If $P$ and $P'$ are projective, then $P \oplus P'$ is projective.
Proof (thanks to Robin Sulzgruber)
Let $M$ be an $R$-module such that $\phi: M \rightarrow P \oplus P'$
is a surjection. Then $\pi_1 \circ \phi$ is a surjection onto $P$
so $M \simeq P \oplus ker(\pi_1 \circ \phi)$.
Then let $\psi = \pi_2 \circ \phi |_{ker(\pi_1 \circ \phi)}$.
Since $\phi$ is a surjection onto $P \oplus P'$
then $\psi$ is also a surjection from $ker(\pi_1 \circ \phi)$
onto $P'$ and since $P'$ is projective,
then $ker(\pi_1 \circ \phi) \simeq P' \oplus ker~\psi$.
But $ker~\psi = ker(\pi_1 \circ \phi) \cap ker(\pi_2 \circ \phi)$.
Therefore $M \simeq P \oplus P'
\oplus (ker(\pi_1 \circ \phi) \cap ker(\pi_2 \circ \phi))$.