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Definition: A permutation is bijection o : [n] — [n]. There several notations that can be used to represent
a permutation. Several instances of them are:

e One line notation: o(1)o(2)---o(n)

e Two line notation:

(ot oty 0 o)

e Cycle notation: (o(i1),0(i2), - ,0(ir)) (0 (Gm)s 0 (ims1), -+ 0 (in))
Let the group of permutations on n letters be denoted by &,,. We say that ¢ € G,, is a permutation with
cycle structure (my, ma,...,m,) if o has precisely m; one-cycles, mo two-cycles and so on. Note that this
implies1-mqy+2-mgag+---4+n-my, =n.
Proposition: If 7 = (i1,42, * ,4r) - (im, m+1, - ,in) in cycle notation, then for any o € &,
omo ! = (o(ir),0(i2), -+, 0(ir)) - (0(im), 0 (ims1), - 0 (in))-

Definition: Two permutations o and 7 have the same cycle structure if and only if they are conjugate. That
is,

7 =aca !

for some a € G,,.
Proposition: Let 7 € &, be a permutation with cycle structure (my,ms,...,m,). Then of permutations
in &,, with the same cycle structure as 7 is

n!

17 m1!2m2m2! ceemMn mn' '

Proof: As 7w and o have the same cycle type if and only if they are in the same conjugacy class os &, it
suffices to prove that the number of permutations ¢ that fix 7 under the action of conjugation is

1™m12M2me! - - 0 m, L.

In order for a permutation o to fix 7, its action restricted to the m; cycles of length ¢ must be at least one
of the following:

e Permute the m; cycles of length ¢ amongst themselves in m;! ways (for instance, (134)(256) =
(256)(134))

e Pick the first element of every cycle of length ¢ in i"™ ways (for instance, (134) = (341) = (413)).

Thus, since both of these are precisely the ways in which a permutation can fix 7w, we see that the number
of permutations with the cycle structure of 7 is by the orbit stabilizer theorem

n!

1mimq12m2mgl - . nMam, !’
|
Definition: Let G be a finite group, let GL, (C) be the set of invertible n x n matrices. Then a representation
of G is a homomorphism % : G — GL,(C), which we say has degree n.
Example: Let &, act on {1,2,...,n} in the natural way. That is, o1 = o (%) for all i € [n].
For instance, when n = 3, S

Now, we compute the matrix of the permutations of &3 in the standard basis:



1 0 0 01 0 [0 0 1]
X(H)(2)3)=10 1 0 X((132))=10 0 1 X((13)(2))=10 1 0
0 0 1 1 0 0 |1 0 0]
0 0 1 01 0 (1 0 0]
X((123))=(1 0 O X((12)(3))=11 0 0 X((1)(23))=10 0 1
01 0 0 0 1 10 1 0]
O
Example: Let V := L{v1,v2},v3 := —v1 —v2. We let &3 act on the basis elements in the natural way, that
is
OV = Vg (i)-
Now, we compute the action of group elements on the basis to find their representations
(12)’01 = V2 (12)1}2 = V1
(13)1)1 —V1 — Vg (13)’02 = V2
(23)1)1 =1 (23)1]2 = —V1 — Vg
(123)v1 = v9 (123)vg = —vy — 09
(132)’[)1 = —V1 — Vg (132)’02 =1
(1)’01 =1 (1)1}2 = Vg
And so, the representation of our group in this &3-module is
[0 1 -1 0
xw =[] o] xwa=|7 ]
1 -1 0 -1
xe=|y ] xam-=|] 7
(-1 1 1 0
X = |7y o] xi= g Y
a

Definition: Let G be a finite group. We say that vector space V is a G—module if there is a group
homomorphism ¢ : G — GL(V). That is, we would like 1 to satisfy the following properties

1. gveV

2. g(ev +dw) = c(gv) + d(gw)
3. (gh)v =g(hv)

4. idv =v

for all g,h € G, v,w € V and scalars c,d € C.

Example: An inversion of a permutation ¢ is a pair (4,7) such that i« < j and o(i) > o(j). Let inv(o)
denote the number of inversions in ¢. Then the mapping sgn : o +— (71)"“’(") is a homomorphism and is
known as the sign representation of &,,.

Example: The mapping which maps all of G to the identity of a vector space is known as the trivial
representation of G.

For instance, if V' = L{w}, then for any group G,

gw=w



for all g € G.

Definition: A subspace W of a G—module V is called a submodule of V if W is G—invariant. This means
that g.w € W for all g, € G and w € W.

Example: (Trivial Submodule) Every G—module V has two trivial submodules {0} and V itself.
Remark: Let B = {vy,va, - ,u,} and C = {wy,ws, -+ ,w,} be bases for a G—module V. Then there are

coefficients,
n
(Uz) = Z ajiVj
j=1
n
(wi) = > bjiw;
j=1
and

n
V; = E tjiw]'.
j=1

If we first compute the action of g on v; and expand in the basis C, then we have

n n n
i) = g ajivj = g E ajith;j W
i=1

j=1k=1

If instead we compute the action of g on v; by expanding in the basis C followed by the action of g on the C

basis we have
Ztﬂg wj) Zztﬂbkﬂﬂk

J=1k=1

Now let T' = [t;;]1<s, j<n be the matrix of coefficients for the change of basis matrix between the B basis and
C basis.

The coefficient of wy in g(v;) using the first of these two equations is equal to the (k,i) entry in the
matrix T - Xg(g) where Xg(g9) = [aji]1<i j<n-

The coefficient of wy, in g(v;) using the second of these two equations is equal to the (k,) entry in the
matrix X¢(g) - T where X¢(9) = [bjili<ij<n-

Since these two quantities must be equal for the action to be consistent on the the bases, we must have

T-Xp(g) = Xe(g)- T

O
Example: Let V = £{1, 2,3} and G = &3 act on it in the natural way. We claim that W = L{1 + 2+ 3}
is a submodule of G:
ocl+2+8)=0(l)+0(2)+0(3)=1+2+3W

as o is a bijection for all o € G3. As this holds for every basis element, it holds for all W.
Remark: Although V' decomposes to the direct sum of W = L{I 4+ 2 + 3} and U = L£{2,3} as vector
spaces, U is not a submodule of V: (13)(3) = 1 ¢ W, for instance.
However, we can find the unique submodule W+ for which V = W @ W+ as follows:
Define the inner product <, > on V by
<ij>=di,

for the basis elements 7,5 € {1, 2,3} and then we extend linearly in the first variable and conjugate linearly
in the second. Now, we search for the orthogonal complement of W under this inner product:

J‘:{aierngcgza,b,cE(CandaerJrc:O}.



This is a submodule with basis {3 — 2,3 — 1}. In conclusion,
£{1,2,8y=L{1+2+3}®L{3—2,3—1}.

which is a decomposition of V' into into its submodules. |
Definition: A G—module V is irreducible if it has no nontrivial submodules.

Lemma: If W is a submodule of V and and <, > is a G—invariant scalar product, then

Wt ={veV :<v,w>=0 forall w € W} is also a submodule of V and V = WoW=.

Proof: Fix v € Wt. Let g € G and w € W. Then

<gu,u>=<wvg ‘u> by the G—invariance
=0 As W is a submodule of V'

which proves that W+ is a submodule of V.
W

Finally, let B = {1, aq,...,ak, Qkt1,...,a,} be an orthonormal basis with respect to the inner product
ITI

<, > with the first k& vectors being a basis for W and rest being a basis for W+,

Fix v € V and let w to be the projection of v into W:

wi=<v,01 >0+ + < v, >

and then v = w + (v —w) € WOWL. |
Theorem: (Maschke’s Theorem)
If G is a finite group and V is a G—module over C, then

V=VieVe®- -V

where every V; is an irreducible submodule of V.
Proof: Let <,> be the inner product defined by < ¢,j >= §; ;, where 4, j are basis elements of V. If this
inner product is not G—invariant, then we define <, >’ as follows in order to make use of the above lemma:

<u,v > = Z < gu, gv >
geG
= < hu,hv >' = Z < ghu, ghv >
geG

=<u,v>

for all u,v € V, h € G. This implies that for a finite group G, every module has some G—invariant product
defined on it.

Finally, to prove the theorem, we utilize induction on the dimension of a module and appeal to the results
of the lemma above. ]
Example: If G is a finite group and G acts on itself, then £{g € G} is a G—module. This is known as the
reqular representation of G.

For instance, when G = C; =< ¢ : g* = e > is the cyclic group of order 4, then the matrix representations
in V; = L{e,g,9% g%} of C, are

1 0 0 0] 00 0 1
010 0 100 0
XiO=19 0 1 0 Xi9=10 1 0 0
0 0 0 1] 00 1 0

0 0 1 0] 010 0

s (000 01 v |00 10
X169 =11 0 0 o X =10 0 0 1
0 1 0 0 100 0



Let vy =e+ g+ g?+¢°. Then Vi C L{v1} as a submodule.
Let Vo = L{e + g+ ¢g°> + ¢%,9,9% ¢}, then the matrix representations of G in V; are

1 0 0 0] 100 1
010 0 000 -1
Xa(e)=19 0 1 0 Xa0)=1p 1 ¢ 1
00 0 1] 00 1 -1
1 0 1 0] 1 1 00
s |00 -1 1 s o -1 10
Xolg) =10 0 -1 of *W)=1]g 1 01
0 1 —1 0] 0 -1 0 0

Let V3 = L{e — 9,9 — 9°,9°> — ¢°}. Then V3 = V5" and the representations of G in Vi@Vs is

1 0 0 0] 100 0

010 0 000 —1

Xs@)=19 0 1 o0 Xs9)=1g 1 0 1

000 1 00 1 -1

10 0 0 1 0 0 0

00 -1 1 0 -1 1 0

X)) =19 0 1 0 Xl =g 1 o 1

01 -1 0 0 -1 0 0

Remark: Although we broke down the module V; into two submodules, not both are irreducible and V3

can be decomposed further.
Definition: Let V and W be two G—modules. Then a linear map ¢ : V — W is a G-homomorphism if

P(gv) = go(v)

forall g e G,v e V.
Proposition: Let ¢ : V — W be a G—homomorphism, then

1. ¢(V) is a submodule of W.
2. Ker(¢) is a submodule of V.
Proof: Let w € ¢(V). Fix g € G and suppose ¢(v) = w. Then
gw = go(v) = ¢(gv) € ¢(V)

as V is a G—module.
Now, suppose v € Ker(¢) and fix g € G. Then

¢(gv) = gp(v) = g(0) =0
and so gv € Ker(¢) if v € V. |
Remark: If there exists a G—homomorphism from V to W, then there exists a matrix 7" such that

TX,(9) = Xw(g)T.

Theorem: (Schur’s Lemma)

If V and W are irreducible representations with Xy (¢)T = T Xw (g) for all g € G, then T is either zero or
is invertible.

Proof: By the last proposition,

V irreducible = Ker(¢) = {0} or Ker(¢) =V
W irreducible = ¢(V) ={0}or ¢(V)=V



and so the theorem follows from the remark. |
Now, suppose V is an irreducible G—module . If T is a matrix such that

for all g € G, then

TX =XT = (T—-c)X =X(T—cl) as cI commutes with X for all c € C

but as C is algebraically closed, we may pick ¢ to be an eigenvalue of C so T — cI satisfies the hypothesis
of Schur’s Lemma and it is not invertible, which implies T'— ¢l = 0 and so T = ¢l for some ¢ € C. We
summarize this as follows:
Corollary: If V is an irreducible G-module, then T' commutes with the matrix representation of G if and
only if T' = ¢I for some ¢ € C. ]
Example: Consider the Go—modules V = Clw1,22] = L{1, 21, ¥, 1122, 23, 23, ...} where

(D (2)afas = afxy

(12)afa = iz}

and so, the action of &5 preserves the degree of the module.
Hence, the monomials of degree r form a submodule of of V' and

V = L{1YOL{x, 2o} DL{2?, 22, 2120} B - -

=P

r>0

where V,. denotes the monomials of degree r.
Let RS2 denote the Reynolds operator of G which acts on V by v+ (1)(2)v + (12)v. For instance,

R®2(1)=1+1=2
R62(CC1) =T+ X2

R62 (33'2) =1 —+ i)

a ,.b b,.a
RS2 (2948) = riwy + 2wy a#b
! ) 22928 a=>b
122 =

Note that £{z¢x} + 282 :0 < a < b} is a submodule of V.
We define an inner product on V' by

1 a=candb=d
< axfah, afald >=
0 else

and we find that z¢z% — 252 is orthogonal to all of L{z§xd 4+ z25:0 < c < d}:

< g pbpa gepd o adic 1 a=cb=d + 1 a=db=c I b=ca=d 1 b=da=c
r{Ty — X TG, T{T xix = - o
172 112, T2 12 0 else 0 else 0 else 0 else

and L{z¢z} — 2824} is a submodule as

(12)(afal — 2ag) = afaf — afal = —(afa] — aia3)



Therefore, £L{x¢z} — x%x4} is a submodule for all a < b. We see that our V;. can be broken down as follows
Vo = £{1}
Vl = C{(El,.’tg} = ,C{1'1 + xg}@ﬁ{l'l — 1’2}
Vo = L{x3, 25, 2179} = L{23 + 23} L{m 122} L{23 — 23}
and in general we see that
r+1 basis elements
Vi = L{a, a7 g, 2t 202, L 2l 2l D @ L{z¢al + 2023} | @ @ L{xah — 2baxd}

a+b=r a+b=r
a<b a<b

with equality as on the right hand side we have that

. b b b_ b ; by b
dim @ L{x{ry+ zi25}| & @ L{z{xg —zix5}| | =dim @ L{x{xg + 125}
a+b=r a+b=r a+b=r
a<b a<b a<b

+dim @ L{z%ah — ahad}
a+b=r
a<b

Y

=r+1

and so equality holds.
Next, we define the generating function dimq(V)B by

dimg(V) = dim(V,)q"
n>0

where V,, is the space of spanned by homogeneous elements of V' of degree n.
In our example,

dimg(Clz1, 22]) =14+2¢+3¢*+4¢3 + -+ (r+1)¢" +---

:Dq<11Q>:(11q)2

and

dimg | Q| B L{xtah+ 2828} | | =1+ q+20" +2¢° +3¢" +3¢° +4¢° +4¢" + - --
r>0 a+b=r
a<b

=(1+q) [14+2¢°+3¢" +4¢" + -]

=(1+4q) | D _(r+1)g”

r>0

sl =rd

1This is known as the Hilbert Series of V.



1
as ﬁ is the ordinary generating function of {r + 1},>¢ and hence
—q 2

- a a 1
dimg @ @ L{z%ah + 2had} =(149q) [(1(12)2}
r>0 \ atb=r
a<b
_ 1
(1-q)1—-¢?

and hence

1 1
dim L{x%2l — 2b2? = _
! @ @ ks =i} 1-q° 01-90-g)
N a<b
4
(1-q)(1—-q¢*

|
Now, we create new G—modules from old ones:
Given V O U and W G—modules with bases B and C and representations X and Y, respectively, and if dim
V =n,dim U =d and dim W = m, then

Module Notation Dimension Representation
Direct Sum Module VeWw n—+m { X(9) 0 ]
0 |Y(g)
anY(g) a2Y(g) -+ a1.Y(g)
an1Y(g9) a2Y(g) - aY(9)
Tensor Product Module VoW n-m ) . . .
an1Y(9) an2Y(g) -+ annY(9)
Quotient Module V/U n—d X(9)|lr
where R is the subset of B that excludes the basis elements of U. The direct sum and tensor product
modules have the the bases BUC, {v1Qwz, ..., 01@Wp, ..., 0,QW1,...,v,Qw,;,} while the quotient module
has a spanning set {U +v:v € U}. O

Exercise: Let (C[l‘l,l'g,xg]es denote the space of polynomials in 3 variables over C which are invariant
under the action of &3 of

o(f(z1,22,73)) = f(To(1), To(2), To(3))-

Find dimg(Clzy, 2, 23]°?).

Step 1: Conjecture the answer.
Method 1: figure out the graded dimensions for the first few terms and then look the answer up in the
”online integer sequence database.”
Method 2: recall that a basis for the submodule Clz1,22]%? = submodule consisting of those elements
invariant under the &4 action is
{x5xb + 2bx§ for a > b} .

Use this to guess (big leap here) that a basis for C[zy, xa, 23]%? is the set
{R®2 (x2b25) for a > b > ¢ > 0}

Step 2: Show that the set above is a basis by demonstrating that it spans and is linear independent.



Step 3: Show that generating function for the number of elements in the set

{(a,b,¢) :a>b>c>0}

o 1 1
is equal to ((l_q)(l_qg)) =
Conclude that 1

(1-g)(1—¢*)(1—¢%)

dimg(Clay, x2, 23]9%) =

|
Recall that a matrix T" commutes with an irreducible representation X of a if and only if T' = ¢I for some
constant ¢ € C. Now, suppose that
X — { Xi(9) 0 }

0 Xa(g)

for some X7 and X5 irreducibles. Then for any matrix T such that

T:[Tn T12}

Ta1 T2
and
X1(9)T11 X1(9)Th2 XiTy Xo(9)The
X(g)T = = =TX
(9) { Xo(9)T21  Xo(9)T22 X1To1 Xo(9)Ta2 (9)
= Thi1 =c1l and Ty = ol
and
Tio=0="1Tn if X1 2% X,
T12 = 0/1[ and Tgl = 0/2[ X1 = X2
To summarize if X = 2X, then i )
T— €11 C12 @I
€21 C22]
for some c11, €12, 21, c22 € C and otherwise
r=| Olgr
L O 822_

for some c11, con € C.
More generally, if X = m;X;®moXs, then if T' commutes with X, we find that

el el o cimgd 1
corl  cool oo oI
T Cmq1l  Cmq2l o Cmgmd
aind  apd - aim,d
ao I agel - azmQI
L amzll amQZI T amzm2I J
_ [ C®Id1 ‘ 0
0 | A®Ig,

and if Com X ={T :TX(g9) = X(9)T,Vg € G}, then

dim(Com(X)) = m? +m3



and degX = myd; + mads if deg(X;) = d; and deg(Xs) = da.

We summarize and generalize even further:

k
Proposition: If X = ®miXi, then

i=1
k
dim(Com(X)) = me
i=1
k
deg(X) = Zmidi
i=1
where d; = deg(X;). |

Definition: Let X be a representation. Then associated with X is X, the character of a representation,
which is the mapping X (g) — tr(X (g)).
Example: For instance, if

[ x]o0
=]

then X(g) = XM (g) + Xx@ (g).
To prove that X is well defined, it is sufficient to note that the trace is invariant under conjugation. In fact,

this also proves that the trace is a class function meaning that it is constant on the conjugacy classes of G.
Fact: if G acts by permuting the basis elements, then

X(g) = [fixz(g)].
Define an inner product <,> on characters by

<mw>:ﬁa§jwmw¢5

geqG

=& 2 Xa)ila)

geqG

as we may pick a unitary basis.
Fact: If X and Y are irreducible as representations with characters X and v, then

<X, >= 5X77¢"

Consequences: X is irreducible <= < X, X >=1
Proof: If X is irreducible, then < X, X >= 1. Conversely, if it is not irreducible, then X = X + X for
some other characters X(!), X(1) and so

<X, X ># 1.

k
Furthermore, if X = ®miX () where all X are irreducible, then

=1
< XX, X0 >—« mlx(l) + mzx@) 4t ka(k), xX® > = m;
and
k

< XX XX >= Z < miX(i),ij(j) >=mi+mi+--+ mﬁ.
ij=1

10



Question: Given a group G and a matrix representation X, how do we decompose X?
Step 1: List all irreducible characters of G. Say, {x), x®) ... x(*)},
Step 2: Compute < XX, X >=m,.

How to do Step 1: Notice that X() is constant on the conjugacy classes of G = UCZ'. Now, define

1 ifgeC;
K’Ci(g) =

0 else

and note that these form a basis for the vector space of all class functions on G:

X(9) = X(91)rc, (9) + X(92)ke,(9) + - -+ + X(ga) ke, (9),
where g; € C;.
Example: If G = Gg, its conjugacy classes are
Cr={(1)}
Cy ={(12),(13),(23)}
Cs = {(123), (132)}

and our basis consists of

1 g=e

else

r1(g)
r2(g)
r3(g)

{
{
{

0

1

0 else
1

0

ItV =r,{1,2,3} then

and so XV (g) = 3k1(g) + K2(g).

Let Vi = £{1 + 2+ 3}. Then XN = 1k + 1kg + 1ks.

Let X5 be the sign representation. Then X® = K1 — Ko + K3.
Now, since

1
<XV x> = GB+3+0) =1
1
<XV x® > = GB+3(-1)+0) =0
we know that V=2 Vi@L{l — 2,2 — 3}. Let Vo = L{1 — 2,2 — 3}. Then we see that
X'z ((1)) =2

X"((12)) =0
xY2((132)) = —1

11



and so X¥2 = 2k, + k3. Moreover,

<xWx"2 > =0
<x® x"2 > =0
<xV2 xV2 > =1

and so X2 is irreducible. Therefore, the character table of &5 is

|C1 Cy G
x® 1 1 1
X@ 1 -1 1

X =x2|2 o0 -1

In general:
Proposition: Let V = L{g € G} be the group algebra of G. Then
G| g=e
xXY(g) =
(9) {0 else

Proof: Let XV be an irreducible character. Note that X (e) = dim(X?). So,

1 .
<XV XV > = Gl Z XY (g)x?(g)
geG

= ‘—Cl”(XV(e)X(“(e) as XV (g) =0 for g # e

= dimX® = m;
and

1 _
<XV XV > = Gl Z XY (g)X¥ (g7
geG

- ﬁxwe)xv(a el

Proposition: # of irreducible characters = # of conjugacy classes '
Proof sketch: Notice that X" = X®¢ = @, m; XD where m; = X (e) = deg(X D) = dim(V?)

— Com(C[G)) = C[G]
= Zcig] = Zcom(c[a))

and so
# of Conjugacy classes = dim(Zcq)) = # of irreducible representations of G
Proposition: For any one dimensional characters X,

X(gh) = X(g)X(h)

12



Definition: The graded trace of a module V = @kzo Vi is the formal power series

Xy =D g
k>0

Example: Let G = &3. We look for the graded character of
C[$17 T2, x3} = 'C{]-}@’C{xlv L2, 1’3}@,6{%?, 172, x%a s ,.’E%}@ T
Solution: We compute the first few terms and find

Xg[ﬁclwmws] = XM 4 g(x® X 22X +2X3) + - -

and then for XV3:

XV ((1))
x¥3((12))
XV ((123))

6
2
0

and hence
<xV2 x> =2
<X x® > =0
<XV X® > =2

continuing in this manner, we could conjecture what the graded character is. Instead, we could proceed as

follows
1
XY (0 = 1430+ 6 + 106 + 150"+ = =
1
XY ((12)=1+q+2¢2+24° +3¢* +3¢° +4¢° + - = ——
¢ {12) (1-q)(1-¢)
1
G =146+ + =
= Xy ! + ! kot — -k
- K
L I A TR G ) M I M

Remark: The multiplicity of X(!) in X} is the Hilbert series dimg(Clz1, 22, 23]%?) as

V oy (1) :} 1 ! :
<X, X > a(u—m3+a—@u—¥>+ﬂ—@“—fﬂ

1 .
o=y XV =mtmtn

13



