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1. What is an exponential generating function?

Sequences that satisfy a certain type of recurrence or can be decomposed into “pairs”
satisfying something like cn =

∑n
k=0 akbn−k work well with generating funtions. However

recurrences are sometimes (often) more complex. There are two other types of generating
functions which work well with sequences satisfying other types of formulae called Dirichlet
generating functions and exponential generating functions.

We won’t get into Dirichlet generating functions. They work well with sequences sati-
fying equations like cn =

∑
d divides n adbn/d.

Exponential generating functions work well with sequences that satisfying relations like
cn =

∑n
k=0

(
n
k

)
akbn−k. Given a sequence a0, a1, a2, a3, . . ., the exponential generating func-

tion is

A(x) = a0 + a1
x

1!
+ a2

x2

2!
+ a3

x3

3!
+ a4

x4

4!
+ · · · .

Now that we need to distinguish between the generating function of a sequence and the
exponential generating function for a sequence, we refer to generating function as its ‘ordi-
nary generating function.’ Exponential generating function will be abbreviated ‘e.g.f.’ and
ordinary generating function will be abbreviated ‘o.g.f.’

Below is a list of common sequences with their exponential generating functions. Those
with a ??? in the entry don’t have a simple algebraic formula for the (exponential) gener-
ating function.:

sequence e.g.f. o.g.f.

1, 1, 1, 1, 1, . . . ex 1
1−x

0, 1, 2, 3, 4, . . . xex x
(1−x)2

02, 12, 22, 32, 42, . . . (x + x2)ex x+x2

(1−x)3

03, 13, 23, 33, 43, . . . (x + 3x2 + x3)ex x+4x2+x3

(1−x)4

0!, 1!, 2!, 3!, 4!, . . . 1
1−x ???(

0
k

)
,
(
1
k

)
,
(
2
k

)
,
(
3
k

)
, . . . xk

k! e
x xk

(1−x)k(
n
0

)
,
(
n
1

)
,
(
n
2

)
,
(
n
3

)
, . . . ??? (1 + x)n

20, 21, 22, 23, 24, . . . e2x 1
1−2x

1
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Example 1. Recall in the section on ordinary generating functions we considered the
exercise of creating new generating functions from old ones by algebraic operations. We
list below sequences which are related to a0, a1, a2, a3, . . .. The variable n refers to the term
of the sequence (i.e. the nth term of the sequence starting at n = 0). Exercise: for each
of the sequences below determine an algebraic expression in terms of A(x) which is the
generating function for that sequence. Some of the operations on the sequences don’t have
a ‘nice’ algebraic operation on the generating function. The answers are at the end of the
chapter.

(1) shift right - 0, a0, a1, a2, a3, a4, a5, . . .
(2) shift left - a1, a2, a3, a4, a5, a6, . . .
(3) add/subtract one - a0 ± 1, a1 ± 1, a2 ± 1, a3 ± 1, a4 ± 1, a5 ± 1, a6 ± 1, . . .
(4) multiply by 2 - 2a0, 2a1, 2a2, 2a3, 2a4, 2a5, 2a6, . . .
(5) multiply by 2n - a0, 2a1, 4a2, 8a3, 16a4, 32a5, 64a6, . . .
(6) multiply by n - 0, a1, 2a2, 3a3, 4a4, 5a5, 6a6, . . .

(7) multiply by
(
n
k

)
-
(
0
k

)
a0,
(
1
k

)
a1,
(
2
k

)
a2,
(
3
k

)
a3,
(
4
k

)
a4,
(
5
k

)
a5,
(
6
k

)
a6, . . .

(8) remove odd terms - a0, 0, a2, 0, a4, 0, a6, . . .
(9) remove even terms - 0, a1, 0, a3, 0, a5, 0, . . .

(10) weighted partial sums - a0,
(
1
0

)
a0+

(
1
1

)
a1,
(
2
0

)
a0+

(
2
1

)
a1+

(
2
2

)
a2,
(
3
0

)
a0+

(
3
1

)
a1+

(
3
2

)
a2+(

3
3

)
a3,
(
4
0

)
a0 +

(
4
1

)
a1 +

(
4
2

)
a2 +

(
4
3

)
a3 +

(
4
4

)
a4, . . .

2. A sequence with an interesting exponential generating function

In working with ordinary generating functions, the Fibonaci numbers were a good exam-
ple of a sequence that had a nice ordinary generating function. Just as ordinary generating
functions work well with partitions of integers, exponential generating functions seem to
work well sequences which count numbers of permutations and set partitions.

Sometimes the ordinary generating function of a sequence of integers just doesn’t have
a nice expression for the generating function. One such sequence is the Bell numbers:

B0 = 1, B1 = 1 and Bn+1 =
∑n

k=0

(
n
k

)
Bk for n > 1 which is equal to the number of set

partitions of n + 1. We can calculate the next few values as B2 = 2, B3 = 5, B4 = 15,
B5 = 52.

The problem is that the expression
∑n

k=0

(
n
k

)
Bk is not of the form

∑n
k=0 akbn−k . Why?

If I set B(x) =
∑

n≥0Bnx
n, then when I multiply B(x)A(x)|xn is

∑n
k=0 an−kBk and I can’t

find a generating function where an−k =

(
n
k

)
. It just doesn’t seem to work.

There is a way around this. We can define a new type of generating function A(x) =∑
n≥0 an

xn

n! and if we take a second to B(x) =
∑

n≥0 bn
xn

n! and multiply these together then
we see that

A(x)B(x) =
∑
n≥0

n∑
k=0

ak
k!

bn−k
(n− k)!

xn =
∑
n≥0

n∑
k=0

n!

k!(n− k)!
akbn−k

xn

n!
=
∑
n≥0

n∑
k=0

(
n
k

)
akbn−k

xn

n!
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.
This gives us a new principle to work with.

Principle 2. The coefficient of xn/n! in the product of A(x) =
∑

n≥0 an
xn

n! and B(x) =∑
n≥0 bn

xn

n! is equal to

(1)
n∑

k=0

(
n
k

)
akbn−k.

I mention this because in the recurrence for Bn+1 if we set ak = Bk and bn−k = 1 then it
is of this form. Therefore it seems as though we might be able to write down a generating
function of this form. We call A(x) =

∑
n≥0 an

xn

n! the exponential generating function for a
sequence. Consider the exponential generating function for the sequence 1, 1, 1, 1, 1, 1, . . .,∑

n≥0
1
xn

n!
=
∑
n≥0

xn

n!
= ex .

The exponential generating function for the sequence 0, 1, 2, 3, 4, 5, 6, . . ., is equal to∑
n≥0

n
xn

n!
=
∑
n≥1

xn

(n− 1)!
= xex .

Now consider the sequence

(
0
k

)
,

(
1
k

)
,

(
2
k

)
,

(
3
k

)
,

(
4
k

)
,

(
5
k

)
, . . ., where k is fixed. We

calculate that the exponential generating function is equal to∑
n≥0

(
n
k

)
xn

n!
=
∑
n≥k

n!

k!(n− k)!

xn

n!
=
∑
n≥k

1

k!

xn

(n− k)!
=

xk

k!

∑
n≥k

xn−k

(n− k)!
=

xk

k!
ex .

Now lets apply what we know to finding a formula for the exponential generating function

for B(x) =
∑

n≥0Bn
xn

n! where B0 = B1 = 1 and Bn+1 =
∑n

k=0

(
n
k

)
Bk. Lets work it out

as we normally do except with exponential generating functions.

B(x) =
∑
n≥0

Bn
xn

n!

= 1 +
∑
n≥1

Bn
xn

n!

= 1 +
∑
n≥1

n−1∑
k=0

(
n− 1
k

)
Bk

xn

n!

= 1 + B0
x

1!
+

((
1
0

)
B0 +

(
1
1

)
B1

)
x2

2!
+

((
2
0

)
B0 +

(
2
1

)
B1 +

(
2
2

)
B2

)
x3

3!
+ · · ·
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Now those coefficients that are appearing in this sum should look very familiar. They
are exactly those that appear in equation (1) except that ak = Bk and bn−k = 1. Therefore
if we calculate B(x)ex we see

B(x)ex = B0 +

((
1
0

)
B0 +

(
1
1

)
B1

)
x1

1!
+

((
2
0

)
B0 +

(
2
1

)
B1 +

(
2
2

)
B2

)
x2

2!
+ · · ·

We can make the expression for B(x)ex look exactly like the expression that comes after
the 1+ in the expression for B(x) by integrating one time. What this means is that

B(x) = 1 +

∫
B(x)exdx

or also

B′(x) = B(x)ex .

For a moment consider any exponential generating function that satisfies A′(x) = A(x)ex,
then if we take the coefficient of xn

n! on both sides of the equation then an+1 =
∑n

k=0

(
n
k

)
ak.

Therefore an exponential generating function A(x) =
∑

n≥0 an
xn

n!

A(x) satistifes A′(x) = A(x)ex if and only if an+1 =
∑n

k=0

(
n
k

)
ak

and in this case, A(0) = a0 = 1 implies that A(x) =
∑

n≥0Bn
xn

n! where Bn are the Bell
numbers.

It is not trivial to solve for B(x) given the differential equation B′(x) = B(x)ex but
this is one of the first techniques that appears in a course on differential equations. Note
that if we take B(x) = ee

x−1, then this equation does satisfy the differential equation and

B(0) = ee
0−1 = e0 = 1. We conclude that

ee
x−1 =

∑
n≥0

Bn
xn

n!
.

In fact if I use “sage” to compute the Taylor expansion of ee
x−1, then I see that

sage: taylor(exp(exp(x)-1), x, 0, 6)

203/720*x^6 + 13/30*x^5 + 5/8*x^4 + 5/6*x^3 + x^2 + x + 1

If I rewrite this with the n! in the dominators (no simplification of the fractions) then I
see that

ee
x−1 = 1 +

x

1!
+ 2

x2

2!
+ 5

x3

3!
+ 15

x4

4!
+ 52

x5

5!
+ 203

x6

6!
+ · · ·

and this agrees with what we calculated earlier with B0 through B5.
I can also use sage to help me with the algebra of verifying that B′(x) = d

dx(ee
x−1) =

ee
x−1ex = B(x)ex.

sage: diff(exp(exp(x)-1),x)

e^(x + e^x - 1)

sage: exp(x)*exp(exp(x)-1)

e^(x + e^x - 1)
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do the q-refinement for the Stirling numbers of the second kind ToDo

3. Combinatorial calculations using exponential generating functions

Let me state precisely the multiplication principle of exponential generating functions.

Theorem 3. (the multiplication principle of exponential generating functions) If A(x) =∑
n≥0 an

xn
n! and B(x) =

∑
n≥0 bn

xn

n! then the coefficient of xn

n! in A(x)B(x) is equal to

n∑
k=0

(
n

k

)
akbn−k .

In combinatorial terms if an is equal to the number of widgets of size n and bn is equal
to the number of doodles of size n, then A(x)B(x) is equal to the exponential generating
function for the number of triples (S, x, y) where x is a widget of size k, y is a doodle of
size n− k and S is a subset of {1, 2, . . . , n} of size k.
(the addition principle of exponential generating functions) The coefficient of xn

n! in A(x)+
B(x) is an + bn and the interpretation for this coefficient is the number of objects which
are either a widget or a doodle of size n (just as we saw in the case of ordinary generating
functions).

This is stated more generally this may be stated as the following:

Theorem 4. (The Multiplication Principle of Exponential Generating Functions) Let

Ai(x) =
∑

n≥0 a
(i)
n

xn

n! , then

A1(x)A2(x) · · ·Ad(x) =
∑
n≥0

 ∑
i1+i2+···+id=n

(
n

i1, i2, . . . , id

)
a
(1)
i1

a
(2)
i2
· · · a(d)id

 xn

n!
.

Alternatively the coefficient of xn

n! in A1(x)A2(x) · · ·Ad(x) is equal to∑
i1+i2+···+id=n

(
n

i1, i2, . . . , id

)
a
(1)
i1

a
(2)
i2
· · · a(d)id

.

I will continue to expand on the use of exponential generating functions. What we
will need to do is develop tools for creating libraries of generating functions as we did
for ordinary generating functions. For instance, if I give you the exponential generating
function A(x) =

∑
n≥0 an

xn

n! , then I expect you to be able to give me expressions for∑
n≥0 an+2

xn

n! ,
∑

n≥0 nan
xn

n! ,
∑

n≥0 an
xn+2

(n+2)! .

There is another class of problems that is useful for the Mulitplication Principle of
Exponential generating functions that I discussed last time. Consider problems like:

How many words (rearrangements of the letters) in the alphabet {a, b, c, d} are there of
length n?
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Since our words are of length n, there are 4n possible words with letters in {a, b, c, d},
each letter of the word has 4 choices. The exponential generating function for the number
of these words is

∑
n≥0 4n xn

n! = e4x. But what is kind of surprising is that I can also
place restrictions on the letters and write down the exponential generating function for the
sequence. Say that I consider the set of words

How many words are there in the alphabet {a, b, c, d} such that there an even number
of a’s and b’s (total) and at most 8 c’s?

If we were to enumerate this using the multiplication principle and the addition priciple,
then we would choose i spots from n for the a’s and b’s, choose a word in the a’s and
b’s of length i, choose j of the remaining n − i for the c’s such that there are at most 8
c’s, then the remaining n − i − j spaces are where we place the d’s. By the addition and
multiplication principle of generating functions, we have
(2)∑
i+j≤n

(
n
i

)(
# words length i in a and b

with an even # a’s &b’s

)(
n− i
j

)(
# words of length j

in c with ≤ 8 c’s

)(
# words of length

n− i− j in d

)

If we combine the binomials

(
n
i

)
and

(
n− i
j

)
and note that it is equal to

(
n

i, j, n− i− j

)
=(

n
i

)(
n− i
j

)
.

Last time I presented the multiplication principle of exponential generating functions. I
will restate it here with multiple generating functions (while the last time it was a product
of two).

Principle 5. (The Multiplication Principle of Exponential Generating Functions) Let

Ai(x) =
∑

n≥0 a
(i)
n

xn

n! , then

A1(x)A2(x) · · ·Ad(x) =
∑
n≥0

 ∑
i1+i2+···+id=n

(
n

i1, i2, . . . , id

)
a
(1)
i1

a
(2)
i2
· · · a(d)id

 xn

n!
.

Alternatively the coefficient of xn

n! in A1(x)A2(x) · · ·Ad(x) is equal to

∑
i1+i2+···+id=n

(
n

i1, i2, . . . , id

)
a
(1)
i1

a
(2)
i2
· · · a(d)id

.

You should recognize that (2) is a special case of a coefficient of one of these coefficients.
The expression in (2) is equal to the coefficient of xn/n! in the product
(3)(

g.f. for words length in in a and b
with an even # a’s &b’s

)(
g.f. for words of length n

in c with ≤ 8 c’s

)(
g.f. for words of length

n in d

)
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Now I note that since there is precisely 1 word of length n using only the letter d then(
g.f. for words of length

n in d

)
=
∑
n≥0

xn

n!
= ex

Since there is one word of length n in the letters c unless n > 8, then(
g.f. for words of length n

in c with ≤ 8 c’s

)
= 1 +

x

1!
+

x2

2!
+ · · ·+ x8

8!

Now if we insist that there are an even number of a’s and b’s then the there are 4 words
of length 2 (aa, ab, ba, bb), there are 16 words of length 4 (aaaa, aaab, aaba, . . ., bbbb).
In general, the number of words of length n is 2n if n is even and 0 if n is odd, hence the
exponential generating function is equal to(

g.f. for words length in in a and b
with an even # a’s &b’s

)
= 1+4

x2

2!
+16

x4

4!
+64

x6

6!
+· · · = 1

2

(
e2x + e−2x

)
= cosh(2x)

Therefore putting this together with (3) we have that the coefficient of xn/n! in

cosh(2x)

(
1 +

x

1!
+

x2

2!
+ · · ·+ x8

8!

)
ex

is equal to the number of words in the alphabet {a, b, c, d} such that there an even number
of a’s and b’s (total) and at most 8 c’s.

For example for the words of length 1 there is only c and d, for the words of length 2
we can have aa, bb, ab, ba, cc, cd, dc, dd so there are 8 words of length 2. For words of
length 3 we can have caa, aca, aac, cbb, bcb, bbc, cab, acb, abc, cba, bca, bac, another 12
with a,b and ds and then 8 more are words in c and d (32 in total). In total there are We

should then see that the series expands as 1 + 2 x
1! + 8x2

2! + 32x3

3! + · · · . I will check this on
the computer to show you how it is done.

sage: taylor(exp(x)*cosh(2*x)*sum(x^n/factorial(n) for n in range(9)),x,0,4)

16/3*x^4 + 16/3*x^3 + 4*x^2 + 2*x + 1

In general we have that ordinary generating functions used for counting problems that
can be reduced to integer sum problems and exponential generating functions are useful
for enumerating problems that can be reduced to enumerating words. It is also sometimes
said that ordinary generating functions are good for enumerating “unlabeled” objects and
exponential generating functions are good for enumerating “labeled” objets. This is a
vague rule and hard to tell why this might be correct until we come with more examples
of uses for ordinary and exponential generating functions. For example, we looked at the
exponential generating function for the number of set partitions of n and this was ee

x−1

(this is a “labeled” object), we also started to look at partitions and ordinary generating
functions.
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4. More examples

I wanted to show an example of what I expected for a problem on generating functions
for the homework. I showed an example of an exponential generating function instead of
an ordinary generating function because the principle was the same and you had something
to compare how exponential and ordinary generating functions differ.

I took a problem that was extremely similar to one of the homework problems, but
differed because it was enumerating a set of words (structures with order) rather than
distributions of loonies and twonies to people. Please refer to Homework # 2 problem 5
for the comparison.

Count the number of words of length 20 with the letters A,B,C,D satisfying the fol-
lowing properties.

(1) no restriction
(2) there are an even number of A’s and B’s in total
(3) there are at most a total of 6 A’s and Bs.
(4) the number of A’s and B’s is even and there are at most 6.
(5) the number of A’s and B’s is even or there are at most 6 in total.

Lemma 6. The exponential generating function for the number of words of length n with
C’s and D’s (or A’s and B’s) is equal to e2x =

∑
n≥0 2n xn

n! .

Proof. There is one word of length n with C’s only (or D’s only). The exponential gener-
ating function for the number of words is equal to ex =

∑
n≥0

xn

n! . Every word of length n

with C’s and D’s is isomorphic to the number of triples (S, x, y) consisting of a subset S of
{1, 2, . . . , n} representing the positions of the C’s, a word x of length |S| of C’s and a word
y of D’s of length n− k. Therefore the exponential generating function for the number of
these words will be the product of exponential generating functions for the words of C’s and
the exponential generating functions for the words of D’s. Their product is exex = e2x. �

or better

Proof. There are 2n words of length n with C’s and D’s because for each letter of the
word there are two choices. Therefore the exponential generating function is

∑
n≥0 2n xn

n! =

e2x. �

Lemma 7. The exponential generating function for the number of words with A’s and Bs
where there an even number of A’s and B’s is (e2x + e−2x)/2.

Proof. The exponential generating function for the words with A’s and B’s with an even
number of letters is equal to the terms with even exponents in the exponential generating
function e2x for all words with A’s and B’s. This is (e2x + e−2x)/2. �

Lemma 8. The exponential generating function for the number of words with A’s and Bs
with at most 6 letters in total is 1 + 2x + 2x2 + 4/3x3 + 2/3x4 + 4/15x5 + 4/45x6.
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Proof. A Sage calculation yields the first 6 terms of the exponential generating function
for the words with A’s and B’s, namely e2x = 1 + 2x + 2x2 + 4/3x3 + 2/3x4 + 4/15x5 +
4/45x6 + · · · . �

Lemma 9. The exponential generating function for the number of words with A’s and Bs
with at most 6 letters in total and an even number is 1 + 2x2 + 2/3x4 + 4/45x6.

Proof. The even terms from the expression in Lemma 8 is the exponential generating
function for the number of terms of even length and length less than or equal to 6. �

Lemma 10. The exponential generating function for the number of words with A’s and Bs
with at most 6 letters in total or an even number is (e2x + e−2x)/2 + 2x+ 4/3x3 + 4/15x5.

Proof. The odd terms from the expression in Lemma 8 is equal to the exponential gener-
ating function for the words which are of length less than or equal to 6 and of odd length
and this is equal to 2x+ 4/3x3 + 4/15x5. The disjoint union of this set of words and those
that are of even length is equal to the words with A’s and Bs with at most 6 letters in total
or an even number. By the addition principle of exponential generating functions, this is
equal to the sum of the expression for the exponential generating function for the number
of words with A’s and Bs where there an even number of A’s and B’s and the exponential
generating function for the words which are of length less than or equal to 6 and of odd
length and this is equal to (e2x + e−2x)/2 + 2x + 4/3x3 + 4/15x5. �

Note that now a lot of my answer is cut and paste:

Answer to part (1): Therefore the exponential generating function for the number of
words with the letters A,B,C, and D is equal to the product of the exponential generating
functions for the words with A’s and B’s times the exponential generating functions for
the words with C’s and D’s. Their product is e2xe2x = e4x.

The number of words with the letters A,B,C, and D of length 20 is equal to 20! times
the coefficient of x20 in e4x which is equal to 420.

Answer to part (2): The exponential generating function for the number of words with
the letters A,B,C,D where there are an even number of A’s and B’s is equal to the product
of the exponential generating function for the number of words with A’s and Bs where there
an even number of A’s and B’s (from Lemma 7) and the exponential generating function
for the number of words with C’s and D’s. This is equal to e2x(e2x−e−2x)/2 = (e4x−1)/2.

The number of words with the letters A,B,C, and D where there are an even number
of A’s and B’s of length 20 is equal to 20! times the coefficient of x20 in (e4x − 1)/2 which
is equal to 420/2.

Answer to part (3): The exponential generating function for the number of words with
the letters A,B,C,D where there are at most 6 A’s and B’s in total is equal to the product
of the exponential generating function for the number of words with A’s and Bs where there
at most 6 A’s and B’s (from Lemma 8) and the exponential generating function for the
number of words with C’s and D’s. This is equal to e2x(1 + 2x + 2x2 + 4/3x3 + 2/3x4 +
4/15x5 + 4/45x6).
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The number of words with the letters A,B,C, and D where there are at most 6 A’s and
B’s of length 20 is equal to 20! times the coefficient of x20 in e2x(1 + 2x + 2x2 + 4/3x3 +
2/3x4 + 4/15x5 + 4/45x6) which (according to Sage) is equal to 63396904960.

Answer to part (4): The exponential generating function for the number of words with
the letters A,B,C,D where there are at most 6 A’s and B’s in total and an even number is
equal to the product of the exponential generating function for the number of words with
A’s and Bs where there at most 6 A’s and B’s and an even number (from Lemma 9) and
the exponential generating function for the number of words with C’s and D’s. This is
equal to e2x(1 + 2x2 + 2/3x4 + 4/45x6).

The number of words with the letters A,B,C, and D where there are at most 6 A’s
and B’s and an even number of length 20 is equal to 20! times the coefficient of x20 in
e2x(1 + 2x2 + 2/3x4 + 4/45x6) which (according to Sage) is equal to 45923434496.

Answer to part (5): The exponential generating function for the number of words with
the letters A,B,C,D where there are less than or equal to 6 A’s and B’s in total or an
even number of A’s and B’s is equal to the product of the exponential generating function
for the number of words with A’s and Bs where there at most 6 A’s and B’s or an even
number (from Lemma 10) and the exponential generating function for the number of words
with C’s and D’s. This is equal to e2x((e2x + e−2x)/2 + 2x + 4/3x3 + 4/15x5).

The number of words with the letters A,B,C, and D where there are at less than or
equal to 6 A’s and B’s in total or an even number of A’s and B’s of length 20 is equal to 20!
times the coefficient of x20 in e2x((e2x + e−2x)/2 + 2x + 4/3x3 + 4/15x5) which (according
to Sage) is equal to 567229284352.

5. Exercises

(1) Find a formula for the exponential generating function of the number of odd set
partitions of n (that is, the set partitions where each set in the partition has an
odd number of elements). If we let Bodd

n = to the number of odd set partitions of
n, then Bodd

0 = 1 and for n ≥ 0,

Bodd
n+1 =

dn/2e∑
k=0

(
n

2k

)
Bodd

n−2k.

Show that this exponential generating function is esinh(x).
(2) Let Bk(x) =

∑
n≥0

(
n
k

)
xn

n! . Show that

Bk(x)B`(x) =
1

2k+`

(
k + `

`

)
Bk+`(2x).

Take the coefficient of xn/n! on both sides of the equation and use it to give a
binomial coefficient identity. Verify that your identity holds for n = 6, k = 3,
` = 1.

(3) Find the exponential generating function for the number of words of length n using
letters a, b, c, d, e, f, g, h, i such that



CHAPTER 5: EXPONENTIAL GENERATING FUNCTIONS 11

(a) all 9 letters occur without restriction
(b) at least one of the first 6 letters appears
(c) the first 6 letters each appear at least once and the last three each appear an

even number of times
(d) the first 6 letters each appear at least once and the last six each appear an

even number of times
(e) at least one of the first 6 letters appears and the total number of the last 6

letters is even
Use your generating function to find the number of number of words of length 20
with the restrictions above.
As a hint, for length 10 the number of words for part (a) is 3486784401, (b)
3486725352, (c) 45465840, (d) 680400, (e) 1743362676.

(4) Given the generating function A(x) =
∑

n≥0 anx
n = a0 + a1x + a2x

2 + · · · , find a
formula for the generating function

Ã(x) = a1 + a0x + a3x
2 + a2x

3 + a5x
4 + a4x

5 + · · ·

If B(x) =
∑

n≥0 bn
xn

n! = b0+b1
x
1! +b2

x2

2! + · · · is an exponential generating function,
find a formula for the generating function

B̃(x) = b1 + b0
x

1!
+ b3

x2

2!
+ b2

x3

3!
+ b5

x4

4!
+ b4

x5

5!
+ · · ·

(5) Recall that the unsigned Stirling number of the first kind is denoted s′(n, k) and is
equal to the number of permutations of n into k cycles. Define Tk(x) =

∑
n≥0 s

′(n, k)x
n

n! .

(a) Show that T1(x) = −log(1− x).
(b) Use the multiplication principle of exponential generating functions to explain

why

(&) k!Tk(x) = T1(x)k .

(c) Take the coefficient of xn

n! in Tk(x) and show that

(%) s′(n, k) =
1

k!

∑
a1+a2+···+ak=n

n!

a1a2 · · · ak

where the sum is over solutions to a1 + a2 + · · ·+ ak = n with ai > 0.
(d) By taking the derivative of both sides of equation (&) we see that k!T ′k(x) =

kT1(x)k−1T ′1(x) and since T1(x)k−1 = (k − 1)!Tk−1(x) we have that T ′k(x) =

Tk−1(x)T ′1(x). Take the coefficient of xn

n! in both sides of the equation T ′k(x) =
Tk−1(x)T ′1(x) to arrive at a recursive formula for the unsigned Stirling numbers
of the first kind.
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6. Answers to example 1

(1) shift right - 0, a0, a1, a2, a3, a4, a5, . . . - antiderivative with constant term equal to
0. ∫

A(x)dx =
∑
n≥0

an

∫
xn

n!
dx =

∑
n≥0

an
xn+1

(n + 1)!

(2) shift left - a1, a2, a3, a4, a5, a6, . . . - derivative

d

dx
A(x) =

d

dx
(a0 +

∑
n≥1

an
xn

n!
) =

∑
n≥1

an
xn−1

(n− 1)!

(3) add/subtract one - a0 ± 1, a1 ± 1, a2 ± 1, a3 ± 1, a4 ± 1, a5 ± 1, a6 ± 1, . . . - add or
subtract ex

A(x)± ex =
∑
n≥0

an
xn

n!
±
∑
n≥0

xn

n!
=
∑
n≥0

(an ± 1)
xn

n!

(4) multiply by 2 - 2a0, 2a1, 2a2, 2a3, 2a4, 2a5, 2a6, . . .

2A(x) =
∑
n≥0

2an
xn

n!

(5) multiply by 2n - a0, 2a1, 4a2, 8a3, 16a4, 32a5, 64a6, . . .

A(2x) =
∑
n≥0

2nan
xn

n!

(6) multiply by n - 0, a1, 2a2, 3a3, 4a4, 5a5, 6a6, . . .

x
d

dx
A(x) =

∑
n≥1

xan
xn−1

(n− 1)!
=
∑
n≥1

nan
xn

n!

(7) multiply by
(
n
k

)
-
(
0
k

)
a0,
(
1
k

)
a1,
(
2
k

)
a2,
(
3
k

)
a3,
(
4
k

)
a4,
(
5
k

)
a5,
(
6
k

)
a6, . . .

xk

k!

dk

dxk
A(x) =

∑
n≥0

an
xk

k!

dk

dxk
xn

n!
=
∑
n≥k

an
xk

k!

xn−k

(n− k)!
=
∑
n≥k

an
n!

k!(n− k)!

xn

n!

(8) remove odd terms - a0, 0, a2, 0, a4, 0, a6, . . .

A(x) + A(−x)

2
=

1

2

∑
n≥0

an
xn

n!
+
∑
n≥0

an(−1)n
xn

n!

 =
∑
n≥0

a2n
x2n

(2n)!

(9) remove even terms - 0, a1, 0, a3, 0, a5, 0, . . .

A(x)−A(−x)

2
=

1

2

∑
n≥0

an
xn

n!
−
∑
n≥0

an(−1)n
xn

n!

 =
∑
n≥0

a2n+1
x2n+1

(2n + 1)!
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(10) weighted partial sums - a0,
(
1
0

)
a0+

(
1
1

)
a1,
(
2
0

)
a0+

(
2
1

)
a1+

(
2
2

)
a2,
(
3
0

)
a0+

(
3
1

)
a1+

(
3
2

)
a2+(

3
3

)
a3,
(
4
0

)
a0 +

(
4
1

)
a1 +

(
4
2

)
a2 +

(
4
3

)
a3 +

(
4
4

)
a4, . . .

exA(x) =

∑
n≥0

xn

n!

∑
n≥0

an
xn

n!

 =
∑
n≥0

(
n∑

k=0

(
n

k

)
ak

)
xn

n!


