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Abstract. We demonstrate an elegant combinatorial formula for the operation which adds a column on the
homogeneous symmetric functions when this function acts on the Schur basis. A q-analog of this formula
adds a column on the Hall-Littlewood basis.

Résumé. Nous demontrons une formule élégante et combinatoire pour l’opérateur qui ajoute une colonne
sur les fonctions symétriques homogène quand cet opérateur agit sur la base Schur. Une q-analogue de cette
récurrence ajoute une colonne sur la base Hall-Littlewood.

1. Introduction

Consider the bases of the symmetric functions, each indexed by the set of partitions. To arrive at
formulas for expansions of these bases in terms of the Schur functions we often consider recurrences based
on the idea of adding rows or columns to the partition.

For example, to arrive at an expansion of the homogeneous symmetric function, hλ, in terms of the
Schur functions we consider the operation of successively adding rows to the partition by multiplying by hk.
The action of multiplication by hk on the Schur basis is given by the well known Pieri formula that states

hksλ =
∑
µ

sµ

where the sum is over all partitions µ such that µ differs from λ by a horizontal strip. A q-analog of this
recurrence exists to build up the Hall-Littlewood symmetric functions (the Morris recurrence [5]) which is
used to prove the positivity of the Kostka-Foulkes coefficients.

Similarly, to calculate the expansion of the power symmetric function, pλ, in terms of the Schur
basis and arrive at the formula for the irreducible characters of the symmetric group, one may successively
add rows to the partition by multiplication by pk and the action of this operation on the Schur basis is given
by the Murnaghan-Nakayama rule (slinky rule).

Here we present the action of the operator that adds a column on the homogeneous basis when
this operator acts on the Schur basis; a recurrence that is a dual Pieri rule. This operator has an elegant
combinatorial description in terms of ribbons. By taking a simple q-analog of this operator, one obtains
an operator that adds a column to the Hall-Littlewood symmetric functions giving a new recurrence on the
Kostka-Foulkes coefficients.

It should be possible to use this recurrence to show the combinatorial interpretation of the Kostka
coefficients and the Kostka-Foulkes coefficients in terms of column strict tableaux, but it remains an open
problem to do so. It would also be interesting to see if this recurrence could be used to arrive at another
combinatorial interpretation for these coefficients.

2. Partitions, ribbons and symmetric functions

A partition is a sequence λ = (λ1 ≥ λ2 ≥ · · ·λk > 0) and may be represented by a Young diagram
with rows of cells aligned at their left edge such that in the ith row there are λi cells. We use the French
convention and draw these diagrams with the smallest part on top. By identifying a partition with its Young
diagram we may talk about the rows, columns and cells of the partition. We will write λ � n to indicate
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that λ is a partition such that λ1 + λ2 + · · ·+ λk = n = |λ|. The length of the partition 
(λ) is the largest
integer k such that λk > 0. The partition formed by flipping λ across the diagonal will be denoted by λ′.

Figure 1. The Young diagrams for the partition (4, 4, 4, 3, 1, 1) and the conjugate partition (6, 4, 4, 3)

If µi ≤ λi, then we say that µ ⊆ λ. For such a pair of partitions define a skew partition λ/µ to be the
diagram of cells that are in λ and not in µ. A ribbon in our notation will be a connected skew partition with
no 2×2 subdiagrams. It is easily shown that every ribbon R is λ/λrc where λrc = (λ2−1, λ3−1, . . . , λ	(λ)−1)
for some partition λ. We will use the symbol R to represent an arbitrary ribbon and the notation R |= k to
indicate that R is a ribbon of size k.

Figure 2. An example of Young diagrams for a skew partition (6, 4, 4, 3)/(2, 1) and the ribbon (6, 4, 4, 3)/
(3, 3, 2)

Label the cells in a ribbon diagram of size k with the numbers {1, 2, . . . , k} from left to right, top
to bottom. This done, we let

D(R) = {i ∈ [1, k − 1] : i+ 1st cell of R lies below the ith cell }(1)

and refer to it as the descent set of R. The ribbons are therefore in one to one correspondence with the
subsets of {1, 2, . . . k − 1}. If R is a ribbon of size k, we use R to denote the ribbon whose descent set is
{1, 2, . . . k − 1} −D(R). The diagram of R is the diagram of R flipped about the line x = −y.

Figure 3. The Young diagrams for the ribbon R = (4, 4, 4, 3)/(3, 3, 2) with descent set {3, 5, 6} and the
ribbon with complement descent set R = (4, 2, 1, 1)/(1) with descent set {1, 2, 4}

We will consider the space of symmetric functions as the polynomials in the simple power symmetric
functions, that is, Λ = Q[p1, p2, p3, . . . ]. A linear basis for this space then is the set {pλ : λ � n, n ≥ 0} where
pλ := pλ1pλ2 · · · pλ�(λ) since these are the monomials in this polynomial algebra. The degree of a monomial,
pλ, in Λ is given by the size of the indexing partition, |λ|. Λ is endowed with an inner product that is defined
by 〈pλ, pµ〉 = δλµzλ with δλµ = 1 if λ = µ and 0 otherwise and zλ :=

∏
i≥1 ni(λ)!ini(λ) with ni(λ) is the

number of j such that λj = i.
This is not the classical definition of the symmetric functions since we do not refer to functions

with variables that are invariant under permutations, but Λ has the same algebraic structure as the classical
definition since these spaces are isomorphic under the map that sends pk to xk1 + xk2 + xk3 + · · · . In this
exposition, it is not necessary to refer to the variables of the symmetric function, hence we use this simplified
definition.



We will also consider the homogeneous hλ, elementary eλ and Schur sλ bases for the symmetric
functions. We define

hλ := hλ1hλ2 · · ·hλ�(λ) , with hn :=
∑
λ�n

pλ
zλ
,

eλ := eλ1eλ2 · · · eλ�(λ) with en :=
∑
λ�n

(−1)n−	(λ)pλ
zλ

,

and sλ := det|hλi+i−j |1≤i,j≤	(λ).

Consider the involution ω, with the property that ω(sλ) = sλ′ . This operator is ubiquitous and
fundamental to the theory of symmetric functions. It is an algebra homomorphism and has the property
that ω(hλ) = eλ, and ω(pλ) = (−1)|la|−	(λ)pλ.

For any symmetric function f , we will represent by f⊥ the operation which is dual to multiplication
by f with respect to the inner product. That is, we define for f, g ∈ Λ that

f⊥g =
∑
λ

〈g, fsλ〉 sλ.

If f is a symmetric function of degree k, then the operation of multiplication by f raises the degree of the
symmetric function it is acting on by k. Similarly, the operation of f⊥ lowers the degree of the symmetric
function that it is acting on by k. This given, we define a Schur function indexed by a skew partition
as sλ/µ := s⊥µ sλ. These symmetric functions may be expressed in terms of the Schur basis by using the
Littlewood-Richardson rule (see for example [4] section I.9).

We will make extensive use of a family of operators due to Bernstein [9] which add either a row or
a column on the Schur basis. Define Sm =

∑
i≥0(−1)ihm+ie

⊥
i and S̃m =

∑
i≥0(−1)iem+ih

⊥
i . We find that

Smsλ = s(m,λ) if m ≥ λ1 and S̃msλ = ωs(m,λ′) if m ≥ 
(λ). If m < λ1 or m < 
(λ), then the operators may
be ‘straightened’ with the relations

SmSm+1 = S̃mS̃m+1 = 0(2)

SmSn = −Sn−1Sm+1(3)

S̃mS̃n = −S̃n−1S̃m+1.(4)

Let V be an element of Hom(Λ,Λ). Define the bar of V to be the element of Hom(Λ,Λ) given by the
formula V =

∑
λ(−1)|λ|V (sλ)s⊥λ′ . The bar operation is an unusual but remarkable involution on the space

Hom(Λ,Λ). It arises naturally in the study of operators that add rows or columns to bases of symmetric
functions [6].

Proposition 1. For V ∈ Hom(Λ,Λ), V = V .

Proof:
V (sγ) =

∑
λ(−1)|λ|V (sλ)sγ/λ′ =

∑
λ,µ(−1)|λ|+|µ|V (sµ)sλ/µ′sγ/λ′ Now from [4] p. 90 we know that∑

λ(−1)|λ|sλ′/µsγ/λ is 0 if µ �= γ and if µ = γ then this expression is (−1)|µ|. Therefore V (sγ) = V (sγ). �

3. The ribbon rule

To each ribbon we associate an operator which has the property that it attaches a form of the ribbon
to the left of the partition indexing a Schur function. For a ribbon R that is equal to λ/λrc for a partition
λ we set

SR := s⊥λrc S̃
λ′1 S̃λ

′
2 · · · S̃λ

′
λ1 .(5)

That is, when SR acts on a Schur function it adds a sequence of columns of form λ on the left of the partition
followed by a skew operation s⊥λrc .



For example consider the ribbon R = (3, 2, 2, 1)/(1, 1). The ribbon operator associated to it will be
s⊥11S̃4S̃3S̃1. The operator itself is very combinatorial in nature and is best calculated by using a picture and
the relations given in equations 2 and 4. For this example we see that SR(s(2,2,1)) may be calculated by
manipulating the picture

= − .

The negative sign in this operation arises from adding a column of size 1 on a column of size 3, this is then
replaced with negative two columns of size 2 (from equation 4). The skew Schur function −s(5,5,2,1)/(1,1) can
then be calculated with the Littlewood-Richardson rule to obtain −s(5,5,1) − s(5,4,2) − s(5,4,1,1) − s(4,4,2,1).

We remark that every ribbon of size k+ 1 can be built up by adding a single cell to a ribbon of size
k, either below or to the right of last cell. Now if R is a ribbon of size k and R+ is a ribbon of size k+1 such
that D(R) = D(R+) (add a cell to the right), then we have the obvious relationship between their ribbon
operators SR

+
= SRS̃1. If R+ is a ribbon of size k + 1 such that D(R+) = D(R) ∪ {k} (add a cell below),

then we have the following useful relation that allows us to recursively build up any ribbon operator one cell
at a time.

Proposition 2. If R |= k and R+ |= k + 1 such that D(R+) = D(R) ∪ {k} then

SR+ = SRS1.

It follows from these relations that the bar of a ribbon operator is another ribbon operator (or nearly
so). The bar operation is a completely algebraic construction and from the definition it is not immediately
clear that this involution is even non-trivial. A priori we should not expect that the bar of a ribbon operator
to be anything interesting, but what we find in the following proposition is that the bar operation permutes
these operators in a very combinatorial manner.

Proposition 3. If R |= k and λ is a partition such that 
(λ) ≤ k then SR(sλ) = ωSRω(sλ).

The preceding relations also give a recursive method for defining the sum over all ribbon operators
of size k.

Proposition 4. Let Hq
11 = S̃1 and for k > 1 set H1k = H1k−1 S̃1 +H1k−1S1, then

H1k =
∑
R|=k

SR.

This sum of ribbon operators is important because of the commutation relation that it shares with
the operation of multiplication by hn. The following theorem shows that this operator has the remarkable
property that it adds a column on the homogeneous symmetric functions. This gives us a method for
computing expansions of the homogeneous symmetric functions in terms of Schur functions with a recurrence
that is different from the Pieri rule.

Theorem 5. The operator H1k =
∑
R|=k S

R has the property H1khn = hn+1H1k−1 . In particular, this
implies that

H1λ1H1λ2 · · ·H1
λ�(λ) 1 = hλ′ .

This combinatorial rule for computing expansions of homogeneous symmetric functions in terms of
Schur functions is clearly more complicated than the Pieri rule, but it is elegant nontheless. We demonstrate
here with an example.

Example 6. To calculate the expansion of the homogeneous symmetric function h(2211) in terms of Schur
functions we apply the 8 ribbon operators of size 4 to the homogeneous symmetric function h11.
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)
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+

)
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From this calculation (applying the Littlewood-Richardson rule to reduce the Schur functions indexed by a
skew shape) we see that h(2211) = s(2211) + s(3111) + 3s(411) + 2s(33) + 4s(321) + 4s(42) + s(222) + 3s(51) + s(6).

It is clear in this example that all the terms are positive, but as was the case in the previous
example of a ribbon operator, it is possible for negative terms to arise, but these subsequently cancel. Since
the coefficient of sλ in hµ is the number of column strict tableaux of shape λ and content µ, it would be
nice to have a combinatorial proof of this cancellation by giving a procedure for building the column strict
tableaux of content µ+ 1k from the column strict tableaux of content µ.

4. A q-ribbon rule

This formula generalizes naturally to the q-analog of the homogeneous symmetric functions, the
Hall-Littlewood symmetric functions. Define the family Hµ(q) :=

∑
λ�|µ|Kλµ(q)sλ where the coefficients

Kλµ(q) are the well known Kostka-Foulkes polynomials [4] p. 239. This family interpolates the homogeneous
and Schur symmetric functions with the parameter q, since it has property that Hµ(1) = hµ and Hµ(0) = sµ.

The family of operators Hq
m :=

∑
i,j≥0(−1)iqjhm+i+jh

⊥
j e
⊥
i =

∑
i≥0 q

jSm+ih
⊥
i is due to Jing [3, 1]

and have the property that Hq
mHµ(q) = H(m,µ)(q) as long as m ≥ µ1. They are a q-analog of the operation

of multiplication by hm and have the property that H1
m = hm and H0

m = Sm.
Define the major index of a ribbon to be the statistic maj(R) =

∑
i∈D(R) i. If R |= k, then set

comaj(R) = (k2)−maj(R) = maj(R). This given, we define the operator Hq
1k

:=
∑
R|=k q

comaj(R)SR, which
may be arrived at using the following recursive definition that is a q-analog of Proposition 4.

Proposition 7. Let Hq
11 = S̃1 and for k > 1 set Hq

1k
= qk−1H1k−1 S̃1 +H1k−1S1, then

Hq
1k

=
∑
R|=k

qcomaj(R)SR

This operator not only has the property that Hq
1λ1

Hq
1λ2
· · ·Hq

1
λ�(λ)

1 = Hλ′(q), but it also satisfies
the stronger condition that it commutes in a natural way with the operator Hq

m.

Theorem 8. The operator H1k =
∑
R|=k q

comaj(R)SR has the property Hq
1k
Hq
m = Hq

m+1H
q
1k−1 . In particu-

lar, this implies that
Hq

1λ1
Hq

1λ2
· · ·Hq

1
λ�(λ)

1 = Hλ′(q)

We will only mention here and refer the reader to [8, 2] that there is also a t-analog of this q-analog
recurrence. An algebraic t-twisting of the operator Hq

1k
has the property that it adds a column on the

Macdonald symmetric functions. This algebraic definition can then be used to derive a combinatorial rule
for calculating the Macdonald symmetric functions of size n + k from the Macdonald symmetric functions
of size n. It will be interesting to see if this recurrence can be used to find a combinatorial interpretation for
the Macdonald q, t-Kostka coefficients.
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