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Definition: A permutation is bijection σ : [n] → [n]. There several notations that can be used to represent
a permutation. Several instances of them are:

• One line notation: σ(1)σ(2) · · ·σ(n)

• Two line notation: (
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
• Cycle notation: (σ(i1), σ(i2), · · · , σ(ir)) · · · (σ(im), σ(im+1), · · · , σ(in))

Let the group of permutations on n letters be denoted by Sn. We say that σ ∈ Sn is a permutation with
cycle structure (m1,m2, . . . ,mn) if σ has precisely m1 one-cycles, m2 two-cycles and so on. Note that this
implies 1 ·m1 + 2 ·m2 + · · ·+ n ·mn = n.
Proposition: If π = (i1, i2, · · · , ir) · · · (im, im+1, · · · , in) in cycle notation, then for any σ ∈ Sn,

σπσ−1 = (σ(i1), σ(i2), · · · , σ(ir)) · · · (σ(im), σ(im+1), · · · , σ(in)).

Definition: Two permutations σ and π have the same cycle structure if and only if they are conjugate. That
is,

π = ασα−1

for some α ∈ Sn.
Proposition: Let π ∈ Sn be a permutation with cycle structure (m1,m2, . . . ,mn). Then of permutations
in Sn with the same cycle structure as π is

n!

1m1m1!2m2m2! · · ·nmnmn!
.

Proof: As π and σ have the same cycle type if and only if they are in the same conjugacy class os Sn, it
suffices to prove that the number of permutations σ that fix π under the action of conjugation is

1m1m1!2m2m2! · · ·nmnmn!.

In order for a permutation σ to fix π, its action restricted to the mi cycles of length i must be at least one
of the following:

• Permute the mi cycles of length i amongst themselves in mi! ways (for instance, (134)(256) =
(256)(134))

• Pick the first element of every cycle of length i in imi ways (for instance, (134) = (341) = (413)).

Thus, since both of these are precisely the ways in which a permutation can fix π, we see that the number
of permutations with the cycle structure of π is by the orbit stabilizer theorem

n!

1m1m1!2m2m2! · · ·nmnmn!
.

�
Definition: Let G be a finite group, let GLn(C) be the set of invertible n×n matrices. Then a representation
of G is a homomorphism ψ : G→ GLn(C), which we say has degree n.
Example: Let Sn act on {1 , 2 , . . . ,n} in the natural way. That is, σi = σ(i) for all i ∈ [n].
For instance, when n = 3,

(1)(2)(3)1 = 1

(123)2 = 3

(12)(3)3 = 3

Now, we compute the matrix of the permutations of S3 in the standard basis:
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X((1)(2)(3)) =

1 0 0
0 1 0
0 0 1



X((123)) =

0 0 1
1 0 0
0 1 0


X((132)) =

0 1 0
0 0 1
1 0 0



X((12)(3)) =

0 1 0
1 0 0
0 0 1


X((13)(2)) =

0 0 1
0 1 0
1 0 0



X((1)(23)) =

1 0 0
0 0 1
0 1 0


�

Example: Let V := L{v1, v2}, v3 := −v1− v2. We let S3 act on the basis elements in the natural way, that
is

σvi = vσ(i).

Now, we compute the action of group elements on the basis to find their representations

(12)v1 = v2 (12)v2 = v1

(13)v1 = −v1 − v2 (13)v2 = v2

(23)v1 = v1 (23)v2 = −v1 − v2
(123)v1 = v2 (123)v2 = −v1 − v2
(132)v1 = −v1 − v2 (132)v2 = v1

(1)v1 = v1 (1)v2 = v2

And so, the representation of our group in this S3-module is

X((12) =

[
0 1
1 0

]
X((13)) =

[
−1 0
−1 1

]
X((23)) =

[
1 −1
0 −1

]
X((123)) =

[
0 −1
1 −1

]
X((132)) =

[
−1 1
−1 0

]
X((1)) =

[
1 0
0 1

]
�

Definition: Let G be a finite group. We say that vector space V is a G−module if there is a group
homomorphism ψ : G→ GL(V ). That is, we would like ψ to satisfy the following properties

1. gv ∈ V

2. g(cv + dw) = c(gv) + d(gw)

3. (gh)v = g(hv)

4. idv = v

for all g, h ∈ G, v,w ∈ V and scalars c, d ∈ C.
Example: An inversion of a permutation σ is a pair (i, j) such that i < j and σ(i) > σ(j). Let inv(σ)
denote the number of inversions in σ. Then the mapping sgn : σ 7→ (−1)inv(σ) is a homomorphism and is
known as the sign representation of Sn.
Example: The mapping which maps all of G to the identity of a vector space is known as the trivial
representation of G.
For instance, if V = L{w}, then for any group G,

g.w = w
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for all g ∈ G.
Definition: A subspace W of a G−module V is called a submodule of V if W is G−invariant. This means
that g.w ∈W for all g,∈ G and w ∈W .
Example: (Trivial Submodule) Every G−module V has two trivial submodules {0} and V itself.
Remark: Let B = {v1, v2, · · · , vn} and C = {w1, w2, · · · , wn} be bases for a G−module V . Then there are
coefficients,

g(vi) =

n∑
j=1

ajivj

g(wi) =

n∑
j=1

bjiwj

and

vi =

n∑
j=1

tjiwj .

If we first compute the action of g on vi and expand in the basis C, then we have

g(vi) =

n∑
j=1

ajivj =

n∑
j=1

n∑
k=1

ajitkjwk

If instead we compute the action of g on vi by expanding in the basis C followed by the action of g on the C
basis we have

g(vi) =

n∑
j=1

tjig(wj) =

n∑
j=1

n∑
k=1

tjibkjwk

Now let T = [tji]1≤i,j≤n be the matrix of coefficients for the change of basis matrix between the B basis and
C basis.

The coefficient of wk in g(vi) using the first of these two equations is equal to the (k, i) entry in the
matrix T ·XB(g) where XB(g) = [aji]1≤i,j≤n.

The coefficient of wk in g(vi) using the second of these two equations is equal to the (k, i) entry in the
matrix XC(g) · T where XC(g) = [bji]1≤i,j≤n.

Since these two quantities must be equal for the action to be consistent on the the bases, we must have

T ·XB(g) = XC(g) · T

�
Example: Let V = L{1 , 2 , 3} and G = S3 act on it in the natural way. We claim that W = L{1 + 2 + 3}
is a submodule of G:

σ(1 + 2 + 3 ) = σ(1 ) + σ(2 ) + σ(3 ) = 1 + 2 + 3 ∈W

as σ is a bijection for all σ ∈ S3. As this holds for every basis element, it holds for all W .
Remark: Although V decomposes to the direct sum of W = L{1 + 2 + 3} and U = L{2, 3} as vector
spaces, U is not a submodule of V : (13)(3 ) = 1 6∈W , for instance.
However, we can find the unique submodule W⊥ for which V = W

⊕
W⊥ as follows:

Define the inner product <,> on V by
< i , j >= δi,j

for the basis elements i , j ∈ {1 , 2 , 3} and then we extend linearly in the first variable and conjugate linearly
in the second. Now, we search for the orthogonal complement of W under this inner product:

W⊥ = {a1 + b2 + c2 : a, b, c ∈ C and a+ b+ c = 0}.
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This is a submodule with basis {3− 2, 3− 1}. In conclusion,

L{1 , 2 , 3} = L{1 + 2 + 3}⊕L{3− 2, 3− 1}.

which is a decomposition of V into into its submodules. �
Definition: A G−module V is irreducible if it has no nontrivial submodules.
Lemma: If W is a submodule of V and and <,> is a G−invariant scalar product, then
W⊥ = {v ∈ V :< v,w >= 0 for all w ∈W} is also a submodule of V and V = W⊕W⊥.
Proof: Fix v ∈W⊥. Let g ∈ G and w ∈W . Then

< gv, u > =< v, g−1u > by the G−invariance

= 0 As W is a submodule of V

which proves that W⊥ is a submodule of V .

Finally, let B = {
W

α1, α2, . . . , αk, αk+1, . . . , αn

W⊥

} be an orthonormal basis with respect to the inner product

<,> with the first k vectors being a basis for W and rest being a basis for W⊥.
Fix v ∈ V and let w to be the projection of v into W :

w :=< v, α1 > α1 + · · ·+ < v, αk > αk

and then v = w + (v − w) ∈W⊕W⊥. �
Theorem: (Maschke’s Theorem)
If G is a finite group and V is a G−module over C, then

V = V1⊕V2⊕ · · ·⊕Vk

where every Vi is an irreducible submodule of V .
Proof: Let <,> be the inner product defined by < i, j >= δi,j , where i, j are basis elements of V . If this
inner product is not G−invariant, then we define <,>′ as follows in order to make use of the above lemma:

< u, v >′: =
∑
g∈G

< gu, gv >

=⇒ < hu, hv >′ =
∑
g∈G

< ghu, ghv >

=< u, v >′

for all u, v ∈ V, h ∈ G. This implies that for a finite group G, every module has some G−invariant product
defined on it.
Finally, to prove the theorem, we utilize induction on the dimension of a module and appeal to the results
of the lemma above. �
Example: If G is a finite group and G acts on itself, then L{g ∈ G} is a G−module. This is known as the
regular representation of G.
For instance, when G = C4 =< g : g4 = e > is the cyclic group of order 4, then the matrix representations
in V1 = L{e, g, g2, g3} of C4 are

X1(e) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 X1(g) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



X1(g2) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 X1(g3) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
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Let v1 = e+ g + g2 + g3. Then V1 ⊆ L{v1} as a submodule.
Let V2 = L{e+ g + g2 + g3, g, g2, g3}, then the matrix representations of G in V2 are

X2(e) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 X2(g) =


1 0 0 1
0 0 0 −1
0 1 0 −1
0 0 1 −1



X2(g2) =


1 0 1 0
0 0 −1 1
0 0 −1 0
0 1 −1 0

 X2(g3) =


1 1 0 0
0 −1 1 0
0 −1 0 1
0 −1 0 0


Let V3 = L{e− g, g − g2, g2 − g3}. Then V3 = V ⊥2 and the representations of G in V1

⊕
V3 is

X3(e) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 X3(g) =


1 0 0 0
0 0 0 −1
0 1 0 −1
0 0 1 −1



X3(g2) =


1 0 0 0
0 0 −1 1
0 0 −1 0
0 1 −1 0

 X3(g3) =


1 0 0 0
0 −1 1 0
0 −1 0 1
0 −1 0 0


Remark: Although we broke down the module V1 into two submodules, not both are irreducible and V1
can be decomposed further.
Definition: Let V and W be two G−modules. Then a linear map φ : V →W is a G-homomorphism if

φ(gv) = gφ(v)

for all g ∈ G, v ∈ V .
Proposition: Let φ : V →W be a G−homomorphism, then

1. φ(V ) is a submodule of W .

2. Ker(φ) is a submodule of V .

Proof: Let w ∈ φ(V ). Fix g ∈ G and suppose φ(v) = w. Then

gw = gφ(v) = φ(gv) ∈ φ(V )

as V is a G−module.
Now, suppose v ∈ Ker(φ) and fix g ∈ G. Then

φ(gv) = gφ(v) = g(0) = 0

and so gv ∈ Ker(φ) if v ∈ V . �
Remark: If there exists a G−homomorphism from V to W , then there exists a matrix T such that

TXv(g) = XW (g)T.

Theorem: (Schur’s Lemma)
If V and W are irreducible representations with XV (g)T = TXW (g) for all g ∈ G, then T is either zero or
is invertible.
Proof: By the last proposition,

V irreducible =⇒ Ker(φ) = {0} or Ker(φ) = V

W irreducible =⇒ φ(V ) = {0} or φ(V ) = V
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and so the theorem follows from the remark. �
Now, suppose V is an irreducible G−module . If T is a matrix such that

TX(g) = X(g)T

for all g ∈ G, then

TX = XT =⇒ (T − cI)X = X(T − cI) as cI commutes with X for all c ∈ C

but as C is algebraically closed, we may pick c to be an eigenvalue of C so T − cI satisfies the hypothesis
of Schur’s Lemma and it is not invertible, which implies T − cI = 0 and so T = cI for some c ∈ C. We
summarize this as follows:
Corollary: If V is an irreducible G-module, then T commutes with the matrix representation of G if and
only if T = cI for some c ∈ C. �
Example: Consider the S2−modules V = C[x1, x2] = L{1, x1, x2, x1x2, x21, x22, . . .} where

(1)(2)xa1x
b
2 = xa1x

b
2

(12)xa1x
b
2 = xb1x

a
2

and so, the action of S2 preserves the degree of the module.
Hence, the monomials of degree r form a submodule of of V and

V = L{1}⊕L{x1, x2}⊕L{x21, x22, x1x2}⊕ · · ·

=
⊕
r≥0

Vr

where Vr denotes the monomials of degree r.
Let RS2 denote the Reynolds operator of S2 which acts on V by v 7→ (1)(2)v + (12)v. For instance,

RS2(1) = 1 + 1 = 2

RS2(x1) = x1 + x2

RS2(x2) = x1 + x2

...

RS2(xa1x
b
2) =

{
xa1x

b
2 + xb1x

a
2 a 6= b

2xa1x
b
2 a = b

Note that L{xa1xb2 + xb1x
a
2 : 0 ≤ a ≤ b} is a submodule of V .

We define an inner product on V by

< xa1x
b
2, x

c
1x
d
2 >=

{
1 a = c and b = d

0 else

and we find that xa1x
b
2 − xb1xa2 is orthogonal to all of L{xc1xd2 + xd1x

c
2 : 0 ≤ c ≤ d}:

< xa1x
b
2 − xb1xa2 , xc1xd2 + xd1x

c
2 > =

{
1 a = c, b = d

0 else

}
+

{
1 a = d, b = c

0 else

}
−

{
1 b = c, a = d

0 else

}
−

{
1 b = d, a = c

0 else

}

and L{xa1xb2 − xb1xa2} is a submodule as

(12)(xa1x
b
2 − xb1xa2) = xb1x

a
2 − xa1xb2 = −(xa1x

b
2 − xb1xa2)
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Therefore, L{xa1xb2 − xb1xa2} is a submodule for all a < b. We see that our Vr can be broken down as follows

V0 = L{1}
V1 = L{x1, x2} = L{x1 + x2}⊕L{x1 − x2}
V2 = L{x21, x22, x1x2} = L{x21 + x22}⊕L{x1x2}⊕L{x21 − x22}

and in general we see that

Vr = L
r+1 basis elements

{xr1, xr−11 x2, x
r−2
1 x22, . . . , x

2
1x
r−1
2 , xr2} ⊇

 ⊕
a+b=r
a≤b

L{xa1xb2 + xb1x
a
2}

⊕
 ⊕
a+b=r
a<b

L{xa1xb2 − xb1xa2}


with equality as on the right hand side we have that

dim


 ⊕
a+b=r
a≤b

L{xa1xb2 + xb1x
a
2}

⊕
 ⊕
a+b=r
a<b

L{xa1xb2 − xb1xa2}


 = dim

 ⊕
a+b=r
a≤b

L{xa1xb2 + xb1x
a
2}


+dim

 ⊕
a+b=r
a<b

L{xa1xb2 − xb1xa2}


=

⌈
r + 1

2

⌉
+

⌊
r + 1

2

⌋
= r + 1

and so equality holds.
Next, we define the generating function dimq(V )1 by

dimq(V ) =
∑
n≥0

dim(Vn)qn

where Vn is the space of spanned by homogeneous elements of V of degree n.
In our example,

dimq(C[x1, x2]) = 1 + 2q + 3q2 + 4q3 + · · ·+ (r + 1)qr + · · ·

= Dq

(
1

1− q

)
=

1

(1− q)2

and

dimq

⊕
r≥0

 ⊕
a+b=r
a≤b

L{xa1xb2 + xb1x
a
2}


 = 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 4q6 + 4q7 + · · ·

= (1 + q)
[
1 + 2q2 + 3q4 + 4q6 + · · ·

]
= (1 + q)

∑
r≥0

(r + 1)q2r


= (1 + q)

[
1

(1− q2)2

]
1This is known as the Hilbert Series of V .
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as
1

(1− q)2
is the ordinary generating function of {r + 1}r≥0 and hence

dimq

⊕
r≥0

 ⊕
a+b=r
a≤b

L{xa1xb2 + xb1x
a
2}


 = (1 + q)

[
1

(1− q2)2

]

=
1

(1− q)(1− q2)

and hence

dimq

⊕
r≥0

 ⊕
a+b=r
a<b

L{xa1xb2 − xb1xa2}


 =

1

(1− q)2
− 1

(1− q)(1− q2)

=
q

(1− q)(1− q2)

�
Now, we create new G−modules from old ones:
Given V ⊇ U and W G−modules with bases B and C and representations X and Y , respectively, and if dim
V = n, dim U = d and dim W = m, then

Module Notation Dimension Representation

Direct Sum Module V⊕W n+m

[
X(g) 0

0 Y (g)

]

Tensor Product Module V⊗W n ·m


a11Y (g) a12Y (g) · · · a1nY (g)
a21Y (g) a22Y (g) · · · a2nY (g)

...
...

. . .
...

an1Y (g) an2Y (g) · · · annY (g)


Quotient Module V/U n− d X(g)|R

where R is the subset of B that excludes the basis elements of U . The direct sum and tensor product
modules have the the bases B ∪ C, {v1⊗w1, . . . , v1⊗wm, . . . , vn⊗w1, . . . , vn⊗wm} while the quotient module
has a spanning set {U + v : v 6∈ U}. �
Exercise: Let C[x1, x2, x3]S3 denote the space of polynomials in 3 variables over C which are invariant
under the action of S3 of

σ(f(x1, x2, x3)) = f(xσ(1), xσ(2), xσ(3)).

Find dimq(C[x1, x2, x3]S3).

Step 1: Conjecture the answer.
Method 1: figure out the graded dimensions for the first few terms and then look the answer up in the
”online integer sequence database.”
Method 2: recall that a basis for the submodule C[x1, x2]S2 = submodule consisting of those elements
invariant under the S2 action is

{xa1xb2 + xb1x
a
2 for a ≥ b} .

Use this to guess (big leap here) that a basis for C[x1, x2, x3]S3 is the set

{RS3(xa1x
b
2x
c
3) for a ≥ b ≥ c ≥ 0}

Step 2: Show that the set above is a basis by demonstrating that it spans and is linear independent.
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Step 3: Show that generating function for the number of elements in the set

{(a, b, c) : a ≥ b ≥ c ≥ 0}

is equal to
(

1
(1−q)(1−q2)

)
1

(1−q3) .

Conclude that

dimq(C[x1, x2, x3]S3) =
1

(1− q)(1− q2)(1− q3)

�
Recall that a matrix T commutes with an irreducible representation X of a if and only if T = cI for some
constant c ∈ C. Now, suppose that

X =

[
X1(g) 0

0 X2(g)

]
for some X1 and X2 irreducibles. Then for any matrix T such that

T =

[
T11 T12
T21 T22

]
and

X(g)T =

[
X1(g)T11 X1(g)T12
X2(g)T21 X2(g)T22

]
=

[
X1T11 X2(g)T12
X1T21 X2(g)T22

]
= TX(g)

=⇒ T11 = c1I and T22 = c2I

and {
T12 = 0 = T21 if X1 6∼= X2

T12 = c′1I and T21 = c′2I X1
∼= X2

}
To summarize if X = 2X1, then

T =

[
c11 c12
c21 c22

]
⊗I

for some c11, c12, c21, c22 ∈ C and otherwise

T =

[
c11 0
0 c22

]
⊗I

for some c11, c22 ∈ C.
More generally, if X = m1X1⊗m2X2, then if T commutes with X, we find that

T =



c11I c12I · · · c1m1
I

c21I c22I · · · c2m1
I

...
. . .

...
cm11I cm12I · · · cm1m1

I
a11I a12I · · · a1m2

I
a21I a22I · · · a2m2

I
...

. . .
...

am21I am22I · · · am2m2
I


=

[
C⊗Id1 0

0 A⊗Id2

]
and if Com X = {T : TX(g) = X(g)T, ∀g ∈ G}, then

dim(Com(X)) = m2
1 +m2

2
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and degX = m1d1 +m2d2 if deg(X1) = d1 and deg(X2) = d2.
We summarize and generalize even further:

Proposition: If X =

k⊗
i=1

miXi, then

dim(Com(X)) =

k∑
i=1

m2
i

deg(X) =

k∑
i=1

midi

where di = deg(Xi). �
Definition: Let X be a representation. Then associated with X is χ, the character of a representation,
which is the mapping X(g) 7→ tr(X(g)).
Example: For instance, if

X =

[
X1 0
0 X2

]
then χ(g) = χ(1)(g) + χ(2)(g).
To prove that χ is well defined, it is sufficient to note that the trace is invariant under conjugation. In fact,
this also proves that the trace is a class function meaning that it is constant on the conjugacy classes of G.
Fact: if G acts by permuting the basis elements, then

χ(g) = |fix(g)|.

Define an inner product <,> on characters by

< χ,ψ >: =
1

|G|
∑
g∈G

χ(g)ψ(g−1)

=
1

|G|
∑
g∈G

χ(g)ψ(g)

as we may pick a unitary basis.
Fact: If X and Y are irreducible as representations with characters χ and ψ, then

< χ,ψ >= δχ,ψ.

Consequences: χ is irreducible ⇐⇒ < χ,χ >= 1
Proof: If χ is irreducible, then < χ,χ >= 1. Conversely, if it is not irreducible, then χ = χ(1) + χ(2), for
some other characters χ(1), χ(1) and so

< χ,χ > 6= 1.

�

Furthermore, if X =

k⊗
i=1

miX
(i) where all X(i) are irreducible, then

< χX , χ(i) >=< m1
χ(1) +m2

χ(2) + · · ·+mk
χ(k), χ(i) >= mi

and

< χX , χX >=

k∑
i,j=1

< mi
χ(i),mj

χ(j) >= m2
1 +m2

2 + · · ·+m2
k.
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Question: Given a group G and a matrix representation X, how do we decompose X?

Step 1: List all irreducible characters of G. Say, {χ(1), χ(2), . . . , χ(k)}.

Step 2: Compute < χX , χ(i) >= mi.

How to do Step 1: Notice that χ(i) is constant on the conjugacy classes of G =
⋃̇
Ci. Now, define

κCi
(g) =

{
1 if g ∈ Ci
0 else

and note that these form a basis for the vector space of all class functions on G:

χ(g) = χ(g1)κC1
(g) + χ(g2)κC2

(g) + · · ·+ χ(gd)κCd
(g),

where gi ∈ Ci.
Example: If G = S3, its conjugacy classes are

C1 = {(1)}
C2 = {(12), (13), (23)}
C3 = {(123), (132)}

and our basis consists of

κ1(g) =

{
1 g = e

0 else

κ2(g) =

{
1 g ∈ C2

0 else

κ3(g) =

{
1 g ∈ C3

0 else

If V = L{1 , 2 , 3} then

χV ((1)) = 3

χV ((12)) = 1

χV ((123)) = 0

and so χV (g) = 3κ1(g) + κ2(g).
Let V1 = L{1 + 2 + 3}. Then χ(1) = 1κ1 + 1κ2 + 1κ3.
Let X2 be the sign representation. Then χ(2) = κ1 − κ2 + κ3.
Now, since

< χV , χ(1) > =
1

6
(3 + 3 + 0) = 1

< χV , χ(2) > =
1

6
(3 + 3(−1) + 0) = 0

we know that V ∼= V1⊕L{1 − 2 , 2 − 3}. Let V2 = L{1 − 2 , 2 − 3}. Then we see that

χV2((1)) = 2

χV2((12)) = 0

χV2((132)) = −1
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and so χV2 = 2κ1 + κ3. Moreover,

< χ(1), χV2 > = 0

< χ(2), χV2 > = 0

< χV2 , χV2 > = 1

and so χV2 is irreducible. Therefore, the character table of S3 is

C1 C2 C3

χ(1) 1 1 1
χ(2) 1 −1 1

χ(3) = χV2 2 0 −1

�
In general:
Proposition: Let V = L{g ∈ G} be the group algebra of G. Then

χV (g) =

{
|G| g = e

0 else

Proof: Let χ(i) be an irreducible character. Note that χ(i)(e) = dim(Xi). So,

< χV , χV > =
1

|G|
∑
g∈G

χV (g)χ(i)(g)

=
1

|G|
(χV (e)χ(i)(e) as χV (g) = 0 for g 6= e

= dimχ(i) = mi

and

< χV , χV > =
1

|G|
∑
g∈G

χV (g)χV (g−1)

=
1

|G|
χV (e)χv(e) = |G|

= m2
1 +m2

2 + · · ·+m2
k as X =

⊕
i

miX
(i)

�
Proposition: # of irreducible characters = # of conjugacy classes
Proof sketch: Notice that χV ∼= χC[G] ∼=

⊕
imiX

(i), where mi = χ(i)(e) = deg(X(i)) = dim(V i)

=⇒ Com(C[G]) ∼= C[G]

=⇒ ZC[G]
∼= ZCom(C[G])

and so
# of Conjugacy classes = dim(ZC[G]) = # of irreducible representations of G �

Proposition: For any one dimensional characters χ,

χ(gh) = χ(g)χ(h)
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�
Definition: The graded trace of a module V =

⊕
k≥0 Vk is the formal power series

χV
q =

∑
k≥0

qkχVk .

Example: Let G = S3. We look for the graded character of

C[x1, x2, x3] = L{1}⊕L{x1, x2, x3}⊕L{x21, x1x2, x22, . . . , x23}⊕ · · ·

Solution: We compute the first few terms and find

χC[x1,x2,x3]
q = χ(1) + q(χ(1) + χ(2)) + q2(2χ1 + 2χ3) + · · ·

and then for χV3 :

χV3((1)) = 6

χV3((12)) = 2

χV3((123)) = 0

and hence

< χV3 , χ(1) > = 2

< χV3 , χ(2) > = 0

< χV3 , χ(3) > = 2

continuing in this manner, we could conjecture what the graded character is. Instead, we could proceed as
follows

χV
q (e) = 1 + 3q + 6q2 + 10q3 + 15q4 + · · · = 1

(1− q)3

χV
q ((12)) = 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 4q6 + · · · = 1

(1− q)(1− q2)

χV
q ((123)) = 1 + q3 + q6 + · · · = 1

1− q3

=⇒ χV
q =

1

(1− q)3
κ1 +

1

(1− q)(1− q2)
κ2 +

1

1− q3
κ3

Remark: The multiplicity of χ(1) in χV
q is the Hilbert series dimq(C[x1, x2, x3]S3) as

< χV
q , χ

(1) > =
1

6

(
1

(1− q)3
+

1

(1− q)(1− q2)
+

1

(1− q)(1− q2)

)
=

1

(1− q)(1− q2)(1− q3)
since χ(1) = κ1 + κ2 + κ3

�
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