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•Sym is a self dual graded Hopf algebra with bases 
indexed by partitions

•Sym is commutative and cocommutative

•It is freely generated by its primitive elements and there is 
one at each degree.

•There are various bases of Sym that are linked with the 
representation theory of Sn/Gln: monomial, homogeneous, 
elementary, power, Schur, Hall-Littlewood, Macdonald, 
etc.
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Example:  There are 5 set partitions of [3]
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Fix an order on all atomic set partitions
We say      is Lyndon if 
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•NCSym is a graded Hopf algebra (not self dual) 
with bases indexed by set partitions.

•NCSym is non-commutative and co-commutative.

•NCSym and the dual algebra are freely generated.

•(Rosas-Sagan) There are analogues of monomial, 
homogeneous, elementary, power as vector space 
bases, but not(?) a satisfactory Schur basis.
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Internal product on Sym?

is a ‘natural’ internal coproduct on Sym and

by duality, this internal coproduct coincides with
the internal coproduct on  



induction of       module and an
module to 

irreducible       module

Make this isomorphism explicit

restriction of an module

internal tensor product
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By ‘replacing one set of variables by two’ we define an 
internal coproduct on NCSym.

Proposition: 

where              is the set partition finer than both
B and C 
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Is there a ‘tower’ of algebras whose representations 
are indexed by set partitions?

the algebra of set partitions of [n]
with the meet product

this algebra is semi-simple and, since it is 
commutative, all irreducible modules are of dimension 

1 (hence there is one for every set partition).



Refinement order is a lattice

{{1},{2,3}}

{{1,2,3}}

{{1},{2},{3}}

{{1,2},{3}} {{1,3},{2}}

{{1},{2,3},{4}}

{{1,2,3},{4}} {{1,2,4},{3}}{{1,2},{3,4}} {{1,3},{2,4}} {{1,3,4},{2}} {{1},{2,3,4}} {{1,4},{2,3}}

{{1,2,3,4}}

{{1},{2},{3},{4}}

{{1,2},{3},{4}} {{1},{2},{3,4}} {{1,4},{2},{3}} {{1,3},{2},{4}} {{1},{2,4},{3}}

iff for each i, there is a j
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Is there a basis of NCSym  which matches this?*

Put this in the computer and solve
there is essentially one solution to this...
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Is       an NCSym analogue of Schur functions?

•the commutative image of            is +/- something 
which is e-positive

•the coproduct is difficult to explain and has +/- 
signs, but still seems curious

•Restriction is dual to induction (and is commutative).  
No explanation for meaning of coproduct.

Whatever it is, it is definitely something interesting.



Directions and open problems

•Understand better the structure of particular bases. 
Product, coproduct, antipode.  What role do these play 
with respect to representation theory of

•Needs some applications.  Lift structures from Sym to find 
new attacks on plethysm, inner tensor product, positivity 
questions.

•Understand better non-commutative invariants of finite 
reflection groups and relationship to commutative 
invariants.


