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The structure of Sym

e Sym is a self dual graded Hopf algebra with bases
iIndexed by partitions

* Sym is commutative and cocommutative

* |t is freely generated by its primitive elements and there is
one at each degree. Qlp1,p2,p3, - - -]

* There are various bases of Sym that are linked with the
representation theory of Sn/Gln: monomial, homogeneous,
elementary, power, Schur, Hall-Littlewood, Macdonald,
etc.
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e Hopf algebra of set partitions
e much bigger than Sym

e non-commutative but co-commutative

NCSym Sym
algebra of set partitions algebra of partitions

(41,491, {2.3.7.8}, {5.6)} > ‘




The join operation on set partitions

At |n|,BF |m]|

A‘B — {A17A27°' '7A€(A)7Bl _|_n7B2 TN, ... 7B£(B) —I_n}
145,125 13,5 L 3, 45,120 = 111, 41425513, 51,16, 8,91, {7}
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The join operation on set partitions

At |n|,BF |m]|

A‘B — {A17A27" '7A€(A)7Bl _|_n7B2 TN, ... 7B£(B) —|—77/}
UL 452543, 5 UL 3541425 = 1L 45,121,138, 51,16, 8, 95,1713

Analogue of the power basis by Rosas-Sagan

pA:ZmB

B>A

A< B ifforeachithereisa j with A; C B,

( Proposition:  pA - PB = PA|B )
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NCSym is free

Example: There are 5 set partitions of [3]
P{{1}.{2},{3}} = P{{1}} " P{{1}} " P{{1}}

P{{1,2},{3}} = P{{1,2}} " P{{1}}

P{{1},{2,3}} = P{{1}} " P{{1,2}}

p{{1,2,3}}»p{{ll,?)}},{2}}
are atomic




NCSym is free

(NCSym is freely generated by p4, A atomic)

NCSym:Q<p{{1}}, P{{1,2}}> P{{1,3},{2}}>P{{1,2,3}}
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number of generators at each degree
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NCSym is free

(NCSym is freely generated by p4, A atomic)

NCSym:Q<p{{1}}, P{{1,2}}> P{{1,3},{2}}>P{{1,2,3}}
P{{1,4},{2},{3}}>» P{{1,3},{2,4}}> P{{1,4},{2,3}}

P{{1,2,4},{3}}> P{{1,3,4},{2}}> P{{1,2,3,4}}> - - - >

number of generators at each degree
1,1, 2,6, 22,92, 426, 2146, ...

1

= 14t +2t> + 5t3 + 15t* + 52¢° +203t° + - ..
T (L 4+ 12 £ 205 1 661 12205 + 9200 4 ...) S0 To s s




The split of a set partition

For A set partition
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where A is atomic
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The split of a set partition

For A set partition

et A' = (AW, A®), .. A©)
where A is atomic

and A = AM|A@)]...14O

PA=Daq) - Pa@ " -Pa®




Example of a split of a Lyndon s.p.

A= {{1}7 {27 4}7 {3}7 {5}7 {67 7, 8}}

{1y < {12} < {{1,2}, {3}} < {{1,2,3}} < - --
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Example of a split of a Lyndon s.p.

A= {{1}7{274}7{3}7{ }7{ }}
A = ({1 (03 {23 (0 139
{1 <L 23 <{{L, 25, {3} <H{L, 2,33} < -+

B ={{1},{2.4}, {3 PR H{ B
B = ({15 {135 {23 {0 L)

A is Lyndon B is not Lyndon




NCSym is co-free

he number of primitive elements at each degree
1,1,3,9, 34, 135, 610, 2965, ...




NCSym is co-free

he number of primitive elements at each degree
1,1,3,9, 34, 135, 610, 2965, ...

1

— 14t +2t2 4+ 563 + 15t + 5265 +203t5 + - ..
(1 —t)(l —t2)(1 —t3)3(1 _t4)9(1 —t5)34(1 —t6)135--- + 1+ + -+ + + +
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The structure of NCSym

*NCSym is a graded Hopf algebra (not self dual)
with bases indexed by set partitions.

*NCSym is non-commutative and co-commutative.
*NCSym and the dual algebra are freely generated.
*(Rosas-Sagan) There are analogues of monomial,

homogeneous, elementary, power as vector space
bases, but not(?) a satisfactory Schur basis.
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Open question:

Is there a representation theoretical model
analogous to what happens with Sym?

IS a graded algebra with irreps
iIn 1-1 correspondence with
partitions

Go(k&, o) ring of isomorphism classes of

representations of P k&,
n>0
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nendeick ring of representations

}k@n

Go(k&, o) ring of isomorphism classes of
representations of

product M ® N +— Indllzgm;f’”i’{GnM X N

coproduct M +— @RGSkG k&, M

internal product d|agonal actonon M @ N

(" )

Go(kS,0) ~ Sym




Internal product on Sym?*/

[ fIXY
IS a ‘natural’ internal coproduct on Sym and

Sym ~ Sym”*

by duality, this internal coproduct coincides with
the internal coproduct on G (k&, o)




Make this isomorphism explicit

irreducible &,, module M

induction of G,, module and an
S, module to G4, m

restriction of an &,, module

internal tensor product




Internal (co)product on NCSym

By ‘replacing one set of variables by two’ we define an
internal coproduct on NCSym.

where B A C' is the set partition finer than both
Band C




Internal (co)product on NCSym

By ‘replacing one set of variables by two’ we define an
internal coproduct on NCSym.

where B A C' is the set partition finer than both
Band C

i Proposition:

A®(pa) =pa @ pa

J
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(ka /\) the algebra of set partitions of [N]
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s there a ‘tower’ of algebras whose representations
are indexed by set partitions?

-

<
(ka /\) the algebra of set partitions of [N]

\ with the meet product 5

{{1,3,4},{2,5},{6,7,8}} A {{1,3,5,7},{2,4,6,8}}
= 111,3},{2}, {4}, {5}, 16,8}, {7}}

this algebra is semi-simple and, since it is
commutative, all irreducible modules are of dimension
1 (hence there is one for every set partition).




Reflnement order Is a lattice

W23}

T A< B

{20) {3hen (13,4231 iff for each I, there is a |

— A; C B;

{1323, -
{{1,2,3,4}}

T

{{1.2}.{3.4}} {{1.2,3}.{4}} {1.243.{3}} {({1.3}.{24}} {1,34342}y  {{1}.{2.34}} {{1.4}.{2,3}}
P
/ G
/',

{L25035.{4) {1h{Z2n34)r  {({143.{2}L{3}}

o 1A Ry e e W

{{13A2}.{3}.{4}}
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What are the simple modules?

diagonal action




What are the simple modules?
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s there a basis of NCSym  which matches this?

LALB = L A|B

Put this in the computer and solve
there is essentially one solution to this...
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Is x4 an NCSym analogue of Schur functions?

Whatever it is, it is definitely something interesting.

ethe commutative image of XA is +/- something
which is e-positive

ethe coproduct is difficult to explain and has +/-
signs, but still seems curious

eRestriction is dual to induction (and is commutative).
No explanation for meaning of coproduct.




Directions and open problems

e Understand better the structure of particular bases.
Product, coproduct, antipode. What role do these play
with respect to representation theory of (kH, /\)

* Needs some applications. Lift structures from Sym to find
new attacks on plethysm, inner tensor product, positivity
questions.

e Understand better non-commutative invariants of finite
reflection groups and relationship to commutative
Invariants.




