in a fixed algebraic closure of K any other Galois extension of F
containing E contains K.” (p. 594)

As discussed in the class textbook, the Galois extension K of F containing E, as above, is referred to
as the Galois closure of E over F .

Now, consider the given field extension Q(
√

1 +
√

2) of Q. Letting α be equal to
√

1 +
√

2, we have that

α2 = 1 +
√

2

so that
(α2 − 1)2 = 2,

with
(α2 − 1)2 − 2 = 0,

so that α is a root of x4 − 2x2 − 1. By the quadratic formula, the roots of this polynomial are:

±
√

2 ±
√

8

2
= ±

√
2 ± 2

√
2

2
= ±

√
1 ±

√
2.

Since x4 − 2x2 − 1 is irreducible over Q, as may be verified, we have that the minimal polynomial for α
over Q is x4 − 2x2 − 1. Since x4 − 2x2 − 1 is also separable, we can conclude that the Galois closure of the
field Q(

√
1 +

√
2) over Q is equal to the splitting field of x4 − 2x2 − 1 over Q, which is equal to:

Q(
√

1 +
√

2,
√

1 −
√

2).
Exercise 3.184. Find a primitive generator for Q(

√
2,

√
3,

√
5) over Q.

Solution 3.185. We begin by observing that Q(
√

2,
√

3,
√

5) is the splitting field of the polynomial

(x2 − 2)(x2 − 3)(x2 − 5)
over Q. Since the polynomial (x2 − 2)(x2 − 3)(x2 − 5) is separable, we have that Q(

√
2,

√
3,

√
5) is a

splitting field of a separable polynomial over Q, and we thus find that Q(
√

2,
√

3,
√

5) is Galois over Q.
Now, consider the following discussion from the class textbook:

“... a primitive element for an extension can be obtained as a simple linear combination of the generators
for the extension. In the case of Galois extensions it is only necessary to determine a linear combination
which is not fixed by any nontrivial element of the Galois group...” (p. 595)

The element
√

2+
√

3+
√

5 is a linear combination of the generators in {
√

2,
√

3,
√

5} which is not fixed
by any nontrivial element of the Galois group, so we have that

√
2 +

√
3 +

√
5 is a primitive generator

for Q(
√

2,
√

3,
√

5) over the field of rational numbers.
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3.19 Exercises from Section 14.5

Exercise 3.186. Determine the minimal polynomials satisfied by the primitive generators given in the
text for the subfields of Q(ζ13).

Solution 3.187. The following discussion is taken from the class textbook.

“...consider the subfields of Q(ζ13), which correspond to the subgroups of (Z/13Z)× ≅ Z/12Z. A generator
for this cyclic group is the automorphism σ = σ2 which maps ζ13 to ζ213. The nontrivial subgroups
correspond to the nontrivial divisors of 12, hence are of orders 2, 3, 4, and 6 with generators σ6, σ4, σ3

and σ2, respectively. The corresponding fixed fields will be of degrees 6, 4, 3 and 2 over Q, respectively.
Generators are given by (ζ = ζ13)

ζ + σ6ζ = ζ + ζ26 = ζ + ζ−1

ζ + σ4ζ + σ8ζ = ζ + ζ24 + ζ28 = ζ + ζ3 + ζ9

ζ + σ3ζ + σ6ζ + σ9ζ = ζ + ζ8 + ζ12 + ζ5

ζ + σ2ζ + σ4ζ + σ6ζ + σ8ζ + σ10ζ = ζ + ζ4 + ζ3 + ζ12 + ζ9 + ζ10.” (p. 598)

Recall that ζ = ζ13 denotes a primitive 13th root of unity. Write α in place of ζ + ζ−1 = ζ + ζ12. We know
that the degree of the minimal polynomial of α over Q is 6. So, let the rational coefficients a, b, c, d, e
and f be such that:

α6 + aα5 + bα4 + cα3 + dα2 + eα + f = 0.

Our strategy is to make use of the following equality:

ζ12 + ζ11 + ζ10 + ζ9 + ζ8 + ζ7 + ζ6 + ζ5 + ζ4 + ζ3 + ζ2 + ζ + 1 = 0.

Expanding the equation
α6 + aα5 + bα4 + cα3 + dα2 + eα + f = 0,

we have that

10aζ12 + 5aζ10 + aζ8 + aζ5 + 5aζ3 + 10aζ + 4bζ11 + bζ9 + bζ4 + 4bζ2 + 6b + 3cζ12 + cζ10 + cζ3 + 3cζ + dζ11 +
dζ2 + 2d + eζ12 + eζ + 15ζ11 + 6ζ9 + ζ7 + ζ6 + 6ζ4 + 15ζ2 + f + 20 = 0.

So, using the equation

ζ12 + ζ11 + ζ10 + ζ9 + ζ8 + ζ7 + ζ6 + ζ5 + ζ4 + ζ3 + ζ2 + ζ + 1 = 0,

we obtain the following system of equations:

10a + 3c + e = 1

15 + 4b + d = 1

5a + c = 1

6 + b = 1

a = 1

20 + 6b + 2d + f = 1

Solving for the above coefficients, we have that a = 1, b = −5, c = −4, d = 6, e = 3, and f = −1. So, the
minimal polynomial for ζ + ζ−1 is equal to:

x6 + x5 − 5x4 − 4x3 + 6x2 + 3x − 1.
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A similar argument can be used to show that the minimal polynomial for ζ+ζ3+ζ9 is x4+x3+2x2−4x+3;
we omit details regarding the process of computing this polynomial, and the following polynomials. The
minimal polynomial for ζ + ζ8 + ζ12 + ζ5 is x3 + x2 − 4x + 1, and the minimal polynomial for ζ + ζ4 + ζ3 +
ζ12 + ζ9 + ζ10 is x2 + x − 3.

3.20 Exercises from Section 14.6

Exercise 3.188. Show that a cubic with a multiple root has a linear factor. Is the same true for
quartics?

Solution 3.189. As discussed in the class textbook, if a cubic polynomial is reducible, then it either
splits into three linear factors or into a linear factor and an irreducible quadratic. So, if a cubic has a
multiple root, it must have a linear factor. However, this is not, in general, true for quartics, since, for
example, the degree-4 polynomial

(x2 − 2)2 = (x2 − 2)(x2 − 2)
has multiple roots, but does not split so as to have a linear factor.

Exercise 3.190. Determine the Galois group of the following polynomial: x3 − x2 − 4.

Solution 3.191. The Galois group of a separable polynomial p(x) ∈ F[x] may be defined as the Galois
group of the splitting field of p(x) over the field F. We begin by observing that 2 is a root of the given
polynomial, x3 −x2 − 4. By considering the graph of x3 −x2 − 4, we observe that x3 −x2 − 4 has a unique
real root, namely 2. By writing

x3 − x2 − 4 = (x − 2)(x2 + ax + 2)

for a rational coefficient a ∈ Q, we have that

x3 − x2 − 4 = x3 + (a − 2)x2 + (2 − 2a)x − 4

we have that a − 2 = −1 and 2 − 2a = 0, so that a = 1, thus yielding the following factorization:

x3 − x2 − 4 = (x − 2)(x2 + x + 2).

So, from the above factorization, we have that the roots of the given polynomial are precisely the
following:

α1 = 2, α2 =
−1 −

√
−7

2
, α3 =

−1 +
√
−7

2
.

So, since the given polynomial p(x) = x3 − x2 − 4 has no multiple roots, we see that p(x) = x3 − x2 − 4
is separable. Now, consider the splitting field of p(x) = x3 − x2 − 4 over the field Q. Since Q already
contains α1 = 2, and since Q already contains −1

2 , we see that the splitting field of p(x) = x3 − x2 − 4

over Q is equal to Q(
√
−7). Since Q(

√
−7) is the splitting field of a separable polynomial, we have that

Q(
√
−7) is a Galois extension of Q. So, it remains to compute the following group:

Aut (Q(
√
−7)/Q) = Gal (Q(

√
−7)/Q) .

Let σ be an element in Aut (Q(
√
−7)/Q). Since σ fixes the base field Q, we have that the behaviour of

the automorphism σ is uniquely determined by the value of σ(
√
−7). Since

(
√
−7)

2
+ 7 = 0,
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and since σ is a morphism, we have that

(σ(
√
−7))

2
+ 7 = 0,

so we have that σ must map
√
−7 to a root of x2 + 7. So, we find that the only elements in

Gal (Q(
√
−7)/Q)

are the identity automorphism σ1 on Q(
√
−7) and the morphism σ2 fixing Q such that Q(

√
−7) = −

√
−7.

Since σ2
2 = σ1, we find that

Gal (Q(
√
−7)/Q) ≅ Z/2Z.

Exercise 3.192. Determine the Galois group of the following polynomial: x3 − 2x + 4.

Solution 3.193. We begin by observing that −2 is a root of the polynomial x3 − 2x + 4. Writing

x3 − 2x + 4 = (x + 2)(x2 + ax + 2)

for a rational coefficient a, we have that

x3 − 2x + 4 = x3 + ax2 + 2x + 2x2 + 2ax + 4

so that
x3 − 2x + 4 = x3 + (a + 2)x2 + (2a + 2)x + 4.

We thus find that a = −2, with:

x3 − 2x + 4 = (x + 2)(x2 − 2x + 2).

So, we find that the roots of x3 − 2x + 4 are:

α1 = −2, α2 =
2 −

√
−4

2
, α3 =

2 +
√
−4

2
.

That is, the roots of x3 − 2x + 4 are precisely:

α1 = −2, α2 =
2 − 2i

2
, α3 =

2 + 2i

2
.

For the sake of clarity, rewrite the above roots as follows:

α1 = −2, α2 = 1 − i, α3 = 1 + i.

So, we find that the splitting field of x3−2x+4 over Q is equal to Q(i). By repeating an argument given
in the previous solution, we have that the Galois group for x3 − 2x + 4 over Q is isomorphic to Z/2Z.

Exercise 3.194. Determine the Galois group of the following polynomial: x3 − x + 1.
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Solution 3.195. We claim that x3−x+1 is irreducible as an element in Q[x]. By way of contradiction,
suppose that there exist relatively prime integers a and b ≠ 0 such that:

(a
b
)
3

− (a
b
) + 1 = 0.

So, we have that
a3 = (a − b)b2.

So, we have that b2 divides a3. But this is impossible since a and b are relatively prime, as may be
verified using the Fundamental Theorem of Arithmetic. So, since x3 − x + 1 has no rational roots, and
since x3 − x + 1 is of degree 3, we may conclude that x3 − x + 1 is irreducible over Q.

Galois groups for polynomials are only defined for separable polynomials, so it is worthwhile to check
that x3 −x+ 1 is separable. By examining the graph of x3 −x+ 1, we find that x3 −x+ 1 has exactly one
real root, which is in (−2,−1). Let this real root be denoted as r. So, the only way x3 − x + 1 could be
non-separable would be in the situation whereby

x3 − x + 1 = (x − r)(x − c)2,
for some non-real complex number c ∈ C∖R. But the constant term in (x−r)(x−c)2 is equal to −rc2 = 1,
with c2 = 1

−r , but this contradicts that c is a non-real complex number since 1
−r is positive. So, we have

that x3 − x + 1 is a separable polynomial.

The following discussion concerning Galois groups for cubic polynomials is taken from the class textbook:

“If the cubic polynomial f(x) is irreducible then a root of f(x) generates an extension of degree 3 over
F , so the degree of the splitting field over F is divisible by 3. Since the Galois group is a subgroup of
S3, there are only two possibilities, namely A3 or S3. The Galois group is A3 (i.e., cyclic of order 3) if
and only if the discriminant... is a square.” (p. 612-613)

In general, given a cubic polynomial

f(x) = x3 + ax2 + bx + c,
we have that the discriminant of this polynomial is

a2b2 − 4b3 − 4a3c − 27c2 + 18abc.

So, we have that the discriminant of
x3 + bx + c,

is
−4b3 − 27c2.

In particular, the discriminant of
x3 − x + 1

is equal to
−4(−1)3 − 27 = 4 − 27 = −23.

Since the given cubic polynomial x3−x+1 is irreducible over Q, we have that a root of x3−x+1 generates
an extension of degree 3 over Q, so that the degree of the splitting field of x3 − x + 1 over Q is divisible
by 3. So, the corresponding Galois group is isomorphic to either S3 or Z/3Z. Moreover, since the Galois
group is A3 if and only if the discriminant is a square, and since the discriminant of x3−x+1 is equal to
−23, we may thus conclude that the Galois group for x3 − x + 1 over Q is isomorphic to the symmetric
group S3 of order 6.
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3.21 Exercises from Section 14.7

Exercise 3.196. Use Cardano’s Formulas to solve the equation x3 + x2 − 2 = 0. In particular show that
the equation has the real root

1

3
( 3
√

26 + 15
√

3 + 3
√

26 − 15
√

3 − 1).

Show directly that the roots of this cubic are 1,1 ± i. Explain this by proving that

3
√

26 + 15
√

3 = 2 +
√

3
3
√

26 − 15
√

3 = 2 −
√

3

so that
3
√

26 + 15
√

3 + 3
√

26 − 15
√

3 = 4.

Solution 3.197. We begin by briefly reviewing some preliminary material. Recall that the polynomial
f(x) can be solved by radicals if and only if its Galois group is a solvable group. Recall that a group G
is solvable if there is a chain of subgroups

1 = G0 ⊴ G1 ⊴ G2 ⊴ ⋯ ⊴ Gs = G

such that Gi+1/Gi is abelian for i = 0,1, . . . , s − 1. So, if we consider the series 1 ⊴ A3 ⊴ S3, we should
expect that the given polynomial x3 + x2 − 2 could be solved by radicals. Given a degree-3 polynomial
f(x) = x3 + ax2 + bx + c, consider the substitution x = y − a

3 , yielding the polynomial

g(y) = y3 + py + q,

where
p = 1

3
(3b − a2) q = 1

27
(2a3 − 9ab + 27c).

According to Cardano’s formula, letting

A = 3

√
−27

2
q + 3

2

√
−3D

and

B = 3

√
−27

2
q − 3

2

√
−3D,

where D = −4p3 − 27q2, the roots of the equation

g(y) = y3 + py + q = 0

are
α = A +B

3
β = ρ

2A + ρB
3

γ = ρA + ρ2B
3

where ρ = −1
2 + 1

2

√
−3. Now, consider the given polynomial x3 + x2 − 2 = 0. Letting f(x) = x3 + x2 − 2,

using the substitution x = y − 1
3 , yielding the polynomial

g(y) = y3 + py + q,
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where
p = −1

3
q = −52

27
,

yielding the polynomial

g(y) = y3 − y
3
− 52

27
.

According to Cardano’s formula, the roots for g(y) in this case are as follows.

r1 =
1

3
( 3
√

26 − 15
√

3 + 3
√

26 + 15
√

3) ,

r2 =
1

3

⎛
⎝

3
√

26 − 15
√

3(−1

2
+ i

√
3

2
) + (−1

2
+ i

√
3

2
)
2

3
√

26 + 15
√

3
⎞
⎠
,

r3 =
1

3

⎛
⎝

3
√

26 − 15
√

3(−1

2
+ i

√
3

2
)
2

+ (−1

2
+ i

√
3

2
) 3
√

26 + 15
√

3
⎞
⎠
.

The equation
3
√

26 + 15
√

3 = 2 +
√

3

may be verified using the binomial theorem, since

(2 +
√

3)
3
= 26 + 15

√
3,

by the binomial theorem. Similarly, we have that

26 − 15
√

3 = (2 −
√

3)3,

by the binomial theorem. We may use these equations to simplify the above evaluations for r1, r2, and
r3: r1 = 4

3 , r2 = −2
3 − i, and r3 = −2

3 + i. Given the substitution x = y − 1
3 , we thus have that the roots of

the original cubic polynomial are 1, −1 ± i.

3.22 Exercises from Section 14.8

Exercise 3.198. Let p be a prime. Prove that the polynomial x4 + 1 splits mod p either into two
irreducible quadratics or into 4 linear factors using Corollary 41 together with the knowledge that the
Galois group of this polynomial is the Klein 4-group.

Solution 3.199. Corollary 41 from the class textbook is given as follows:

Corollary 41. For any prime p not dividing the discriminant of f(x) ∈ Z[x], the Galois group of f(x)
over Q contains an element with cycle decomposition (n1, n2, . . . , nk) where n1, n2, . . . , nk are the degrees
of the irreducible factors of f(x) reduced modulo p.

As in the class textbook, we define the discriminant D of x1, x2, . . . , xn by the equation

D =∏
i<j

(xi − xj)2,

and we define the discriminant of a polynomial as the discriminant of the roots of the polynomial.
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We proceed to consider the Galois group of the given polynomial x4 + 1. From the equation x4 + 1 = 0,
we have that x4 = −1, so that x2 = ±i, with x equal to ±

√
±i. Since (i + 1)2 = 2i, we have that

√
i = i + 1√

2
.

Similarly, we have that √
−i = i − 1√

2
.

So, we find that the polynomial x4 + 1 is separable, so it would make sense to consider the Galois group
of x4 + 1.

Now, consider the splitting field of x4 + 1 over Q. This splitting field must contain

√
i = i + 1√

2

and √
−i = i − 1√

2
,

and therefore must contain √
i −

√
−i = i + 1√

2
− i − 1√

2
= 2√

2
=
√

2.

Similarly, the splitting field of x4 + 1 over Q must contain
√

2i. So, we see that the field Q(
√

2, i) is
contained in the splitting field of x4 + 1 over Q. Conversely, an element in the splitting field of x4 + 1

over Q must be in Q(
√

2, i), since the roots of x4 + 1 are precisely ±( i+1√
2
) and ±( i−1√

2
).

Now, consider the Galois group of Q(
√

2, i) over Q. Given an automorphism σ in this group, we have
that the behaviour of σ is uniquely determined by the values of σ(

√
2) and σ(i), with σ(

√
2) ∈ {

√
2,−

√
2}

and σ(i) ∈ {i,−i}. Since
∣Gal (Q(

√
2, i)/Q)∣ = 4,

and since each element
g ∈ Gal (Q(

√
2, i)/Q)

is such that g2 = id, letting id denote the identity morphism in the above group, we may deduce that
the Galois group of x4 + 1 is isomorphic to the Klein four-group.

Now, consider the discriminant of the polynomial x4 + 1. Let the roots of this polynomial be denoted as
follows:

x1 =
i + 1√

2
, x2 = −

i + 1√
2
, x3 =

i − 1√
2
, x4 = −

i − 1√
2
.

We thus have that the discriminant of x4 + 1 is equal to the following expression:

D =∏
i<j

(xi − xj)2.

So, we have that:

D = (x1 − x2)2(x1 − x3)2(x1 − x4)2(x2 − x3)2(x2 − x4)2(x3 − x4)2.
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Computing the above expression, we have that D = 256 = 28.

Now, we can only apply Corollary 41 with respect to primes p not dividing the discriminant of x4 + 1.
Since the discriminant of this polynomial is equal to D = 256 = 28, letting p be a prime, we first consider
the case whereby p = 2. In this case, we have that

(x + 1)4 ≡ (x4 + 1)(mod 2),

by the binomial theorem. So, in the case whereby p is a prime number such that p = 2, we have that
the polynomial x4 + 1 splits modulo p into 4 linear factors.

Now, let p be a prime number such that p ≠ 2. Since the discriminant D of x4 + 1 is equal to 256 = 28,
we have that p does not divide the discriminant of x4 + 1 in this case. Since the Galois group of x4 + 1
over Q is a Klein four-subgroup of S4, the only possible cycle decompositions are: (2)(2), (1)(1)(1)(1),
or (2)(1)(1).

By Proposition 34 from the class textbook, we know that the Galois group of x4 + 1 as an element in
Q[x] is a subgroup of A4 if and only if the discriminant D ∈ Q is the square of an element in Q. But
recall that the discriminant D of x4 + 1 is equal to D = 256 = 28. We thus have that the Galois group of
x4+1 must be in A4, which shows that the only possible cycle decompositions are reduced to (2)(2) and
the trivial cycle decomposition, as desired. Since the only possible cycle decompositions in this case are
(2)(2) and (1)(1)(1)(1), we have that the degrees of the irreducible factors of f(x) modulo p given by
either the sequence (2,2) or (1,1,1,1).
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