Ribbons and Homogeneous Symmetric Functions

Mike Zabrocki
York University
Toronto, Canada
The Symmetric Functions

\[\Lambda = \mathbb{Q}[h_1, h_2, h_3, \ldots] \]

The space of symmetric functions is generated algebraically by the simple homogeneous symmetric functions. This may be taken as a definition.

The Schur Functions

\[s_\lambda = \text{det}|h_{\lambda_i+j-\lambda_j}| \]

The definition of the Schur polynomials is well known and they are a fundamental basis of the symmetric functions. Schur functions will be identified here with the Young diagrams for the partition.
Rule 1:
A Straightening Rule for Schur Functions

A column of size \(m \) & a column of \(n \) =
\[- \text{ a col. of size } n - 1 \text{ & a col. of size } m + 1 \]

Note: a column of size \(m \) on a column of \(m + 1 \)
\[
\begin{array}{c}
\text{= -}
\end{array}
\]

\[
\begin{array}{c}
\text{= - }
\end{array}
\]

\[
\begin{array}{c}
= 0
\end{array}
\]
An example of the straightening rule:

Example 1:

\[
\begin{align*}
\text{before} & = \text{after} \\
\end{align*}
\]
Example 2:

= before = after

= = - = - = - = -

= = - = - = - = -

= = - = - = - = -

= = - = - = - = -

= = - = - = - = -

= = - = - = - = -
Rule 2: The Littlewood-Richardson Rule

A combinatorial rule for expanding skew Schur functions in terms of Schur functions indexed by partitions.

Definition: skew-Schur function

for λ/μ skew partition

$$s_{\lambda/\mu} = det|h_{\lambda_i-\mu_j+i-j}|$$

The LR-rule:

$$s_{\lambda/\mu} = \sum_{\nu} c_{\nu \mu}^\lambda s_\nu$$

where the coefficients $c_{\nu \mu}^\lambda$ are the number of ways of filling a Young diagram of shape λ/μ with ν_1 1’s, ν_2 2’s, ν_3 3’s, etc. such that the filling increases weakly in the rows, strictly in the columns AND the for each k, the first k entries of the reverse reading word has partition content.
Example 1: In the case when the inner partition consists of only one square the result is equivalent to removing each of the corner cells of the outer partition:

Example 2: In the case that the inner partition is a single row, the result is equivalent to removing all horizontal strips of the same size from the border of the outer partition.
Example 3: Something a little more complicated
Ribbon Operators

Ribbon operators use a combination of the operation of straightening columns followed by the Littlewood-Richardson rule.

Example 1:

Now reduce this with the Littlewood-Richardson rule.
A dual Pieri rule:

The sum of all ribbon operators of size m adds a column on the homogeneous symmetric functions.

- adds a column of size 1 on a homogeneous symmetric function with at most 1 part
- adds a column of size 2 on a homogeneous symmetric function with at most 2 parts
- adds a column of size 3 on a homogeneous symmetric function with at most 3 parts
- adds a column of size 4... etc.

Example 1: adding a column of size 3 on the empty Schur function yields h.
Example 2: Add a column of size 3 on h yields h

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]

\[
\left(\begin{array}{c}

\end{array} \right) \left(\begin{array}{c}

\end{array} \right) =
\]
Open question:

Combinatorially prove the positivity of a composition of these operators (they yield the homogeneous symmetric functions, of course they are Schur positive). Does this give a new combinatorial interpretation of the homogeneous symmetric functions?

Generalizations:

There exist q (a dual Morris recurrence) and q, t (a Macdonald-Morris recurrence) analogs of the ribbon rule. Can these generalized operators be used to show positivity of the Hall-Littlewood and Macdonald symmetric functions?