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ALFRED YOUNG’S CONSTRUCTION

OF

THE IRREDUCIBLE REPRESENTATIONS OF Sn

1. The representation matrices

If � is a partition of n (in symbols � ` n), a filling of the Ferrers’ diagram of � by the

integers 1, 2, ..., n will be referred to as an “injective” tableau of shape �. The collection of all these

tableaux will be denoted by INJ(�). If T 2 INJ(�) and the entries of T increase from left to right

in the rows and from bottom to top on the columns then T is said to be standard. The collection

of all these tableaux will be denoted by ST(�).

Given an injective tableau T with n squares, a permutation

� = (�1,�2, . . . ,�n)

is made to act on T by replacing the entry “i” by “�i”. The resulting tableau is denoted by �T .

We say that � is in the “Row Group” of T if the rows of T and �T di↵er only by the order of their

entries. The “Column Group” of T is analogously defined. These two groups will be denoted by

R(T ) and C(T ) respectively.

Given T1, T2 2 ST (�) we shall say that T1 precedes T2 in the Young “first letter order” and

write

T1 <Y FLO T2

if the first entry of disagreement between T1 and T2 is higher in T1 than in T2. For instance we have

Here T1 and T2 agree in the positions of 1, 2, 3, 4, 5. The first letter of disagreement is 6 and it is

“higher” in T1 than in T2. The positions of the remaining letters do not matter.

Given two tableaux T1, T2, not necessarily of the same shape, we let T1 ^T2 be the diagram

obtained by placing in the cell (i, j) the intersection of row i of T1 with column j of T2. The diagram
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below gives an example of this construction

Note that in this case there is a cell which contains more than one entry. When this happens we say

that the pair T1 ^ T2 is “bad”. Note that in this next example each cell has at most one entry.

When this happens we say that T1^T2 is “good” . Note that, in the good case, if � = (�1,�2, . . . ,�h)

is the shape of T1 and µ = (µ1, µ2, . . . , µk) is the shape of T2, then for each i we must have

�1 + �2 + · · ·+ �i  µ1 + µ2 + · · ·+ µi 1.1

This is because the left hand side gives the number of entries in the first i rows of T1 ^ T2 and the

right hand side gives the number of entries in the tableau (necessarily of shape µ) obtained by letting

the entries of T1 ^ T2 drop down their column until they are packed tight. This means that when

T1 and T2 have di↵erent shapes, we must have some motion of cells and a strict inequality in 1.1,

for at least one i . On the other hand when T1 and T2 have the same shape then � = µ, and there

can be no motion of cells. In this case T1 ^ T2 is also a tableau of shape � = µ, whose rows are a

rearrangement of the rows of T1 and whose columns are a rearrangement of the columns of T2. In

summary when � = µ and T1 ^ T2 is good there are two permutations ↵1 2 R(T1) and �2 2 C(T2)

such that

T1 ^ T2 = ↵1T1 ; T2 = �2 T1 ^ T2 1.2

Conversely, it is easily seen, that the existence of two such permutations giving 1.2 forces T1 ^ T2 to

be good.

This permits us to introduce an important function on pairs of tableau:
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Definition 1.1

For T1, T2 2 INJ(�) we let

C(T1, T2) =

⇢
0 if T1 ^ T2 is bad
sign(�2) if T1 ^ T2 is good

Here and after, it will be convenient to let

S�
1 , S�

2 , . . . , S�
f
�

1.3

denote the standard tableaux of shape � in Young’s first letter order. This given, we set

C�(�) = kC(S�
i , �S�

j )k
f
�

i0j=1 . 1.4

We have the following basic property

Proposition 1.1

The matrix C�(✏) is upper unitriangular and is therefore invertible over the integers.

Proof

Note that if T1 <Y FLO T2 and a is the first letter of disagreement, then there is a letter b

such that a and b are in the same column of T1 and in the same row of T2. Note that b = 4 for the

example given in Fig 1. In general b is the letter which lies at the intersection of the column of the

shape � in which a lies in T1 with the row in which a lies in T2. This means that T2 ^ T1 is bad. So

T1 <Y FLO T2 implies C(T2, T1) = 0. Thus from the definition of first letter order we derive that

C(S�
i , S

�
j ) = 0 8 i > j .

This proves the proposition since C(S�
i , S

�
i ) = 1 holds true trivially.

This allows us to define

A�(�) = C�(✏)�1 C�(�) 1.5

Our goal in these notes is to show that the collection of matrix functions

{A�(�)}�`n 1.6

form a complete set of irreducible representations of Sn.

Remark 1.1

The simplicity of the definition in 1.5 should be compared with the pages and pages of

intricate constructions that characterize the treatments of the representations of the symmetric

groups given in recent and past litterature following the work of A. Young. Because of peculiarities of

Young’s style of writing many of his successors never bothered to read, let alone tried to understand,

Young’s beautiful constructions. As a result you will often see the name “Specht module” associated

Mike Zabrocki
epsilon in this Proposition represents the identity
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with representations which are in fact none other than those defined in 1.5. What is more amusing

is that Young himself in QSA IV (†) , with surprising premonition, described some alternate ways

of constructing representations of Sn which include as particular cases all the constructions that

followed. Another justification often given to assign some significance to the work of Specht and

assorted “Jonny-come-latelies” is that later developments are “Characteristic Free” but this is only

based on a naive missunderstanding of Young’s purely combinatorial arguments.

Problems

Problem 1.

Show that for any injective tableau T we have ↵� = ✏ with ↵ 2 R(T ) and � 2 C(T ) if and
only if ↵ = � = ✏.

Problem 2.

Let T 2 INJ(�) with � ` n. Show that T ^ �T is good if and only if � = �2↵1 with

�2 2 C(�T ) and ↵1 2 R(T ). Show that this factorization is unique. That is show that if � = �0
2↵

0
1,

with �0
2 2 C(�T ) and ↵0

1 2 R(T ) then then �0
1 = �1 and ↵0

1 = ↵1.

Problem 3.

Construct all standard tableaux of shape (3, 2, 1) in the Young first letter order. Then

construct the matrix A(3,2)(�) for � =


1 2 3 4 5
3 5 4 1 2

�

Problem 4.

Show that when � is a “hook ” that is � = (k, 1n�k) then the matrix C�(✏) reduces to the

identity matrix.

2. Young’s Tableau idempotents.

For a given tableau T here and after we set

P (T ) =
X

↵2R(T )

↵ , N(T ) =
X

�2C(T )

sign(�)� 2.1

If T1, T2 2 INJ(�) by �T1T2 we denote the permutation that sends T2 into T1 that is

T1 = �T1T2T2

This given, it is easy to see that we have

a) P (�T ) = �P (T ) ��1 ; N(�T ) = �N(T )��1 8 � 2 Sn

b) �T1T2P (T2) = P (T1)�T1T2

c) �T1T2N(T2) = N(T1)�T1T2

2.2

(†) (see “The Collected Papers of A. Young, 1873-1940”, Math. Expositions V. #21 Univ. of

Toronto Press 1977
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We shall also use the shorthand notations
8
<

:

a) ET1T2 = N(T1) �T1T2 P (T2) , ET = ETT = N(T )P (T )

b) FT1T2 = P (T1) �T1T2 N(T2) , FT = FTT = P (T )N(T )
2.3

Note that from 2.2 b) and c) we derive that

⇢
a) ET1T2 = ET1�T1T2 = �T1T2ET2

b) FT1T2 = FT1�T1T2 = �T1T2FT2

2.4

Recalling that

S�
1 , S�

2 , . . . , S�
f
�

2.5

denote the standard tableaux of shape � in Young’s first letter order we set

(
E�

i = ES�

i

; E�
ij = ES�

i

S�

j

F�
i = FS�

i

; F�
ij = FS�

i

S�

j

; ��
ij = �S�

i

S�

j

2.6

When dealing with a fixed shape, to lighten our formulas, sometime we shall omit the superscript �

from our symbols. We should note that many identities and results involving the elements E�
ij hold

also for the F�
ij

0s, with only minor monifications. In each case, to avoid unnecessary repetitions, we

shall prove them for one set and leave it to the reader to derive the analogous results for the other

set.

The group algebra elements P (T ), N(T ) have truly remarkable properties. To prove them

we need some auxiliary results.

Proposition 2.1

For a pair of tableaux T1 and T2 of the same shape the following properties are equivalent

a) T1 ^ T2 is good

b) 9 ↵1 2 R(T1) and �2 2 C(T2) such that T2 = �2↵1 T1

c) 9 ↵1 2 R(T1) and �1 2 C(T1) such that T2 = ↵1�1 T1

d) 9 ↵2 2 R(T2) and �2 2 C(T2) such that T2 = ↵2�2 T1

Moreover we have

sign(�1) = sign(�2) 2.7

Proof

We have seen that a) and b) are equivalent. From 2.2 a) we then get that b) implies

N(T1) = ↵�1
1 ��1

2 N(T2) �2↵1 = ↵�1
1 N(T2) ↵1

Thus there is a �1 2 N(T1) such that

�1 = ↵�1
1 �2↵1 2.8



A. Garsia Young’s Natural Representations 202B March 31, 2014 6

This gives that

T2 = �2↵1 T1 = (↵1�1↵
�1
1 )↵1 T1 = ↵1�1 T1

which is c). Note that 2.7 now follows from 2.8. Conversely suppose we have c). Then we may write

N(T2) = ↵1�1N(T1)�
�1
1 ↵�1

1 = ↵1N(T1)↵
�1
1

and we must necessarily have a �2 2 C(T2) such that

�2 = ↵1�1↵
�1
1 ,

giving

�T2T1 = ↵1�1 = �2↵1 .

This shows the equivalence of b) and c). We are left to show that d) is equivalent to b). It turns out

that, in this case, the P 0 s play the role the N 0 s played in the previous argument. More precisely

from b) and 2.2 a) we derive that

P (T2) = �2↵1P (T1)↵
�1
1 ��1

2 = �2P (T1)�
�1
2 .

Thus there must be an ↵2 2 R(T2) such that

↵2 = �2↵1�
�1
2

and this gives

�T2T1 = ↵2�1 = ↵2�2 .

Thus b) implies d). We leave it to the reader to show that d) implies b) and complete the proof of

the proposition.

Remark 2.1

It is important to note that the permutations ↵1,↵2,�1,�2 of Proposition 2.1 are uniquely

determined by T1 and T2. In fact for a given Tableau T we cannot have two pairs ↵0,↵” 2 R(T )

and �0,�” 2 C(T ) such that

↵0�0 = ↵”�”

Indeed this is equivalent to the existence of an ↵ 2 R(T ) and a � 2 C(T ) such that

↵ = �

and this is easily seen to be impossible. Let us keep this fact in mind since we are going to make

use of it several times in the future.

Before we proceed with the next result we need to make some conventions. Young used a

very e�cient notation to represent some elements of the group algebra of the symmetric group Sn.

For a given subset

S = {1  i1 < i2 < · · · < ik  n} ✓ {1, 2, . . . , n}
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he let the symbol “[S]” represent the sum of all elements of Sn that permute the elements of S and

leave fixed all the elements of the complement of S in {1, 2, . . . , n}. He also used “[S]0” to denote

the sum of the same permutations where each is multiplied by its sign. For instance, with this

convention we see that for the tableau

T =

2 3
5 7
6 9 10
11 4 8 1

we may write

P (T ) = [1, 4, 8, 11]⇥ [6, 9, 10]⇥ [5, 7]⇥ [2, 3] and N(T ) = [2, 5, 6, 11]0 ⇥ [3, 4, 7, 9]0 ⇥ [8, 10]0

Remark 2.2

For a given f 2 A(Sn), it will also be convenient to denote by “f 0” the element of the group

algebra obtained by replacing each permutation by the same permutation preceded by its sign. More

precisely, for f =
P

�2S
n

f(�)� we shall set

f 0 =
X

�2S
n

sign(�)f(�)�

and refer to the operation f!f 0 as the “priming operator”. We should note that any identity

involving elements of the group algebra of Sn generates a companion identity when we apply the

priming operator to both sides. In this manner identities for the E�
ij

0s may be transformed into

identities for the F�
ij

0s. In fact, it easy to see that

ET1,T2
0 = sign(�T1,T2)FT>

1 ,T>
2

2.9

where T>
1 and T>

2 denote the corresponding transposed tableaux (†). In particular we have

E�
ij

0 = sign(��
ij)F

�0

ij , 2.10

where �0 denotes the partition conjugate to �.

Remark 2.3

For two partitions

� = (�1,�2, . . . ,�h) , µ = (µ1, µ2, . . . , µk)

we say that µ “dominates” � and write

� D µ

(†) Transposing a tableau simply means reflecting it across the 45o diagonal emanating from

its south-west corner
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if and only if

�1 + �2 + · · ·+ �i  µ1 + µ2 + · · ·+ µi 8 1  i  min(h, k) .

Thus our remarks at the beginning of section 1 may be restated by writing

T1 ^ T2 good �! shape(T1) D shape(T2) . 2.11

Now it develops that the same implication holds true if we have

a) P (T1)N(T2) 6= 0 or b) N(T2)P (T1) 6= 0 2.12

To see this note that, by definition, T1 ^T2 “ bad” implies that there are two elements a, b that are

in the same row of T1 and the same column of T2. This means that the transposition (a, b) is at the

same time in R(T1) and C(T2). We thus have

P (T1)N(T2) =
⇣
P (T1)(a, b)

⌘
N(T2) = P (T1)

⇣
(a, b)N(T2)

⌘
= �P (T1)N(T2) .

this contradicts 2.12 a). Thus

P (T1)N(T2) 6= 0 �! T1 ^ T2 good �! shape(T1) D shape(T2) . 2.13

We can proceed similarly and show that

N(T2)P (T1) 6= 0 �! T1 ^ T2 good �! shape(T1) D shape(T2) . 2.14

3. Semi-simplicity of Algebras

We have seen that the Group algebra A[�] of a finite group � has two binary operations “+”

(addition) and“⇥” (multiplication), which are associative and satisfy the left and right distributivity

laws. That is for all f, h, g 2 A[�] we have

(left) h⇥ (f + g) = h⇥ f + h⇥ g (right) (f + g)⇥ h = f ⇥ h + g ⇥ h

Moreover, since its elements are formal linear combinations of group elements, such as

f =
X

�2�

f(�)�

with f a complex valued function on �, we also have a “multiplication by a scalar ” operation,

defined by setting for any complex number c

cf =
X

�2�

cf(�)�

this operation is clearly associative and distributive with respect to addition.
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The group algebra has also an identity which we denote “✏” which is simply given by the

identity element of the group �.

A structure with these properties with scalars in a field K is usually referred to as a

“K-Algebra”. The collection of n ⇥ n matrices with entries in K, which we denote Mn[K], is

the simplest example of a K-Algebra. It easily seen Mn[K] is a n2-dimensional vector space with

a natural basis consisting of the n ⇥ n matrices Ei,j with i, j entry equal to 1 and all other entries

equal to zero. With this notation, for any matrix A = kai,jkni,j=1 we can write

A =
nX

i=1

nX

j=1

ai,jEi,j 3.1

The Ei,j , which (using Young’s terminology) will refer as “matrix units ”, are easily seen to satisfy

the identities

Ei,j ⇥ Er,s =

⇢
0n if j 6= r
Ei,s if j = r

3.2

where “0n” here means the n⇥ n matrix with all elements equal to 0.

The the next simplest example is obtained by taking a direct sum of a finite number of

simple matrix algebras. More precisely we will denote

kM

l=1

Mn
l

[K]

the vector space of M ⇥M block matrices, (with M =
Pk

s=1 ns) of block diagonal form

A =

2

664

A(1) 0 · · · 0
0 A(2) · · · 0
...

...
. . .

...
0 0 · · · A(k)

3

775 =
kM

l=1

A(l)
�
with A(l) 2Mn

l

[K]
�

3.3

It will be convenient to denote by f
(s)
i,j the block matrix in 3.3 with

A(l) =

⇢
0n

l

if l 6= s

E
(n

s

)
i,j if i = s

3.4

where here E
(n

s

)
i,j denotes the ns ⇥ ns matrix with i, j element 1 and all other elements 0. It is

easily seen that the collection
Sk

s=1

�
f
(s)
i,j

 n
s

i,j=1
is a basis of

Lk
i=1 Mn

i

[K], since it is clearly an

independent set and every element A =
Lk

l=1 A
(l) has an expansion of the form

A =
kX

s=1

n
sX

i=1

n
sX

j=1

a
(s)
i,j f

(s)
i,j

In particular we see that

dim
kM

i=1

Mn
i

[K] =
kX

s=1

n2
s
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Moreover, from 3.2 aND 3.4 it follows that

f l
i,j ⇥ fm

r,s =

8
<

:

0M if l 6= m
0M if l = m but j 6= r
f l
i,s l = m and j 6= r

�
M =

Pk
s=1 ns

�
3.5

It is easily shown that only multiples of the identity matrix I 2 M[K] commute with all the

matrices in M[K]. In particular, it follows that the center of
Lk

i=1 Mn
i

[K] (that is the subspace of

the elements that commute with all the other elements) is spanned by the elements

fs =
n
sX

i=1

f
(n

s

)
i,i (1  s  k) 3.6

Which are none other than the block matrices in 3.3 with

A(l) =
n
0n

l

if l 6= s
I(ns

) if i = s

where I(ns

) denotes the ns ⇥ ns identity matrix.

This gives

dim Center
⇣ kM

i=1

Mn
i

[K]
⌘

= k 3.7

It is customary to call the algebras
Lk

i=1 Mn
i

[K] “semi-simple ”.

Frobenius’ Fundamental Theorem of Representation Theory states that the group algebra

of every finite group is isomorphic to a semi-simple algebra.

More precisely Frobenius result assures that given a finite group � of order N = |�| there
are integers {ns}ks=1 such that

N =
kX

s=1

n2
s 3.8

and a bijective map

� : A(�)  !
kM

i=1

Mn
i

[C] 3.9

that respects addition, multiplication and multiplication by a complex number. In particular we

deduce from 3.7 that the integer k must be equal to the dimension of the center C(�) of the group

group algebra of �. But we have seen that C(�) is none other that the subspace of class functions.

Thus in particular we derive that k in 3.8 and 3.9 must be none other than the number of conjugacy

classes of �.

Of course in view of 3.5 the Frobenius result amounts to showing the existence in A(�) of

a basis
Sk

s=1

�
e
(s)
i,j

 n
s

i,j=1
satisfying the identities

eli,j ⇥ emr,s =

8
<

:

0 if l 6= m
0 if l = m but j 6= r
eli,s l = m and j = r

3.10
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This given, the desired map � is simply obtained by setting

� eli,j = f l
i,j

and extending it by linearity to the rest of A(�).

Remarkably, Alfred Young, initially unaware of Frobenius work, set himself the task, in a

series of papers written in a span of 17 years, to produce a purely combinatorial construction of

such matrix units for several reflection groups including all the symmetric groups. While doing so

he completely upstaged Frobenius who only succeeded in constructing the k elements fs in 3.6 for

Sn.

In the next few section we will present Young’s construction for the symmetric groups and

derive some of its most significant properties.

4. Young’s matrix units for A(Sn).

This section is dedicated to the proof of the following remarkable result

Theorem 4.1(A.Young)

With S�
1 , S

�
2 , . . . , S

�
n
�

the standard tableaux of shape � ` n in Young’s first letter order, let

h� = n!/n� and set

��i =
1

h�
N(S�

i )P (S�
i ) 4.1

This given, for �S�

i

,S�

j

= ��
ij , the group algebra elements

e�ij = ��i �
�
ij (1� ��j+1)(1� ��j+2) · · · (1� ��f

�

) 4.2

do not vanish and satisfy the identities

e�ij eµrs =

(
e�is if � = µ and j = r

0 otherwise

4.3

We will obtain our proof by combining a few, very simple. purely combinatorial properties

of the group algebra elements ��i which we will state as separate Propositions.

We will start with the following very beautiful fact which considerably simplifies Young’s

original argument.

Proposition 4.1 (Von Neuman Sandwich Lemma)

For any element f 2 A(Sn) and any T 2 INJ(�) we have

N(T ) f P (T ) = cT (f) N(T )P (T ) , 4.4

with

cT (f) = f P (T )N(T ) |✏ . 4.5

Proof
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Expanding f in the left hand side of 4.4 we get

N(T ) f P (T ) =
X

�2S
n

f(�) N(T ) � P (T ) . 4.6

Now note that using 2.2 a) we can write

N(T ) � P (T ) = N(T ) P (�T ) � .

That means that the only terms that survive in 4.6 are those for which N(T ) P (�T ) 6= 0. However,

as we have seen in Remark 2.3, this can happen only if �T ^ T is good. But part d) of Proposition

2.1 gives that we must have

T = ↵ � � T

with ↵ 2 R(T ) and � 2 C(T ). In other words the only terms that survive in 4.6 are those coming

from permutations � of the form

� = ��1↵�1 (with ↵ 2 R(T ) , � 2 C(T ) )

Since any permutation that can be so expressed has a unique expression of this form we can rewrite

4.6 as

N(T ) f P (T ) =
X

↵2R(T )

X

�2C(T )

f(��1↵�1) N(T ) ��1↵�1 P (T ) . 4.7

But then the simple identity

N(T ) ��1↵�1 P (T ) = sign(�) N(T )P (T )

reduces 4.7 to

N(T ) f P (T ) =

✓ X

↵2R(T )

X

�2C(T )

sign(�)f(��1↵�1)

◆
N(T )P (T ) ,

which is 4.4 with

cT (f) =
X

↵2R(T )

X

�2C(T )

sign(�)f(��1↵�1)

However the latter is but another way of writing 4.5. Q.E.D.

Proposition 4.1 yields us the following fundamental fact

Proposition 4.2

For each � ` n we have a non vanishing constant h� depending only on � such that for all

tableaux T 2 INJ(�) we have, ET = N(T )P (T )

E2
T = h� ET 4.8

Proof
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We simply use 4.4 with f = P (T )N(T ) and get

N(T ) P (T )N(T ) P (T ) = h� N(T )P (T ) ,

with

h� = P (T )N(T ) P (T )N(T ) |✏ .

Next we need to show that h� is the same for all injective tableaux of shape �. However this is a

simple consequence of the fact that if T1 = �T then P (T1) = �P (T )��1 and N(T1) = �N(T )��1,

thus

P (T1)N(T1) P (T1)N(T1) |✏ = �P (T )N(T ) P (T )N(T )��1 |✏ = P (T )N(T ) P (T )N(T ) |✏

Finally we must show that h� 6= 0. But if h� = 0 the element ET would be nilpotent. This in turn

would imply that its image L(ET ) by the left regular representation would be a nilpotent matrix.

Since nilpotent matrices have trace zero and for any group algebra element f =
P

�2S
n

f(�)� we

have

traceL(f) =
X

�2S
n

f(�) traceL(�) = f(✏)n!

the vanishing of h� would imply that ET |✏ = 0. Now this is absurd since, from Remark 2.1 we

immediately derive that ET |✏ = 1. This completes our proof.

Remark 4.1

We should note that one of the simplifications to Young’s arguments due to the Von Neuman

Lemma is to avoid a direct identification of the constant h� as n!/n�. This is obtained in Young’s

work as the final result of gruesome brute force proof of the idempotency of the group algebra

elements ET /h�. In the present development the identification of h� will be carried out at the

very end. This given, until that time we will assume that h� is the mysterious constant appearing

in Von Neuman’s lemma. In particular, this assumption yields us that all the elements ��i in are

idempotent.

Proposition 4.3

��j �
µ
i =

( 0 if � 6= µ
0 if � = µ but j > i
�i if � = µ and j = i

4.9

Proof

We have seen in the proof of Proposition 1.1 that if T1 <Y FLO T2 then there is a pair of

entries r, s that are in the same column of T1 and same row of T2 . This gives

P (T2)N(T1) = P (T2)(r, s)N(T1) = �P (T2)N(T1)

and thus ET2ET1 must necessarily vanish. Since S�
1 , S

�
2 , . . . , S

�
n
�

are in Young’s first letter order it

follows that

ES�

j

ES�

i

= 0 when j > i
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in view of 4.1 this proves the second case of 4.9.

To prove the first case of 4.9 we need only show that if T1 and T2 are injective tableaux of

shapes � and µ respectively then

� 6= µ �! ET1ET2 = 0

To this end note that 2.13 immediately gives that

ET1ET2 = N(T1)P (T1)N(T2)P (T2) 6= 0 �! �  µ 4.10

On the other hand we expand the mid element P (T1)N(T2) in the product ET1ET2 we will obtain

a sum of terms of the form

N(T1)�P (T2) = N(T1)P (�T2)�

If ET1ET2 does not vanish then at least one of these terms must not vanish. But then from 2.14 we

derive that µ  � which together with 4.10 contradicts � 6= µ. This completes our proof of the first

case of 4.9 and we are done since the last case, under our assumption that h� is the Von Neuman

constant, is as we have seen an immediate consequence of Proposition 4.2.

We are now finally in a position to prove Theorem 4.1, except for the identification of the

constant h�. We will start with a

Proof of the identities in 4.3

Note first that if � 6= µ then the first case of 4.9 gives

(1� ��i )�
µ
j = �µj (for all i, j) 4.11

Thus
e�ij e

µ
rs = ��

ij�
�
j (1� ��j+1) · · · (1� ��n

�

)�µr �
µ
rs(1� �

µ
s+1) · · · (1� �µn

�

)

= ��
ij�

�
j �

µ
r �

µ
rs(1� �

µ
s+1) · · · (1� �µn

�

)

= 0 (again by the first case of 4.9 )

We are thus reduced to proving the identities in 4.3 when � = µ in all our elements. Note then that

the second case of 4.9 gives

a) ��j �
�
i = 0 as well as b) (1� ��j )��i = ��i when j > i 4.12

Now note that we can write, for r < j

e�ij e
�
rs = ��

ij�
�
j (1� ��j+1) · · · (1� ��n

�

)��r �
�
rs(1� ��s+1) · · · (1� ��n

�

)

( by 4.12 b) ) = ��
ij�

�
j �

µ
r �

µ
rs(1� �

µ
s+1) · · · (1� �µn

�

)

( by 4.12 a) ) = 0

and for r = j

e�ij e
�
rs = ��

ij�
�
j (1� ��j+1) · · · (1� ��n

�

)��j �
�
js(1� ��s+1) · · · (1� ��n

�

)

( by 4.12 a) = ��
ij�

�
j �

�
j �

�
js(1� ��s+1) · · · (1� ��n

�

)

( by the last case of 4.9) ) = ��
ij�

�
j �

�
js(1� ��s+1) · · · (1� ��n

�

)

= ��i �
�
ij�

�
js(1� ��s+1) · · · (1� ��n

�

) = e�is
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Finally for r > j, after successive uses of 4.12 will necessarily get to a point where the resulting

expression for e�ij e
�
rs contains the factor (1� ��r )��r which of course vanishes by the last case of 4.9.

This completes our argument.

From these relations we can now establish that

Proposition 4.4

The group algebra elements e�ij cannot vanish

Proof

Note first that the identity

e�i,je
�
j,i = e�i,i

reduces us to showing that the e�i,i themselves cannot vanish. Now this result is an immediate

consequence of the very useful fact (as we shall see) that for any two group algebra elements f, g we

have

fg
���
✏

= gf
���
✏

4.13

the reader is urged to work out a proof of this identity in full generality. This given, note first that

from the definition in 4.2 and 4.13 it follows that

e�i,i

���
✏

= ��i (1� ��i+1) · · · (1� ��n
�

)
���
✏

= (1� ��i+1) · · · (1� ��n
�

)��i

���
✏

(by 4.12 b)) = ��i

���
✏

= 1/h� 6= 0

As a first step in proving that Young’s matrix units are a basis we can now establish that

Proposition 4.5

The group algebra elements

[

�`n

�
e�ij

 n
�

i,j=1
are independent

Proof

Assume if possible that for some constants c�ij we have

X

�`n

n
�X

i,j=1

c�ij e�ij = 0

then for all possible choices of µ, r and s we derive from the identities in 4.3 that

cµrs eµrs = eµrr

⇣X

�`n

n
⌫X

i,j=1

c�ij e�ij

⌘
eµss = 0

and since, as we have seen, the eµrs
0s do not vanish we must necessarily have cµrs = 0 as desired.

To prove that an independent set in a vector space V is a basis we need only show that it

spans V or that its cardinality equals the dimension of V . Alfred Young proved that his matrix units

are a basis, both ways. We will follow the latter approach first since it it based on two beautiful

combinatorial identities.
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But before we can state them we need a few preliminary observations. In the figure below

we have depicted the Ferrers diagram of the partition (3, 1, 1) and its immediate neighbors in the

Young lattice. (the lattice of Ferrers diagrams ordered by inclusion).

We have at the center the Ferrers diagram of (3, 1, 1) with the circles indicating its “removable ”

(inner) corner cells and the x0s showing its “addable ” (outer) corner cells. In the row below we have

the partitions obtained by removing one of its inner corner cells and in the row above we have the

partitions obtained by adding one of its addable outer corner cells. We can clearly see that every

Ferrers diagram has one more addable cells than removable ones. In the same row as (3, 1, 1) we have

depicted the partitions that are obtained by going up a row by adding an addable cell then down a

row by removing a removable cell. The fundamental property that yields our desired “basis” result

is that the same collection of partitions can be obtained by first removing a removable cell then

adding one of the addable cells. Using the symbol “⌫!µ” to express that µ is obtained from ⌫ by

adding an addable cell of ⌫, or equivalently, ⌫ is obtained from µ by removing one of the removable

cells of µ, we can derive the following basic recursions for the number of standard tableaux.

Proposition 4.5

Denoting by n� the number of standard tableaux of shape � we have

a)
X

⌫`n�1

n⌫�(⌫!µ) = nµ , b)
X

�`n+1

n��(µ!�) = (n+ 1)nµ 4.14

Proof

The identity in 4.14 a) is immediate. In fact, if µ is a partition of n we obtain a bijection

between the standard tableaux enumerated by the right hand side and the collection of standard

tableau enumerated by the left hand side by the removal of n and the cell containing it. For 4.14

b) we will proceed by induction on n. We can take as base case µ = (1) since we trivially see there

is only one standard tableau of shape (1) and exactly one each of shapes (1, 1) and (2). So let us

assume that 4.14 b) is true for n� 1 and note that multiple applicationc of 4.14 a) give

X

�`n+1

n��(µ!�) =
X

�`n+1

X

�`n
n��(µ!� �) 4.15



A. Garsia Young’s Natural Representations 202B March 31, 2014 17

Since in the sums on the right hand side we are allowed to remove the cell we are adding, we can

see that, if µ has r inner corner cells (and therefore r+1 outer corner sells), then by separating out

the terms with � = µ we can rewrite 4.15 in the form

X

�`n+1

n��(µ!�) =
X

�`n+1

X

� 6=µ

n��(µ!� �) + (r + 1)nµ 4.16

But the observation, that for any given µ, adding and addable and then removing a removable yields

the same collection we obtain by the reverse process of removing a removable and then adding an

addable, can be simply translated into the following beautiful identity

X

�`n+1

X

� 6=µ

n��(µ!� �) =
X

⌫`n�1

X

� 6=µ

n��(µ ⌫!�) 4.17

Thus, using 4.17 in 4.16 we derive that

X

�`n+1

n��(µ!�) =
X

⌫`n�1

X

� 6=µ

n��(µ ⌫!�) + (r + 1)nµ 4.18

But now, since µ has r removable corners we see that the sum
P

�`n n��(µ ⌫!�) will contain

exactly r terms where � = µ. This gives

X

⌫`n�1

X

�`n
n��(µ ⌫!�) =

X

⌫`n�1

X

� 6=µ

n��(µ ⌫!�) + rnµ

Using this 4.18 becomes

X

�`n+1

n��(µ!�) =
X

⌫`n�1

X

�`n
n��(µ ⌫!�) + nµ

=
X

⌫`n�1

�(⌫!µ)
X

�`n
n��(⌫!�) + nµ

(by 4.14 b) for n� 1) =
X

⌫`n�1

�(⌫!µ)nn⌫ + nµ

(by 4.14 a) ) = nnµ + nµ = (n+ 1)nµ

completing the induction and the proof.

These two recursions combined have the following remarkable corollary.

Proposition 4.6 X

�`n
n2
� = n! 4.19

In particular it follows that the group algebra elements

[

�`n

�
e�ij

 n
�

i,j=1
yield a basis for A(Sn).

Proof
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Note that for the base case n = 2 we have n2
(1,1) + n2

(2) = 1 + 1 = 2!. Thus we can again

proceed by induction on n. We will suppose then that 4.19 is true for n. Now, using 14.4 a), the

left hand side of 4.19 for n+ 1 becomes

X

�`n+1

n2
� =

X

�`n+1

n�

X

µ`n
nµ�(µ!�)

=
X

µ`n
nµ

X

�`n+1

n��(µ!�)

�
by 4.14 b)

�
=

X

µ`n
nµ (n+ 1)nµ

�
by induction

�
= (n+ 1)n! = (n+ 1)!

Completing the induction and the proof.

It is good to keep in mind that Young’s matrix units satisfy the following useful identities

Proposition 4.7

For all � we have

e�i,j

���
✏

=

(
0 if i 6= j

��i

���
✏
= 1

h
�

if i = j 4.19

Proof

These identities are immediate consequences of 4.13. In fact, to begin with we obtain

eµi,j

���
✏

= eµi,1e
µ
1,j

���
✏

= eµ1,je
µ
i,1

���
✏

=

(
0 if i 6= j

e�11

���
✏

if i = j ¸

But on the other hand we have

e�11

���
✏

= ��1 (1� ��2 ) · · · (1� ��n
�

)
���
✏

= (1� ��2 ) · · · (1� ��n
�

)��1

���
✏

= ��1

���
✏

=
1

h�
ES�

1

���
✏

=
1

h�

as desired.

This given, it develops that there is a very simple explicit formula yielding the expansion of

any element of the group algebra of Sn in terms of Young’s matrix units.

Theorem 4.1

For any f 2 A(Sn) we have

f =
X

�`n
h�

n
�X

i,j=1

f ⇥ e�j,i

���
✏
e�i,j 4.20

Proof

Since the collection
[

�`n

�
e�ij

 n
�

i,j=1
is a basis there will be coe�cients c�ij(f) yielding

f =
X

�`n

n
�X

i,j=1

c�i,j(f) e
�
i,j
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Thus

f ⇥ eµrs

���
✏

=

n
µX

i,j=1

cµi,j(f) e
µ
i,je

µ
rs

���
✏

=

n
µX

i=1

cµi,r(f) e
µ
i,s

���
✏

and 4.19 gives

f ⇥ eµrs

���
✏

= cµs,r(f)
1

h�

This proves 4.20.

Note that, if we interpret every permutation � 2 Sn as the element of A(Sn) which is 1 on

� and 0 elsewhere, we will have coe�cients a�i,j(�) yielding the expansion

� =
X

�`n

n
�X

i,j=1

a�i,j(�) e
�
i,j 4.21

Now we have the following remarkable fact

Theorem 4.2

For each � ` n the matrices {A�(�) = ka�i,j(�)k
n
�

i,j=1}�2S
n

yield an irreducible representation

of Sn

Proof

For any ↵,� 2 Sn we have, using 4.21 and the identities in 4.2

↵� =
X

�`n

n
�X

i,j=1

n
�X

r,s=1

a�i,j(↵)a
�
r,s(�) e

�
i,je

�
r,s

=
X

�`n

n
�X

i,j=1

n
�X

s=1

a�i,j(↵)a
�
j,r(�) e

�
i,s =

X

�`n

n
�X

i=1

n
�X

s=1

⇣ n
�X

j=1

a�i,j(↵)a
�
j,r(�)

⌘
e�i,s

4.22

But on the other hand a direct use of 4.21 for ↵� gives

↵� =
X

�`n

n
�X

i,j=1

a�i,j(↵�) e
�
i,j

Comparing with 4.22 yields the desired product identity

A�(↵�) = A�(↵)A�(�). 4.23

Note further that an application of 4.20 yields (by 4.19)

a�i,j(✏) = h�✏ e
�
j,i

���
✏

=

⇢
0 if i 6= j
1 if i = j

In other words we also have

A�(✏) = In
�

(the n� ⇥ n� identity matrix!).
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Next note that using 4.21 we derive that

�eµr,s =

n
µX

i,j=1

aµi,j(�) e
µ
i,je

µ
r,s =

n
µX

i=1

aµi,r(�) e
µ
i,s 4.24

In matrix form, this can be written as

�
⌦
eµ1,s, e

µ
2,s, . . . , e

µ
n
µ

,s

↵
=

⌦
eµ1,s, e

µ
2,s, . . . , e

µ
n
µ

,s

↵
Aµ(�) 4.25

In other words the have shown that the subspace L[eµ1,s, e
µ
2,s, . . . , e

µ
n
µ

,s] spanned by the independent

set {eµ1,s, e
µ
2,s, . . . , e

µ
n
µ

,s} is invariant under the action of Sn and the matrix corresponding to the

action of � on the basis {eµ1,s, e
µ
2,s, . . . , e

µ
n
µ

,s} is precisely Aµ(�).

To show that Aµ(�) is an irreducible representation we need only show that there is no non-

trivial invariant subspace or, equivalently that any non vanishing element g 2 L[eµ1,s, e
µ
2,s, . . . , e

µ
n
µ

,s],

has any one of the basis elements {eµ1,s, e
µ
2,s, . . . , e

µ
n
µ

,s} as one of its images. To this end suppose

that

g =

n
µX

i=1

cie
µ
i,s

with cu 6= 0, (there clearly must be at least one such u). Then note that we must have

1
c
u

eµr,u g =

n
µX

i=1

c
i

c
u

eµrue
µ
i,s = eµr,s

and the arbitrariness of r proves the irreducibility, completing our proof.

5. Properties of the representations {A�}� and their characters

To identify Young’s matrices A�(�) and their traces we will need an auxiliary fact which

reveals a beautiful property of the tableaux function C(T1, T2).

Proposition 5.1

For any T1, T2 2 INJ(�) and ⌧ 2 Sn

ET2T1 |⌧ = C(⌧T1, T2) 5.1

Proof

ET2T1 |⌧ =
X

�22C(T2)

X

↵22R(T2)

sign(�2) �2↵2 �T2T1 |⌧ =
X

�22C(T2)

X

↵22R(T2)

sign(�2) �
�
�2↵2 �T2,T1 = ⌧

�

now there may not be a single pair ↵2,�2 for which �2↵2 �T2,T1 = ⌧ , in which case

ET2T1 |⌧ = 0
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But if there is such a pair, there will be one and only one (⇤) , and then we must have

�2↵2 �T2T1 = ⌧ ! �2↵2 = ⌧ �T1T2 = �⌧T1,T2

or

�T2,⌧T1 = ↵�1
2 ��1

2

which combined with part d) of Proposition 2.1 gives that ⌧T1^T2 is good. Thus from 2.7 we derive

that

ET2T1 |⌧ =

8
<

:

0 if ⌧T1 ^ T2 is bad

sign(�2) if ⌧T1 ^ T2 is good

or

ET2T1 |⌧ = C(⌧T1, T2)

as desired.

Q.E.D.

We should note that in particular we must have

ET2T1 |✏ = sign(�2) = C(T1, T2) 5.2

This brings us in a position to prove

Theorem 5.1

For any injective tableau T of shape µ ` n we have coe�cients ai(T ) giving

ET =

n
µX

i=1

ai(T )ESµ

i

,T 5.3

In fact these coe�cients may be directly obtained from the vector identity

0

BB@

a1(T )
a2(T )

...
an

µ

(T )

1

CCA = Cµ(✏)�1

0

BB@

C(Sµ
1 , T )

C(Sµ
2 , T )
...

C(Sµ
n
µ

, T )

1

CCA 5.4

Proof.

Assume first that these coe�cients do exist. Multiplying 5.3 on the right by �TSµ

j

gives

ETSµ

j

=

n
µX

i=1

ai(T )ESµ

i

Sµ

j

.

Equating coe�cients of the identity, and using 5.2, we get

C(Sµ
j , T ) =

n
µX

i=1

ai(T ) C(Sµ
j , S

µ
i )

(⇤) Recall Remark 2.1
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which, in matrix notation, may be expressed as

0

BB@

C(Sµ
1 , T )

C(Sµ
2 , T )
...

C(Sµ
n
µ

, T )

1

CCA = Cµ(✏)

0

BB@

a1(T )
a2(T )

...
an

µ

(T )

1

CCA ,

and formula 5.4 follows upon left multiplication of both sides of this identity by Cµ(✏)�1.

It turns out that existence is an immediate consequence of 4.21, namely the general expan-

sion identity

� =
X

�`n

n
�X

i,j=1

a�i,j(�) e
�
i,j 5.5

In fact, for any given µ and 1  r  nµ the identities in 4.3 give (using 5.5)

� �µr =

n
µX

i,j=1

aµi,j(�) e
µ
i,j�

µ
r =

n
µX

i,j=1

aµi,j(�) �
µ
i �

µ
i,j(1� �

µ
j ) · · · (1� �

µ
n
µ

)�µr

=

n
µX

i=1

aµi,r(�) �
µ
i �

µ
i,r�

µ
r =

n
µX

i=1

aµi,r(�) �
µ
i �

µ
i,r

Recalling the definition in 4.1, we derive from this that

�ESµ

r

=

n
µX

i=1

aµi,r(�) ESµ

i

,Sµ

r

Now this can be rewritten as

E�Sµ

r

=

n
µX

i=1

aµi,r(�) ESµ

i

,Sµ

r

��1

and for � = �T,Sµ

r

we get

ET =

n
µX

i=1

aµi,r(�T,Sµ

r

) ESµ

i

,Sµ

r

�Sµ

r

,T =

n
µX

i=1

aµi,r(�T,Sµ

r

) ESµ

i

,T

This proves 5.3 with

ai(T ) = aµi,r(�T,Sµ

r

) 5.6

and completes our argument.

This proof has a most desirable by-product.

Theorem 5.2

For all µ ` n and all � 2 Sn we have

Aµ(�) = Cµ(✏)�1Cµ(�) 5.7
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Proof

From 5.6 and 5.4 it follows for �Sµ
r = T that

0

BBB@

aµ1,r(�)
aµ2,r(�)

...
aµn

µ

,r(�)

1

CCCA
= Cµ(✏)�1

0

BB@

C(Sµ
1 ,�S

µ
r )

C(Sµ
2 ,�S

µ
r )

...
C(Sµ

n
µ

,�Sµ
r )

1

CCA

But this simply says that the rth column of the matrix on the left of 5.7 equals the rth of the matrix

on the right. Finally yielding the result identity which we have anticipated since the beginning of

these notes.

We are now in a position to obtain Young’s formula giving the character’s of his irreducible

representations. This result may be stated as follows.

Theorem 5.3

For a given µ ` n set

�µ(�) = traceAµ(�) and �µ =
X

�2S
n

�µ(�)� 5.8

then

�µ =
X

T2INJ(µ)

P (T )(N(T )

n!/nµ
5.9

Proof

Using 5.7 and dropping some of the µ superscripts we can write

�µ =
X

�2S
n

� trace C(✏)�1C(�) = trace C(✏)�1 F 5.10

where F = kFijk
n
µ

i=1 is a matrix with group algebra entries

Fij =
X

�2S
n

� C(Si,�Sj) .

Now Proposition 5.1 gives that

C(Si,�Sj) = C(��1Si, Sj) = ES
j

S
i

|��1

Thus
Fij =

X

�2S
n

ES
j

S
i

|��1 � =
X

�2S
n

ES
j

S
i

|� ��1 = P (Si)�ijN(Sj) .

Note further that since �µ is a class function it follows that we also have

�µ =
1

n!

X

�2S
n

��µ��1
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and we can thus write, using 5.10

�µ =
1

n!

X

�2S
n

�
⇣
trace C(✏)�1F

⌘
��1 =

1

n!
trace C(✏)�1

X

�2S
n

� F��1 .

But we see that

X

�2S
n

� Fij�
�1 =

X

�2S
n

� P (Si)�ijN(Sj)�
�1 =

X

�2S
n

� N(Sj)P (Si)�ij�
�1 = 0

at least when i > j. This means that the matrix

X

�2S
n

� F��1

is upper triangular and since C(✏)�1 is upper triangular with unit diagonal elements we must con-

clude that

�µ =
1

n!
trace

X

�2S
n

� F��1 =
1

n!

X

�2S
n

�
⇣ n

µX

i=1

Fi,i

⌘
��1

=
1

n!

n
µX

i=1

X

�2S
n

� P (Si)N(Si)�
�1 =

nµ

n!

X

T2INJ(�)

P (T )N(T )

which is 5.9 precisely as asserted.

The character �µ is in fact very closely related to the matrix units. More precisely

Proposition 5.2

Setting

eµ =

n
µX

i=1

eµi,i 5.11

we have

�µ = hµ e
µ 5.12

in particular it follows from the identities in 4.3 that

�µ ⇥ �µ = hµ �µ 5.13

Proof

Note that using 4.21 we get

eµi,i

���
��1

= � eµi,i

���
✏

=
X

�`n

n
�X

r,s=1

a�r,s(�) e
�
r,s e

µ
i,i

���
✏

=

n
µX

r,s=1

aµr,s(�) e
µ
r,s e

µ
i,i

���
✏

=

n
µX

r=1

aµr,i(�) e
µ
r,i

���
✏

= aµi,i(�)
1
h
µ

(by 4.19)
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and summing for i

eµ
���
��1

=

n
µX

i=1

eµi,i

���
��1

= 1
h
µ

�µ(�) 5.14

Now note that since eµ is a central element of A(Sn) it follows that

eµ
���
��1

= eµ
���
�
.

Thus multiplying both sides of 5.14 by � and summing over Sn gives 5.12 and completes our proof.

Now a result parallel to 5.13 can be obtained by direct manipulations of Young idempotents.

Proposition 5.3 ⇣ X

T2INJ(µ)

N(T )P (T )
⌘2

= h2
µ

X

T2INJ(µ)

N(T )P (T ) 5.15

Proof

Note we may rewrite the left hand aside of 5.15 as

LHS =
X

T2INJ(µ)

X

�2S
n

N(T )P (T )N(�T )P (�T ) 5.16

But P (T )N(�T ) 6= 0 implies T ^ �T is good. Thus from Proposition 2.1 we derive that the only

non vanishing summands in are obtained for � = ↵� with ↵ 2 R(T ) and � 2 C(T ). Since we have

N(T )P (T )N(↵�T )P (↵�T ) = N(T )P (T )↵�N(T )P (T )��1↵�1

= N(T )P (T )N(T )P (T ) sign(�)��1↵�1

(by 4.8) = hµN(T )P (T ) sign(�)��1↵�1

the identity in 5.16 becomes

LHS = hµ

X

T2INJ(µ)

N(T )P (T )
X

↵2R(T )

�2C(T )

sign(�)��1↵�1

= hµ

X

T2INJ(µ)

N(T )P (T )N(T )P (T )

and a further use of 4.8 gives 5.15 as desired.

The result we have anticipated since Von Neuman Lemma is now finally within reach.

Theorem 5.4

hµ =
n!

nµ
5.17

Proof

Squaring both sides of 5.9 gives, using 5.13 and 5.15

hµ �
µ =

h2
µ

(n!/nµ)2

X

T2INJ(µ)

P (T )N(T )

canceling the common factor hµ and using 5.9 again gives

�µ =
hµ

n!/nµ
�µ

and 5.17 follows from the non-vanishing of �µ.
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6. The Frobenius map

The group algebra A(Sn) has a natural scalar product obtained by setting for any f, g 2
A(Sn)

< f, g > =
1

n!

X

�2S
n

f(�)g(�). 6.1

Note that since for all ↵ 2 Sn

↵f =
X

�2S
n

f(�)↵� =
X

�2S
n

f(↵�1�)�.

we have

< ↵f, g > =
1

n!

X

�2S
n

f(↵�1�)g(�)

=
1

n!

X

�2S
n

f(�)g(↵�) = < f,↵�1g > .

6.2

Similarly we show that

< f↵, g > = < f, g↵�1 > . 6.3

Let us denote by Cµ the element of the group algebra of Sn that is obtained by summing all

the permutatiions with cycle structure µ. Now we have shown that the cardinality of this collection

of permutations is given by the ratio

|Cµ| =
n!

zµ
6.4

where for a µ with ↵i parts equal to i it is customary to set

zµ = 1↵12↵2 · · ·n↵
n↵1!↵2! · · ·↵n! 6.5

Using this and the fact that conjugacy classes are disjoint it follows that

⌦
Cµ , C�

↵
=

8
<

:

1

n!

n!

zµ
=

1

zµ
if � = µ

0 otherwise

6.6

There is also a natural scalar product in the space ⇤=n of symmetric polynomial homoge-

neous of degree n which is obtained by setting for two power basis elements p�, pµ

⌦
p� , pµ

↵
=

(
zµ if � = µ

0 otherwise
6.7

This given note that if we set

F Cµ = pµ/zµ 6.8

and use the fact that ⇤=n and the center C(Sn) have the same dimension, we can define an invertible

linear map

F : C(Sn)  ! ⇤=n
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which is also an isometry. In fact, note that from 6.6 and 6.7 it follows that

⌦
FCµ , FC�

↵
= 1

z2
µ

⌦
pµ , p�

↵
= 1

z
µ

�(� = µ)] =
⌦
Cµ , C�

↵

Now Frobenius introduced this map precisely for the purpose of constructing all the irreducible

characters of Sn. Frobenius result can be stated as follows

Theorem 6.1

The class functions

⇠� = F�1 s� 6.9

form a complete set of the irreducible characters of Sn.

The surprising fact is that Young’s and Frobenius’ partition indexing of the irreducible

characters turn out to be identical. This result, established by Young himself, may be simply be

stated as follows

Theorem 6.2 (A. Young)

F�1s� =
n�

n!

X

T2INJ(�)

N(T )P (T ) 6.10

We should mention that to the best our knowledge there is at the moment no direct proof

of this fact. Moreover, even Young’s “proof” is based on a very dubious use of his quite heuristic

(hair) “raising operators”. Our proof as we will later see is very indirect. This given, it is worthwhile

taking a close look at what needs to be proved. To begin we need the following very convenient form

of the Frobenius map

Proposition 6.1

For each � 2 Sn set

 (�) = p�(�) 6.11

where �(�) is the partition giving the cycle structure of �. This given, for any class function

g 2 C(Sn) we have

F g =
⌦
g ,  

↵
6.12

Proof

The proof is immediate. We need only verify 6.12 for the conjugacy class elements Cµ with

µ ` n. In this case the definition in 6.1 gives

F Cµ =
⌦
Cµ ,  

↵
=

1

n!

X

�2S
n

Cµ

���
�
p�(�) =

1

n!
pµ

n!

zµ
=

pµ
zµ

which is precisely the definition in 6.8.

As a corollary we obtain
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Proposition 6.2

The equality in 6.10 amounts to showing that for any injective tableau T of shape � we have

s� =
1

h�

X

↵2R(T )

X

�2C(T )

sign(�) p�(↵�) 6.13

Proof

Note that 6.10 may also be written in the form

s� =
n�

n!
F

X

�2S
n

N(�T )P (�T ) =
n�

n!
F

X

�2S
n

�N(T )P (T )��1

Now, using 6.12 we get

s� =
n�

n!

X

�2S
n

⌦
�N(T )P (TY )��1 ,  

↵

(by 6.2 and 6.3) =
n�

n!

X

�2S
n

⌦
N(T )P (TY ) , ��1 �

↵

(since  is central) =
n�

n!

X

�2S
n

⌦
N(T )P (T ) ,  

↵
= n�

⌦
N(T )P (T ) ,  

↵

=
n�

n!

X

↵2R(T )

X

�2C(T )

sign(�) p�(↵�)

This proves 6.13.
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Theorem 3.6

For any given tableau To of shape µ ` n, the characters of the action of Sn on the left ideals

a) A(Sn)P (To) and b) A(Sn)N(To)

are respectively given by the group algebra elements

a) Pµ =
X

T2INJ(µ)

P (T )

µ!
and b) Nµ =

X

T2INJ(µ)

N(T )

µ0!
3.19

Proof

Since both
P (To)

µ!
and

N(To)

µ0!

are idempotents, formula 8.6 (R) yields that these characters are

Pµ =
X

�2S
n

�
P (To)

µ!
��1 and Nµ =

X

�2S
n

�
N(To)

µ0!
��1

Now these exressions can be rewritten in the form

Pµ =
X

�2S
n

P (�To)

µ!
and Nµ =

X

�2S
n

N(�To)

µ0!

and the identities in 3.19 follow since, as � varies in Sn, the tableau �To describes all the injective

tableaux of shape µ.

It develops that we have the tools to derive the following basic facts about these these two

characters.

Theorem 3.7

For µ ` n and To 2 INJ(µ), let K�µ denote the multiplicity of Young’s representation A�

in the action of Sn on A(Sn)P (To) then

a) K�µ > 0 =) � �D µ and b) Kµµ = 1 . 3.20

It then follows that we have the expansions

a) Pµ = �µ +
X

�>
D

µ

��K�µ and b) Nµ = �µ +
X

�<
D

µ

��K�0µ0 3.21

In particular we derive that

Pµ ⇥Nµ = hµ �
µ 3.22

Proof

The orthonormality of the irreducible character basis immediately gives the expansions

a) Pµ =
X

�`n
��

⌦
Pµ , ��

↵
and b) Nµ =

X

�`n
��

⌦
Nµ , ��

↵
3.23
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Now note that our definition of priming introduced in section 2 applied to formula 3.9 gives that

(��)0 = ��0
3.24

Thus priming 3.23 a), written for µ replaced by µ0, gives

Nµ =
X

�`n
��0 ⌦

Pµ0
, ��

↵
,

and this may be rewritten as

Nµ =
X

�`n
��

⌦
Pµ0

, ��0↵
.

Thus we see that 3.21 b) follows from 3.21 a). To prove 3.20 note that we may write

K�µ =
⌦
Pµ , ��

↵
=

1

µ!h�

X

T12INJ(µ)

X

T22INJ(�)

⌦
P (T1) , N(T2)P (T2)

↵
. 3.25

But since ⌦
P (T1) , N(T2)P (T2)

↵
=

⌦
N(T2)P (T1) , P (T2)

↵
,

we see from 2.28 that, if a single summand in 3.25 fails to vanish, we must necessarily have

� �D µ .

This proves 3.20 a). To prove 3.21 a) assume next that � = µ. We then simultaneously have

Pµ =
1

µ!

X

�2S
n

� P (�To)�
�1 and �µ =

1

hµ

X

�2S
n

N(�To)P (�To)

Thus

Kµµ =
⌦
Pµ , �µ

↵
=

1

µ!

X

�2S
n

⌦
� P (To)�

�1, �µ
↵

=
1

µ!

X

�2S
n

⌦
P (To), �

�1�µ �
↵

=
n!

µ!

⌦
P (To), �

µ
↵

=
n!

µ!hµ

X

�2S
n

⌦
P (To) , N(�To)P (�To)

↵
. 3.26

But we see that we have

⌦
P (To) , N(�To)P (�To)

↵
=

⌦
N(�To)P (To) , P (�To)

↵

and so the only case in which this summand fails to vanish is when

�To = ↵�To with ↵ 2 R(To) and � 2 C(To)
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This reduces 3.26 to

Kµµ =
n!

µ!hµ

X

↵2R(T
o

)

X

�2C(T
o

)

⌦
P (To) , ↵�N(To)P (To)�

�1↵�1
↵

=
n!

µ!hµ

X

↵2R(T
o

)

X

�2C(T
o

)

sign(�)
⌦
↵�1P (To)↵ , N(To)P (To)�

�1
↵

=
n!

hµ

X

�2C(T
o

)

sign(�)
⌦
P (To) , N(To)P (To)�

�1
↵
=

n!

hµ

⌦
P (To) , N(To)P (To)N(To)

↵

=
n!

hµ

⌦
id , N(To)P (To)N(To)P (To)

↵
= n!

⌦
id , N(To)P (To)

↵
= 1

as desired. This completes the proof of our theorem since 3.22 follows immediately from 3.21 because

of the relations in 5.10 (R)


