Combinatorial Hopf Algebras.

Nantel Bergeron

York Research Chair in Applied Algebra www.math.yorku.ca/bergeron

[with J.Y. Thibon ... and many more]

Ottrott
Mar 2017

Outline

- What would be a good gift for a mathematician?
- What is a Combinatorial Hopf Algebra?
- Sym is a strong, realizable CHA with character.
- On strong CHA (categorification)
- On realizable CHA (word combinatorics and quotients).

Mar 2017 Lotharingien outline

Combinatorial Hopf Algebra

 $H = \bigoplus_{n \geq 0} H_n$ a graded connected Hopf algebra is CHA if

(weak) There is a distinguished (combinatorial) basis with positive integral structure coefficients (from Hopf monoid).

(strong) The structure is obtained from representation operation (from categorification).

(real.) It can be realized in a space of series in variables. (it is realizable)

(char.) It has a distinguished character. (with character)

Sym is the space of symmetric functions $\mathbb{Z}[h_1, h_2, \ldots]$, with $\deg(h_k) = k$ and

$$\Delta(h_k) = \sum_{i=0}^k h_i \otimes h_{k-i}.$$

Sym is the space of symmetric functions $\mathbb{Z}[h_1, h_2, \ldots]$, with $\deg(h_k) = k$ and

$$\Delta(h_k) = \sum_{i=0}^k h_i \otimes h_{k-i}.$$

It is the functorial image of a Hopf Monoid Π :

For any finite set J let $\Pi[J] = \{A : A \vdash J\}$ the set partitions of J.

Product and Coproduct:

combinatorial constructions on set partitions

It correspond to flats of the hyperplane arrangement of type A.

Hopf Monoid Π

Hopf structure on $\bigoplus_{n>0} K_0(S_n)$

 $K_0(S) = \bigoplus_{n \geq 0} K_0(S_n)$ is the space of S_n -modules up to isomorphism

- Basis: Irreducible modules S^{λ}
- Structure:

$$M * N = \operatorname{Ind}_{S_n \times S_m}^{S_{n+m}} M \otimes N$$

$$\Delta M = \bigoplus_{k=0}^{n} \operatorname{Res}_{S_k \times S_{n-k}}^{S_n} M$$

• $\mathcal{F}: K_0(S) \to Sym$ is an isomorphism of graded Hopf algebra where $\mathcal{F}(S^{\lambda}) = s_{\lambda}$

Realization of Sym

$$Sym \hookrightarrow \lim_{n \to \infty} \mathbb{Q}[x_1, x_2, \dots, x_n]$$

Allows us to understand coproducts, internal coproduct, plethysm, Cauchy kernel, ...

Sym with a Hopf Character

$$\zeta_0: Sym \rightarrow \mathbb{Q}$$

$$f(x_1, x_2, \ldots) \mapsto f(1, 0, \ldots)$$

 (Sym, ζ_0) is a terminal object for (H, ζ) cocommutative:

$$H \xrightarrow{\zeta} \underset{\mathbb{Q}}{\swarrow} \zeta_0$$

$$\zeta_0^* = \sum_{n \ge 0} h_n$$

$$\Omega(X) = \sum_{n \ge 0} h_n(X) = \prod_{x \in X} \frac{1}{1 - x}$$

Toward Categorification

Consider a graded algebra $A = \bigoplus_{n \geq 0} A_n$

- Each A_n is an algebra.
- $\dim A_0=1$ and $\dim A_n<\infty$.
- $\rho_{n,m}: A_n \otimes A_m \hookrightarrow A_{n+m}$; injective algebra homomorphism
- A_{n+m} is projective bilateral submodule of $A_m \otimes A_m$.
- Right and left projective structure of A_{n+m} are compatible.
- There is a Mackey formula linking induction and restriction

A is a tower of algebra

Toward Categorification

Consider a tower of algebras $A = \bigoplus_{n>0} A_n$

Let $K_0(A) = \bigoplus_{n\geq 0} K_0(A_n)$ is the space of (projective) A_n -modules up to isomorphism and modulo short exact sequences

• $K_0(A)$ is a graded Hopf algebra:

$$M*N = \operatorname{Ind}_{A_n \otimes A_m}^{A_{n+m}} M \otimes N$$

$$\Delta M = \bigoplus_{k=0}^{n} \operatorname{Res}_{A_k \otimes A_{n-k}}^{A_n} M$$

• H is a strong CHA if there is an isomorphism

$$\mathcal{F}\colon K_0(A)\to H$$

Example of Tower of Algebras

$$\mathbb{Q}S = \bigoplus_{n \geq 0} \mathbb{Q}S_n$$
:

$$\mathcal{F}\colon K_0(\mathbb{Q}S)\to \underline{Sym}$$

$$H(0) = \bigoplus_{n>0} H_n(0)$$
: [Krob-Thibon]

$$\mathcal{F}\colon K_0(H(0))\to NSym$$

$$\mathcal{F}\colon G_0(H(0))\to QSym$$

$$HC(0) = \bigoplus_{n>0} HC_n(0)$$
: [B-Hivert-Thibon] ... Peak algebras ...

seams rare?

Obstruction to Tower of algebras?

Consider a tower of algebras $A = \bigoplus_{n \geq 0} A_n$ where $K_0(A)$ and $G_0(A)$ are graded dual Hopf algebra:

THEOREM[B-Lam-Li]

if A is a tower of algebras, then $\dim(A_n) = r^n n!$

this is very restrictive...

Tower of Supercharacters [... B ... Novelli ... Thibon ...]

- Unipotent upper triangular matrices over finite Fields \mathbf{F}_q : $U_n(q)$.
- Superclasses in $U_n(q)$: $A \cong B \quad \leftrightarrow \quad (A-I) = M(B-I)N$
- Supercharacters χ : characters constant on superclasses:

$$\Delta(\chi) = \sum_{A+B=[n]} \operatorname{Res}_{U_{|A|}(q) \times U_{|B|}(q)}^{U_n(q)} \chi$$

$$\chi \cdot \psi = \operatorname{Inf}_{U_n(q) \times U_m(q)}^{U_{n+m}(q)} \chi \otimes \psi = (\chi \otimes \psi) \circ \pi$$

where $\pi: U_{n+m}(q) \rightarrow U_n(q) \times U_m(q)$.

• $\mathcal{F}: K_0\Big(\bigoplus_{n\geq 0} U_n(2)\Big) \to NCSym$ is iso.

NCSym symmetric functions in non-commutative variables.

Some open questions

(Q-1) Find other examples of Categorification (Can we do NCQsym (quasi-symmetric in non commutative variables)?

(Q-2) Tower of algebra A (axiomatization with superclasses/supermodules and Harish-Chandra induction:

Ind \circ Inf and Def \circ Res).

About Realization

Many CHA are realized: Sym, NSym , QSym, NCSym, $\bullet \bullet \bullet$

Can we described all

$$H \hookrightarrow \mathbb{Q}\langle x_1, x_2, \ldots \rangle$$

with monomial basis (equivalence classes on words) [Giraldo].

[B-Hohlweg] Monomial basis embeddings

$$H \hookrightarrow SSym$$

(Q-3) Realization Theory: Can we describe monomial embeddings

$$H \hookrightarrow \mathbb{Q}M$$

for different monoid M

Hopf algebras

Reverse Lex and Gröbner basis

$$\mathbb{Q}[x_1, \dots, x_{n+1}] \xrightarrow{x_n = 0} \mathbb{Q}[x_1, \dots, x_n]$$

$$H[x_1,\ldots,x_{n+1}] \xrightarrow{x_n=0} H[x_1,\ldots,x_n]$$

 G_n G-basis of ideal $\langle H[x_1,\ldots,x_n]^+\rangle$:

$$G_{n+1} \xrightarrow{x_n=0} G_n$$

$$g(x_1,\ldots,x_{n+1}) \longmapsto \begin{cases} 0 & \text{if } LT(g)|_{x_n=0}=0\\ \tilde{g} & \text{if } LT(g)|_{x_n=0}=LT(\tilde{g})\neq 0 \end{cases}$$

 B_n basis of quotient $\mathbb{Q}[x_1,...,x_n]/\langle H[x_1,...,x_n]^+\rangle$:

$$B_{n+1} \longleftarrow B_n$$

Reverse Lex and Gröbner basis

$$\mathbb{Q}[x_1, \dots, x_{n+1}] \xrightarrow{x_n = 0} \mathbb{Q}[x_1, \dots, x_n]$$

$$H[x_1, \dots, x_{n+1}] \xrightarrow{x_n = 0} \mathbb{H}[x_1, \dots, x_n]$$

$$G_{n+1} \xrightarrow{x_n = 0} \mathbb{G}_n$$

$$\begin{cases}
0 & \text{if } LT(g)|_{x_n = 0} = 0 \\
\tilde{g} & \text{if } LT(g)|_{x_n = 0} = LT(\tilde{g}) \neq 0
\end{cases}$$

$$B_{n+1} \xleftarrow{\text{mult by } x_n}$$

$$\xrightarrow{\text{mult by } x_n^3}$$

$$\xrightarrow{\text{mult by } x_n^3}$$

Diagonally TL-covariants

[Aval Bergeron Bergeron]

$$D_n := Q[x_1, x_2, ..., x_n; y_1, ..., y_n] / QSym^+ >$$

Conjectured bigraded Hilbert series:

$$\dim_{qt} D_1 = \begin{bmatrix} 1 \end{bmatrix} \qquad \dim_{qt} D_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Diagonally TL-covariants

[Aval Bergeron Bergeron]

$$D_n := Q[x_1, x_2, ..., x_n; y_1, ..., y_n] / < DQSym^+ >$$

Conjectured explicit monomial basis: for example to build for n=4 and bidegree (1,1)

About family of Realization

(Q-4) Prove previous question about Hilbert series

(Q-5) Realized Quotient in general

• • •

