
NOTES ABOUT SATURATED CHAINS IN THE DYCK PATH POSET

JENNIFER WOODCOCK

1. Basic Definitions

Dyck paths are one of the many combinatorial objects enumerated by the Catalan num-
bers, sequence A000108 in [2]: 1, 1, 2, 5, 14, 42, 132, 429, . . .. We recall the following defini-
tions:

Definition 1. A Dyck path is a lattice path in the n × n square consisting of only north
and east steps and such that the path doesn’t pass below the line y = x (or main diagonal)
in the grid. It starts at (0, 0) and ends at (n, n). A walk of length n along a Dyck path
consists of 2n steps, with n in the north direction and n in the east direction. By necessity
the first step must be north and the final step must be east.

Comparing paths that have the same length, we say that one path is ‘less than’ another if
it lies below the other when the grids are superimposed. Note that within this definition,
the path need not remain strictly below the other; it is possible that they coincide at some
points. Using this ≤ relation, we can impose a partial order on the set of Dyck paths. We
refer to this as ordering by inclusion and, for the rest of this paper, will use the notation
Dn to indicate the poset of Dyck paths of length n ordered in this way.

Definition 2. Given a poset, P and two elements x, y ∈ P , we say that x is comparable
to y iff x ≤ y or y ≤ x. Otherwise we say that x and y are incomparable.

Definition 3. An element y covers (or is a cover for) an element x in a poset, P , if x < y
(i.e. x ≤ y, but x 6= y) and there is no other element, z ∈ P where x < z < y.

It is common to use a Hasse diagram to provide a pictorial representation of the poset.
In the example below showing D3 and D4, the vertices are the Dyck paths and the edges
illustrate the cover relationships that exist among the paths. Also, note that the elements
are grouped into ranks based on the area (or number of complete lattice cells) between
each Dyck path and the line y = x.
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Example 4. The diagrams below show the Hasse diagrams for D3 and D4.

Figure 1. Hasse diagrams for D3 (left) and D4 (right)

2. Counting Chains

Definition 5. A chain is a totally ordered subset of a poset. This means that within a
chain any two elements are comparable.

Given that the zeta function is defined as ζ(x, y) = 1 for all x ≤ y in Dn and 0 otherwise
and that the identity function, denoted δ, is defined such that δ(x, y) = 1 if x = y and 0
otherwise, we established the following theorems in [4].

Theorem 6. (from [3], p. 115)
Let x = x0 < x1 < . . . < xk = y be a chain on the interval [x, y] in a poset, P , of n
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elements. Then the total number of chains of length k on the interval [x, y] is equal to
(ζ − δ)k(x, y).

Theorem 7. (from [3], p. 115)
The total number of chains x = x0 < x1 < . . . < xk = y from x to y in Dn is equal to
(2δ − ζ)−1(x, y).

Using these results we determined the total number of chains in the Dn poset for n = 0 to
5, included as A143672 in [2]:

n Number of Chains

0 1

1 2

2 4

3 24

4 816

5 239968

Proposition 8. I would have voted no.

Definition 9. The chain polynomial, T (P, t) = 1 +
∑

k ckt
k+1 where ck is the number of

chains (or totally ordered subsets) in a poset P of length k. The exponent k + 1 indicates
the number of vertices in the chain and the 1 in front of the sum denotes the empty chain.

In [4] we also used Maple to find the chain polynomial for the Dn poset. Since (ζ − δ)k
counts chains of length k, the chain polynomial for Dn is easily determined by choosing
values k = 0 to l (where l is the length of the longest chain in the poset) for each value of
n. The results are summarized in the table:

n Chain Polynomial Factored Form

0 1

1 1 + t (1 + t)

2 1 + 2t+ t2 (1 + t)2

3 1 + 5t+ 9t2 + 7t3 + 2t4 (1 + 2t)(1 + t)3

4 1 + 14t+ 70t2 + 176t3 + 249t4 + 202t5 + 88t6 + 16t7 (1 + 8t+ 8t2)(1 + 2t)(1 + t)4

5 1 + 42t+ 552t2 + 3573t3 + 13609t4 + 33260t5 + 54430t6+

60517t7 + 45248t8 + 21824t9 + 6144t10 + 768t11 (1 + 37t+ 357t2 + 1408t3 + 2624t4 + 2304t5 + 768t6)(1 + t)5
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In attempting to determine an explicit formula for the number of chains, we have ob-
tained the following result which, although cumbersome, gives us a recursive method for
counting chains.

Theorem 10. The chain polynomial, Tj, in a poset of j Dyck paths is given by

Tj = 1 +
j∑
i=1

(qi ∗
∑
q<qj

T )

where qi represents the ith path in the poset.

Proof. Let D be a poset of j Dyck paths. Every chain in D must have a maximal element.
Suppose that qk is the path corresponding to the maximal element for a particular set of
chains, Ck, i.e. Ck will be the set of all chains having qk as their maximal element. But,
each of these chains will consist of qk and some number of paths below qk in the poset.
Since the Dyck path poset is ranked, it is only possible that one path from each rank be
included in any particular chain. Consider qk as having rank r. Applying the multiplication
and addition principles, the chains in Ck are:

qk AND [(chains on paths < qk whose maximal element has rank r − 1) OR (chains on
paths < qk whose maximal element has rank r−2) OR . . . OR (chains on paths < qk whose
maximal element has rank 1) OR (chains on paths < qk whose maximal element has rank
0)].

Note that rank 0 indicates the empty chain. Since there is one empty chain, we can rewrite
the above expression as: qk∗

(
1 +

∑r−1
i=1 (chains on paths < qk whose maximal element has rank i)

)
.

But, by applying this argument recursively, we see that the expression 1 +
∑r−1

i=1 (chains on
paths < qk whose maximal element has rank i) is just the sum of the chain polynomials,
T , for the elements < qk. Therefore we can rewrite this expression as: qk ∗

∑
q<qk

T. Now
we can categorize each chain in the poset D into one of the following cases. It is either
the empty chain OR has q1 as the maximal element OR has q2 as the maximal element
OR . . . OR has qk as the maximal element OR . . . OR has qj as the maximal element.
Therefore by the addition principle, if qi represents the ith path in the poset, then the
chain polynomial for the poset D is

Tj = 1 +
j∑
i=1

(qi ∗
∑
q<qj

T )

�
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Example 11. Consider D4. If we number the vertices on the Hasse diagram from bottom
to top of the poset with q0, q1, . . . , q14, then the chain polynomial is

with the first appearance of each of the qi indicated in red.

More efficiently, this is equivalent to recursively assigning the value 1+ (label sum of ALL covering paths)
on a Hasse diagram as we move down the poset. Alternatively, we can move up from the
bottom and label the vertices using 1 + (label sum of ALL paths covered). The totals will
(of course) be identical, and by adding one to the total (for the empty chain) we have found
a handy way to count total chains using only a Hasse diagram and some simple addition.
This is a huge advantage over the (2δ − ζ)−1 method or the Maple recursion listed above
since we avoid having to enter progressively larger matrices or expressions into computer
software.

Example 12. Once again using D4, here are the labels assigned using the above process.

Note that, for the total chains in the poset, it suffices to find the vertex label for either the
maximal (or minimal) element in the poset and then double that value. It corresponds to a
Dyck path that is ‘above’ (or respectively, ‘below’) all other paths in the poset and its label
is therefore one more than the sum of all the other labels. Hence doubling the maximal
(or minimal) element’s label is equivalent to summing all of the labels and including one
more for the empty chain. For example, in figure 2 we see that 408 × 2 = 816, which we
know to be the total number of chains for D4.
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Figure 2. Counting total chains down from the top (left) and up from the
bottom (right)

Since we have discovered recursive formulas for counting the chains and also note that the
Catalan numbers themselves can also easily be defined using a recursion, it seems sensible
to next consider how Dn might be constructed from Dn−1. The method described below is
known as ECO construction in the literature [1]. This is not because it’s environmentally
friendly, but instead because these are the initials for ‘Enumerating Combinatorial Objects’.

Begin with a Dyck path, P of length 2n - this is the ‘father’. Suppose that there are
k East steps following the final North step in the path (this is analogous to having k steps
in the last descent if the path is oriented horizontally as in MuPAD). Then we can con-
struct k+ 1 Dyck paths of length 2n+ 2 starting from P - these are the ‘sons’. We do this
by inserting a pair of steps, travelling first North then East, at each node along the final k
East steps in P (i.e. inserting a peak at each point of the last descent).

Example 13. This figure shows a Dyck path with n = 7 (the father) which ends with two
East steps (on 3 nodes). The sons (n = 8) are created by inserting a North step at each of
the nodes and then travelling East to finish the path.
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Figure 3. Father and Sons

If you do this on all Dyck paths of length 2n you will produce every Dyck path of length
2n + 2 exactly once. Furthermore, every Dyck path which ends in k East steps produces
k + 1 sons which end with 1, 2, · · · , k, k + 1 East steps respectively. This process seems
recursive. For those that enjoy graph theory and accompanying diagrams, we include this
(lovely) tree. The indices refer to the number of East steps following the final North step.

Figure 4. Dyck path tree diagram

If we count the number of nodes (not the numbers!) across each row of the tree diagram,
we once again recover the Catalan numbers! So the number of Dyck paths of length 2n is
equal to the number of nodes at level n of this tree.

Now notice that this ECO construction provides us with a natural partition into sets of
Dyck paths for any given length. We can separate the Dyck paths of length 2n into equiv-
alence classes by grouping together those that have a common father. This leads to some
interesting results (see [1] for applicable proofs).

1) The set of sons of a Dyck path of length 2n−2 forms a saturated chain in Dn (saturated
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Figure 5. Dyck path family tree

means a chain such that for any two elements x, y in it, x < y =⇒ x � y).

2) Staircase paths form the endpoints for these saturated chains, when the equivalence
class contains staircase paths.

3) If we connect these chains using solid lines on a Hasse diagram, the remaining cover
relations (dotted lines on the figures below) are copies of the Dn−1 poset.

4) Corresponding vertices in the copies of Dn−1 are linked together by the saturated chains.

Here are D3 and D4 with the equivalence class chains indicated by solid lines and the
remaining cover relationships drawn using dotted lines. Staircase paths are indicated with
red vertices. Notice these form the endpoints of all but one of these chains (and it doesn’t
contain a staircase).

Figure 6. Saturated chain partitions of D3 and D4
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To better see how copies of D3 are used to make D4, we distort the Hasse diagram for
D4 by translating the vertices (diagram is from [1]).

Figure 7. D4 - A different viewpoint

3. Counting Saturated Chains

3.1. Definitions, examples and previous results.
Given the importance of saturated chains in building up Dn, it seems logical to focus on
this interesting subset of the chains. Perhaps by examining the saturated chains more
closely we will gain insight into the overall chain structure. Discrepancies exist in the
literature regarding the definitions of maximal and saturated chains. For example, some
suggest that these terms are interchangeable. We claim otherwise; as in [4], we follow
Stanley’s approach. In [3] he writes: A chain C of poset P is saturated (or unrefinable) if
@ z ∈ P − C st x < z < y for some x, y ∈ C and st C ∪ {z} is a chain. In other words,
no element can be added between two of its elements without losing the property of being
totally ordered.

Example 14. Here is the Hasse diagram of the D3 poset. It contains 17 saturated chains,
broken down as follows: There is the empty chain, 5 chains on one vertex (A, B, C, D,
E), 5 chains on two vertices (AB, AC, BD, CD, DE), 4 chains on three vertices (ABD,
ACD, BDE, CDE), and the 2 maximal chains on 4 vertices (ABDE, ACDE).
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Figure 8. D3 poset

In contrast to this, a maximal chain is one which cannot be extended, i.e. no element can
be added (either within or on the end) without losing the chain property. We used this
definition in determining that the number of maximal chains in the poset of Dyck paths
ordered by inclusion is given by OEIS sequence A005118. Thus, while it is true that all
maximal chains are saturated, the converse does not necessarily hold. Maximal chains are
particularly important in the Dyck path poset since they contain one element of each rank.
From [3] again: If every maximal chain in a poset P has the same length n then we say
P is graded of rank n. The Dyck paths we looked at were ranked by area. Recall that we
found the total number of chains and number of maximal chains to be:

n Number of Chains Number of Maximal Chains

0 1 1

1 2 1

2 4 1

3 24 2

4 816 16

5 239968 768

Also recall (from [4]) the following theorem and explicit formula for the maximal chains
using a bijection with Standard Young Tableaux (SYT).

Theorem 15. The number of maximal chains in Dn is equal to the number of standard
Young tableaux for the staircase partition of size

(
n
2

)
above the minimal Dyck path in Dn

and therefore are counted using the formula(
n
2

)
!∏n−1

i=1 (2i− 1)n−i
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Conveniently, the number of standard Young tableaux for a partition is straightforward to
calculate using the hook length formula [5].

Theorem 16. (Robinson-Frame-Thrall Theorem)
The hook length of a cell, x, which lies in a Young diagram for a partition, λ, can be
calculated by summing the number of cells in λ that lie to the right of x and the number of
cells in λ that lie below x and then adding one for the cell itself. If a partition, λ, consists
of n cells, then:

the number of standard Young tableaux in λ =
n!∏

x∈λ hook(x)

A proof of this theorem is provided in [5].

Since we are dealing only with staircase partitions, we can specialize this formula. For Dn,
staircase partitions above the minimal Dyck path always consist of

(
n
2

)
cells, so we use(

n
2

)
! for the numerator. The hook lengths for our diagrams always consist of (n− 1) ones,

(n − 2) threes, (n − 3) fives, and so on. Therefore the product of the hook lengths in the
denominator will be

∏n−1
i=1 (2i − 1)n−i. We use the specialized formula in the solution for

the example below.

Example 17. In the diagram below (the staircase partition for D5), the cells have been
labelled with their hook lengths.

Figure 9. Hook lengths for D5 staircase partition

Then, by the hook length formula, the number of standard Young tableaux corresponding to
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this diagram is equal to (
n
2

)
!∏n−1

i=1 (2i− 1)n−i
=

(
5
2

)
!∏4

i=1(2i− 1)5−i

=
10!

(14) · (33) · (52) · (71)

=
3628800

4725
= 768

which is equal to the number of maximal chains in D5.

3.2. Saturated chain data (Maple) and recursive formula.
Using Stembridge’s Maple posets package to list all the chains, and a program written by
Zabrocki to filter out the ‘unsaturated’ ones, we obtain these size breakdowns and totals
for the saturated chains:

n Size Breakdown Number of Saturated Chains

1 1 1

2 2,1 3

3 5,5,4,2 16

4 14,21,30,38,40,32,16 191

5 42,84,168,322,578,952,1408,1808,1920,1536,768 9586

Note that the first value in each breakdown, corresponding to saturated chains on 1 vertex,
is Cn and that the last number in the breakdowns matches the maximal chain values pre-
viously listed. Also, according to Richard Stanley (personal communication), the empty
chain should NOT, in general, be included in the saturated chain count.

By applying the addition and multiplication principles and using the cover relationships
from the Hasse diagram as we did in determining the recursive formula for the total number
of chains, we are able to find similar parentheses-filled expressions for the saturated chains.
We illustrate this for the D3 poset from above.

The saturated chains can be written

q1+q2+q3+q4+q5+q1q2+q1q3+q2q4+q3q4+q4q5+q1q2q4+q1q3q4+q2q4q5+q3q4q5+q1q2q4q5+q1q3q4q5

= q1(1+q2(1+q4(1+q5))+q3(1+q4(1+q5)))+q2(1+q4(1+q5))+q3(1+q4(1+q5))+q4(1+q5)+q5
and if we set qi = 1 for all i, then this expression produces the answer 16.
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Given a Hasse diagram of the poset, it is also easy to recursively determine the num-
ber of saturated chains. This can be done by assigning each vertex a label using the
following algorithm (similar to the one described above for the total chains). Start with
the uppermost vertex and label this with a 1. Proceed down through the diagram, labelling
each vertex, i, with the value = 1+

∑
(labels of the vertices immediately covering i). When

all vertices have been labelled in this manner, simply sum the labels to obtain the total
number of saturated chains. Examples for D3 and D4 are shown.

Figure 10. Counting saturated chains in D3 and D4

3.3. And back to partitions.
Our goal is to find an explicit formula for the saturated chains, perhaps analogous to the
hook length formula. Of course there are other methods for counting the number of SYT
and hence, the number of maximal chains. Consider again the partitions that lie above the
Dyck paths and within the grid. For example, D3 would look like this:
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Figure 11. Partitions above D3 paths

The two maximal chains are obvious. Because of the bijection with SYT we can count these
maximal chains using any method for enumerating the SYT of λ = (2, 1). Although previ-
ously mentioned, we include the hook length formula again on this example for completion.

1) Listing all possibilities.

Figure 12. Standard Young Tableaux λ = (2, 1)

2) Hook length formula (Robinson, Frame, Thrall) as described above.

This formula states that
fλ =

n!∏
(i,j)∈λ hi,j

where fλ is the number of SYT in partition λ and h(i, j) is the hook length of a cell (i, j)
in the partition.
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For our example λ = (2, 1), the hook lengths are:

Figure 13. Hook lengths for λ = (2, 1)

and therefore,

f (2,1) =
3!

3 · 1 · 1
= 2.

3) Determinantal formula (Frobenius and Young??).

In this much older formula, 1/r! = 0 if r < 0. If λ = (λ1, λ2, . . . , λ`) ` n, then

fλ = n! · det[1/(λi − i+ j)!].

In the denominators of the determinant entries, the partition parts are written along the
main diagonal. For the other entries, increase or decrease the number inside the factorial by
one for every step to the right or left, respectively. Using this formula for λ = (2, 1),

f (2,1) = 3!
∣∣∣∣1/2! 1/3!
1/0! 1/1!

∣∣∣∣ = 3!
∣∣∣∣1/2 1/6

1 1

∣∣∣∣ = 3!(1/3) = 2.

Seems this formula would not be easy to work with for partitions with many rows!

I hoped that by understanding these formulas, perhaps I could figure out how to count the
subsequences of partitions that go into building the staircase (there’s a bijection between
these and the saturated chains). Here are examples of a 2-element partition subsequence
and a 3-element one. Maybe there is some other partition formula that counts subsets???

Figure 14. Examples of partition subsequences
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3.4. Examining partitions in between pairs of Dyck paths.

Perhaps the answer lies in returning to Dyck paths and considering the partitions which
lie between superimposed Dyck paths for each pair in the poset.

Conjecture 18. For Di, Dj ∈ Dn,

number of saturated chains =
∑

Di≤Dj

(SYT for Dj\Di partition)

This assumes that for Di = Dj (the difference partition is empty), there is one SYT.
If we want to avoid this assumption, we can modify the right side of the equation:

Cn +
∑

Di<Dj

(SYT for Dj\Di partition).

I’m fairly certain that the conjecture is true and I have verified it up to D4 by drawing out
the difference partitions (70 of them for D4!) by hand and counting the tableaux contain-
ing integers 1 to n increasing across rows and down columns. I may be totally misusing
vocabulary here since some of the shapes created with Dj\Di are not left-justified Young
diagrams, but rather skew shapes. This is also the reason why I’m not writing the hook
length formula in the equation - it only worked for the left-justified diagrams. I’m sure
there are formulas for counting the tableaux for skew shapes, but I just counted them by
writing out all of the possibilities.

Example 19. Figure 15 shows the diagrams for D3. Dj is in red, Di in blue. The num-
bers written under each diagram are the number of SYT. I have not shown diagrams for
the cases where Di = Dj. Figure 16 is a tally by ‘cell’ of the contents of each difference
partition. When these tallies are multiplied by the number of SYT and added, we obtain
saturated chain totals. Notice that the number of cells in the partition corresponds to the
chain length, so for example, a12a21, a11a21, a11a12 are chains of length 2 (i.e. on 3 ver-
tices) and there are 2 + 1 + 1 = 4 of them in D3.
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Figure 15. Difference partitions for D3

Figure 16. D3 partition tally
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3.5. Saturated chains as Young’s lattice walks.
In considering the connection between saturated chains and SYT, it becomes evident that
our problem is equivalent to counting walks of a particular type within Young’s lattice.
Young’s lattice is a partially ordered set composed of integer partitions whose Young di-
agrams have been ordered by inclusion. Notice that the Hasse diagrams of DP posets
(ordered by inclusion) are clearly visible within Young’s lattice, although they are upside-
down.

Figure 17. Young’s lattice with D3 circled

Walks beginning at ∅, consisting only of n up-steps and ending at a particular partition
are just saturated chains: ∅ = λ0 < λ1 < λ2 < . . . < λn from ∅ to the partition. If we
encode the steps in this walk by taking the partition diagram and inserting numbers in
each cell to represent the stage at which the cell was ‘added’ in the sequence, we obtain
a standard Young tableau. So, we see that saturated chains from ∅ to a partition, p are
in a natural bijection with SYT of the shape p. For example, here is a ‘walk’ sequence of
partition diagrams and the corresponding SYT.

Figure 18. Creating a SYT from a Young’s lattice walk

The number of possible walks from ∅ to a given partition then, is equal to the number of
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possible SYT for that diagram and as we know these can be counted using the hook length
formula. Perhaps there are additional formulas that count SYT between partitions that
don’t start at ∅ or walks between lattice points. Seems where back where we started again.

3.6. Divide and conquer method.
For another strategy aimed at determining an explicit formula for the saturated chains, we
revisit the data breakdown according to chain size. Recall the following table:

n Size Breakdown by rank Number of Saturated Chains

1 1 1

2 2,1 3

3 5,5,4,2 16

4 14,21,30,38,40,32,16 191

5 42,84,168,322,578,952,1408,1808,1920,1536,768 9586

Clearly, for each n there are Cn chains of length 0 on 1 vertex: 1, 2, 5, 14, 42, . . ..

Conjecture 20. The number of saturated chains of length 1 (those consisting of two ver-
tices) = the number of edges in the Hasse diagram is given by(

2n− 1
n− 2

)
.

According to the data we’ve collected for n = 2 to 5 the sequence is: 1, 5, 21, 84. This
matches OEIS A002054 so far, and if the conjecture is true there should be bijections
between these chains and several other Dyck path/Catalan objects that are listed in the
OEIS entry. We note that this would correspond to the number of peaks not along the
diagonal in the Dyck path diagram if the diagram is drawn as a mountain range, rather
than in an n× n square. With a saturated chain of length 1, the pair of Dyck paths differ
by a single square, hence the peak would not lie on the diagonal.

Let r denote the number of ranks in the poset. At the other end of the size breakdown
lists we have the maximal chains. In case you missed it the first couple of times,

Proposition 21. The number of saturated chains of length r− 1 (maximal chains) in the
poset can be found using the hook length formula to count the number of SYT in a partition,
λ,

n!∏
(i,j)∈λ hi,j

where h(i, j) is the hook length of a cell (i, j) in the partition.
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As we have previously seen, these saturated chains for n ≥ 1 form the OEIS sequence
A005118: 1, 1, 2, 16, 768, . . ..

However, we can also establish the following new propositions.

Proposition 22. The number of saturated chains of length r− 2 in the poset can be found
by doubling the result for the maximal chains = 2×(number of staircase standard tableaux).

Proof. (Zabrocki) Every saturated chain of length r−2 =
(
n
2

)
−1 either finishes at the Dyck

path of area
(
n
2

)
−1 and starts at the Dyck path of area 0 or it finishes at the Dyck path of

area
(
n
2

)
and starts at a Dyck path of area 1. There are f(n−1,n−2,...,1) chains of the first type.

This is because every chain of the first type is in bijection with the number of standard
tableaux of skew shape (n− 1, n− 2, . . . , 1)/(1) and by filling in the missing cell we obtain
a standard tableaux of shape (n − 1, n − 2, . . . , 1). There are also f(n−1,n−2,...,1) chains
of the second type because every saturated chain in this set corresponds to a standard
tableaux of shape (n − 1, n − 2, . . . , 1) − (0 . . . 010 . . . 0). Each of these standard tableaux
can uniquely be completed to (and hence are in bijection with) a standard tableau of shape
(n− 2, n− 1, . . . , 1) by filling in

(
n
2

)
in the ‘missing’ cell. �

Proposition 23. The number of saturated chains of length r−3 in the poset can be found by
taking 2.5 times the result for the maximal chains = 5/2×(number of staircase standard tableaux).

Proof. The proof follows an analogous argument to the previous one. Essentially we break
the possibilities into three disjoint cases and set up bijections with the maximal chains. In
the first case, the saturated chains start from the Dyck path of area 0 and finish with a Dyck
path of area

(
n
2

)
−2. This can be done in two possible ways (either the (2, 0) partition or the

(1, 1) partition is ‘missing’). Thus, when these possibilities are combined, there is a bijection
between this group of saturated chains and the number of standard tableaux. In the second
case, the saturated chain begins from a Dyck path of area 1 and finishes with a Dyck path
of area

(
n
2

)
− 1. Summed over the possible paths of area 1, there is again a bijection with

the number of standard tableaux. The final case is that the chain starts from a Dyck path
of area 2 and finishes with a Dyck path of area

(
n
2

)
. The number of these is equal to 1/2

the number of maximal chains. Imagine filling in the first k−2 cells in a tableau of k =
(
n
2

)
cells. Then there are two different ways of filling in the final 2 cells, determined by which
you choose to label k−1 (the final one is forced to be k). These two options effectively act to
double the number of maximal chains, compared to the number of maximal chains obtained
by filling in the tableau up to the k − 2 cell. So stopping at the k − 2 cell will result in a
count of 1/2 the maximal chains for the entire k cell tableau. Therefore the total number of
saturated chains of length r−3 = number of maximal chains+number of maximal chains+
1/2× number of maximal chains = 5/2× number of maximal chains. �
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3.7. The connection with symmetric functions.
The observation above regarding the difficulty in applying the hook length formula to skew
shapes led to an investigation of symmetric functions as a possible means for obtaining
an explicit formula for the saturated chains. While we still haven’t found the desired end
result, it did serve as yet another confirmation that the sequence for saturated chains is
correct and allowed the sequence to be extended.

Recall that symmetric functions can be written using the Schur function basis, sλ, for
a partition, λ, where

sλ = det|hλi+i−j |.
Equivalently, since the complete homogeneous basis, hλ, is related to the elementary basis,
eλ, through conjugate partitions, one can write

sλ = det|eλ′
i+i−j |.

These formulas are called the Jacobi-Trudi formula and dual Jacobi-Trudi formula respec-
tively.

Example 24.

s(3311) =

∣∣∣∣∣∣∣∣
h3 h4 h5 h6

h2 h3 h4 h5

0 1 h1 h2

0 0 1 h1

∣∣∣∣∣∣∣∣
Note that the parts of the partition are written on the diagonal, then the subscripts in-
crease when moving to the right and decrease when moving to the left, as they did in
the determinantal formula for SYT. When this determinant is evaluated using Maple, we
obtain

s(3311) = h2
3h

2
1 − h2

3h2 − h3h4h1 + h3h5 − h2h4h
2
1 + h4h

2
2 + h2h1h5 − h2h6.

In accordance with the comment above, we see that sλ for the conjugate partition evaluated
in the elementary basis gives

s(422) = e23e
2
1 − e23e2 − e3e4e1 + e3e5 − e2e4e21 + e4e

2
2 + e2e1e5 − e2e6.

It is useful to consider the product of two Schur functions, sλsµ. The Littlewood-Richardson
rule determines the expansion if we expand in terms of the Schur basis:

s⊥λ sµ =
∑

ν`|µ|−|λ|

cµλνsν

where cµλν , called the Littlewood-Richardson coefficient, equals the number of a special kind
of tableaux, called Littlewood-Richardson tableaux.
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We can specialize the Littlewood-Richardson rule for the case where µ is a partition of
length 1. In these cases, we can apply a much simpler result, known as the Pieri rule. The
Pieri rule states that for any partition, λ, and any integer n,

sλsn = sλhn =
∑

µ/λ n-horiz. strip

sµ

where the sum is over all partitions µ such that µ/λ is a horizontal strip of size n.

Example 25.
s1 · s(3311) = s(33111) + s(3321) + s(4311)

Figure 19. Expansion of s1s(3311) by the Pieri rule

We note that there is a dual version of the Pieri rule,

sλs1n = sλen =
∑

µ/λ n-vert. strip

sµ

where s1n denotes a single column of size n and thus the sum is over all partitions µ such
that µ/λ is a vertical strip of size n.

Next, we should discuss skew Schur functions. We consider the partition µ/λ to be that
formed when the cells of partition λ are removed from partition µ.

Figure 20. The skew shape 3311/21
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Analogous to the determinantal formula given above for Schur functions, we have the
following for the skew Schur functions:

sµ/λ = |hλi−µj+i−j |.

Now, define the skew Schur functions, skew(sn, sλ), to be the sum over all µ obtained
from λ by removing horizontal strips. So, for example, with Stembridge’s Symmetric
Functions package, the Maple command skew(s[2], s[3, 2, 1]) removes horizontal strips to-
talling 2 cells from the 321 partition. Expressing the answer as a sum in the Schur basis
with this example we see that,

tos(skew(s[2], s[3, 2, 1])) = s(3,1) + s(2,2) + s(2,1,1).

The coefficients in this expansion are also determined by the Littlewood-Richardson rule
mentioned above.

Importantly, the expression skew(sλ, sµ) also encodes all of the chains in Young’s lattice
between the partitions λ and µ. Recall that the poset of Dyck paths ordered by inclusion
forms a subset of Young’s lattice and that the partitions corresponding to elements in a
saturated chain differ by one cell moving up or down the chain. This means that if we
sum the sλ over all partitions λ that correspond to Dyck paths (call this sum AA) and
then apply skew(AA,AA), we can encode all of the saturated chains in the Dyck path poset.

In order to count the number of saturated chains, we need a few more formulas,

h1n =
∑
λ`n

fλsλ

where fλ is the number of standard tableaux of shape λ or the number of maximal chains
in Young’s lattice from ∅ to λ, and

scalar(sλ, h1n) =
∑
µ

scalar(sλ, fµsµ) =
∑
µ

fµscalar(sλ, sµ) = fλ.

If n is the degree of the symmetric function f , then the Maple command scalar(skew(sλ, sµ), h1n)
will count the number of saturated chains between any two partitions, λ and µ. Therefore
we can count the number of standard tableaux for a skew partition µ/λ by considering
it to be the difference between two partitions. Consider the example skew(s[2], s[3, 2, 1])
from above:
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Figure 21. The 8 standard tableaux for skew(s[2],s[3,2,1])

Using Maple, we retrieve this answer 8 using the command, scalar((skew(s[2], s[3, 2, 1]), h14)
since there are 4 cells in the difference partition and in each of the sλ in the Schur expan-
sion, skew(s[2], s[3, 2, 1]) = s(3,1) + s(2,2) + s(2,1,1).

Putting it all together, we determine the number of saturated chains in the Dyck path
poset. For example, here are the Maple commands and output for D3.

Figure 22. Maple results for D3

Moreover, these Maple commands easily allow us to extend the sequence for n > 5:

n Number of Saturated Chains

6 3621062

7 13539455808

8 596242050871827

That’s as far as Maple can go with the memory on my laptop.
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The results up to D5 are summarized in the following chart:

n Schur Basis Expansion Number of Saturated Chains

1 s([ ]) 1

2 s(1) + 2s([ ]) 3

3 s(2,1) + 2s(2) + 2s(1,1) + 5s(1) + 5s([ ]) 16

4 s(3,2,1) + 2s(3,2) + 2s(3,1,1) + 5s(3,1) + 5s(3) + 2s(2,2,1) + 5s(2,2) 191

+5s(2,1,1) + 14s(2,1) + 15s(2) + 5s(1,1,1) + 15s(1,1) + 21s(1) + 14s[ ]

5 84s(1) + 5s(3,3,2) + 5s(4,2,1,1) + 5s(4, 3, 1) + 84s(2) + 42s[ ] + 84s(1,1) + 49s(2,2,1) + 49s(3,1,1) 9586

+49s(3,2) + 49s(3) + 43s(3,2,1) + 49s(1,1,1) + s(4,3,2,1) + 2s(4,3,2) + 5s(4, 3) + 2s(4, 2, 2, 1)

+14s(4,2,1) + 5s([4, 1, 1, 1) + 21s(4, 1) + 14s(4) + 14s(3,3,1) + 14s(3,2,2) + 5s(2,2,2,1) + 21s(2,1,1,1)

+14s(1,1,1,1) + 5s(3,2,2,1) + 2s([3,3,2,1) + 5s(3, 3, 1, 1) + 15s(2, 2, 1, 1) + 15s(3,3) + 15s(2,2,2) + 15s(3,1,1,1)

+15s(4,1,1) + 15s(4,2) + 59s(2,2) + 72s(3,1) + 112s(2,1) + 72s(2, 1, 1) + 5s(4,2,2) + 2s(4,3,1,1) + 14s(3,2,1,1)

Finally, we note that one can also compute the number of saturated chains for Dn given
the Schur basis expansion and multiplying each of the coefficients by the number of
standard tableaux for the associated partition. For example, given the D3 expansion,
s(2,1) + 2s(2) + 2s(1,1) + 5s(1) + 5s([ ]), we take:

(1 · SYT for (2, 1) ) + (2 · SYT for (2) ) + (2 · SYT for (1, 1) ) + (5 · SYT for (1) ) + (5 · SYT for [ ] )

= 1(2) + 2(1) + 2(1) + 5(1) + 5(1)
= 16

Since we have the hook length formula to count the number of SYT for a given partition,
*all* we need is a nice, explicit formula for obtaining the coefficients, then we could combine
them together and sum over all subpartitions for each staircase to get a formula that directly
counts saturated chains. Any ideas?
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