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SPECIES

• Informally, a vector species H is a “construction” H[I ] on finite sets I that behaves well with
bijections between finite sets.
•More formally, H : {finite sets} → {vector spaces} is a functor between these two categories.

Example 1. (Hyper)Graphs.
Let G be the species such that G[I ] := spanC{simple (hyper)graphs on vertex set I}. Thus,

G[{a, b, c}] = span{ a
b
c , a

b
c , . . . , a

b
c , . . . }.

Example 2. Linear orders.
Let L be the species such that L[I ] := spanC{linear orders on the set I}. Thus,

L[{a, b, c}] = span{abc, acb, bac, bca, cab, cba}.

Let H be a species. Suppose we have maps

µI,J : H[I ]⊗H[J ]→ H[I ] J ]

∆I,J : H[I ] J ]→ H[I ]⊗H[J ]

on H satisfying some compatibilities. This extra structure on H turn it into a Hopf monoid.
Example 1. In the species G let µI,J and ∆I,J be such that for graphs x ∈ G[I ], y ∈ G[J ] and
g ∈ G[I ] J ] one has

µI,J(x⊗ y) := x ] y disjoint union

b ⊗
a
c 7→ b

a
c

∆I,J(g) := g|I ⊗ g|J restriction

b
a
c

∆b,ac−−−→ b ⊗
a
c

Example 2. In the species L let µI,J and ∆I,J be such that for linear orders α ∈ L[I ], β ∈ L[J ] and
π ∈ L[I ] J ] one has

µI,J(α⊗ α) := α · α concatenation
b⊗ ca 7→ bca

∆I,J(π) := π|I ⊗ π|J deshuffle

dcba
∆b,acd−−−→ b⊗ dca

Hopf monoids

ANTIPODE
Part of the hidden structure of these Hopf monoids is their antipode S which for each finite set I
can be computed using Takeuchi-Sweedler’s formula:

SI =
∑
A|=I

(−1)`(A)µA ◦∆A.

PROBLEM:

How to solve all these cancellations combinatorially?

BUILDING NEW MONOIDS
FROM OLD ONES

Given a Hopf monoid H construct the monoid L×H such that

(L×H)[I ] = L[I ]×H[I ] Hadamard product

For instance, a typical element in (L×G)[I ] is an ordered pair (α,g) where g is a graph on I
and α is an ordering of the vertex set I.

• the monoid H has a basis h if H[i] = Kh[I ] and h is a set valued species.
• the monoid H is linearized if it has a basis and the structure constants are in {0, 1} in the

basis.

Theorem 1. [Antipode for linearized L×H](B-B’16) Let H have basis h and let (α, x) ∈ (`×h)[I ].

SI((α, x)) =
∑
(β,y)

c
βy
αx(β, y)

where cβyαx ∈ {−1, 0, 1}.

EXAMPLE A: Let HG be the Hopf monoid of hypergraphs. Let I = {a, b, c, d, e, f, h} and let

x =
a f c

d e
h

b
y =

a f c

d e
h

b

α = abcdefh β = abdefhc.

•Construct the most refined partition Λ of I such that (αΛ, xΛ) = (β, y), thus Λ = (a, b, def, h, c).
• Identify Λ with (1, 2, 3, 4, 5) since Λ has 5 parts.

•Get coarsenings Γ of Λ such that (αΓ, xΓ) = (β, y). Build a poset Cβ,yα,x

1,2,3,4,5

12,3,4,5 1,23,4,5 1,2,34,5

123,4,5 12,34,5

• The coefficient of (β, y) in SI((α, x)) = c
βy
αx = (−1)5 + 3(1)4 + 2(−1)3 = 0. This actually

requires a sign-reversing involution with at most one fixed point.

•Motivation for wanting a formula as in Theorem 1, arises from the problem of understanding
antipodes in Hopf algebras H obtained from L×H after applying the functor K that “forgets”
labels.

K(L×H) = K(H)

Commutative and cocommutative H

Let H be commutative, cocommutative, linearized with basis h. Let x ∈ h[I ] and let Gyx be
the hypergraph that records the minimal Λ for which

∏
xΛi
6= x∪Λi

.

Theorem 2. [Antipode for co-cocom linearized H](B-B’16) Under the conditions above

SI(x) =
∑
y∈h[I ]

a(G
y
x)y,

where a(G
y
x) is a signed sum of acyclic orientations of the hypergraph Gyx.

Theorem 3. [Reduction to Hypergraphs](B-B’16) Given a commutative and cocommutative
linearized Hopf monoid H, let x, y ∈ h[I ]. We have cyx = cε

x/y
where ε is the hypergraph on

[m] with no edges and x/y = G
y
x

EXAMPLE B1:

S(
2 1

3 4

) = −
2 1

3 4

+ 2
2 1

3 4

+ 2
2 1

3 4

− 2
2 1

3 4

there are 20 acyclic orientations in x/∅: (4, 3, 2, 1); (3, 4, 2, 1); (34, 2, 1); (3, 2, 4, 1); (2, 4, 3, 1);
(23, 4, 1); (1, 4, 3, 2); (3, 1, 4, 2); (1, 2, 4, 3); (1, 23, 4); (1, 24, 3); (1, 34, 2); (3, 12, 4); (12, 4, 3); (123, 4);
(14, 3, 2); (3, 14, 2); (134, 2); (3, 24, 1); (24, 3, 1). There are 9 even length set compositions in
this list and 11 odd length. The coefficient is indeed 9−11 = −2. For y =

{
{1, 2, 4}

}
, x/y is a

graph on two vertices with a single edge between the vertices. There are two orientations
of such graph and each orientation is represented with a set composition having two parts.
Hence the coefficient is 2. The same argument applies for y′ =

{
{2, 3, 4}

}

EXAMPLE B2: Consider the hypergraph G =
1

3
2 . The monoid HG does NOT embed

into the Hopf monoid GP of generalized permutahedra studied by Ardila-Aguiar. Thus,
we can not use their geometrical interpretation of antipode formulas in the case of hyper-
graphs. However, we can derive the antipode of G out of its hypergraphical polytope as
follows.

∆123 =

1

3

2

1

3

2
1

3

2

13 2
12

3

1

23

123
∆23 = 3

2

3

2

23

1

3

2
1

3

2

1

3

2
1

3

2

13 2
12

3

1

23

1

23

123

The coefficient of the discrete graph is the sum of the six acyclic orientations that corre-
sponding to the three faces on the left and the three faces on the right. We call these
exterior faces as no contraction occurs. The total homology is 2 in this case. The coeffi-
cient +2 in S(G) corresponds to the two horizontal faces in the picture (only {2, 3} is con-
tracted). Finally the coefficient −1 corresponds the interior face of the polytope ({1, 2, 3} is
contracted). Thus, S(G) = −G + 2( 1

3
2 )− 2( 1

3
2 ).

For more info check us out: arXiv:1611.01657.
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Abstract. Many combinatorial Hopf algebras H in the literature are the functorial
image of a linearized Hopf monoid H. That is, H = K(H) or H = K(H). Unlike the
functor K, the functor K applied to H may not preserve the antipode of H. In this
case, one needs to consider the larger Hopf monoid L×H to getH = K(H) = K(L×H)
and study the antipode in L ×H. One of the main results in this paper provides a
cancelation free and multiplicity free formula for the antipode of L ×H. From this
formula we obtain a new antipode formula for H. We also explore the case when H is
commutative and cocommutative. In this situation we get new antipode formulas that
despite of not being cancelation free, can be used to obtain one for K(H) in some cases.
We recover as well many of the well-known cancelation free formulas in the literature.
One of our formulas for computing the antipode in H involves acyclic orientations of
hypergraphs as the central tool. In this vein, we obtain polynomials analogous to the
chromatic polynomial of a graph, and also identities parallel to Stanley’s (-1)-color
theorem. One of our examples introduces a chromatic polynomial for permutations
which counts increasing sequences of the permutation satisfying a pattern. We also
study the statistic obtained after evaluating such polynomial at −1. Finally, we sketch
q deformations and geometric interpretations of our results. This last part will appear
in a sequel paper in joint work with J. Machacek.
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2 CAROLINA BENEDETTI AND NANTEL BERGERON

WHY COMPUTING ANTIPODE?

A motivation to find cancelation free formulas for antipode lies in their potential geo-
metric interpretation (see poster or [1]), or in their use to derive information regarding
combinatorial invariants of the discrete objects in play. The general principle is that
antipode formulas provide interesting identities for the combinatorial invariants. One
example of this is the Hopf algebra of graphs G (see, for instance [10]).

One of the key results in the theory of Combinatorial Hopf algebras (CHA) gives
us a canonical way of constructing combinatorial invariants with values in the space
QSym of quasisymmetric functions (see [2]). Letting H =

⊕
n≥0Hn be a CHA with

character ζ : H → k we have a unique Hopf morphism

Ψ : H → QSym

such that ζ = φ1 ◦Ψ where φ1

(
f(x1, x2, . . .)

)
= f(1, 0, 0, . . .). Consider,

φt : QSym → k[t]
Mα 7→

(
t

`(a)

)
and remark that

φt
(
f(x1, x2, . . .)

)∣∣∣
t=1

= φ1(f) .

In particular

φt ◦Ψ
∣∣∣
t=1

=
(
φt
∣∣
t=1

)
◦Ψ = φ1 ◦Ψ = ζ.

Polynomial Invariants
φt ◦Ψ: H → k[t]

x 7→ χx(t)

At t = −1

χG(−1) = S ◦ φt ◦Ψ(G)
∣∣∣
t=1

= φt ◦Ψ ◦ S(G)
∣∣∣
t=1

= ζ ◦ S(G)

FOR GRAPHS (H = G)

ζ(G) =

{
1 if G is discrete graph,

0 otherwise.

Stanley’s (−1)-theorem

χG(−1) = ζ ◦ S(G) = (−1)na(G)

Using the fact that the discrete graph has coefficient (−1)na(G) in S(G) (see [1, 7, 10]),
where n is the number of vertices of G and a(G) counts the acyclic orientations in it.
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Hopf monoids

A set composition (A1, . . . , Ak) |= I of a finite set I is a finite sequence of disjoint
subsets of I whose union is I. A Hopf monoid consists of a vector species H equipped
with two collections µ and ∆ of linear maps

H[A1]⊗H[A2]
µA1,A2−−−−→ H[I] and H[I]

∆A1,A2−−−−→ H[A1]⊗H[A2]

such that

Associativity: For each set composition (A1, A2, A3) |= I

H[A1]⊗H[A2]⊗H[A3]

id⊗µA1,A2 //

µA1,A2
⊗id

��

H[A1]⊗H[A2∪A3]

µA1,A2∪A3

��
H[A1∪A2]⊗H[A3]

µA1∪A2,A3

// H[I]

H[I]

∆A1∪A2,A3 //

∆A1,A2∪A3

��

H[A1∪A2]⊗H[A3]

∆A1,A2
⊗id

��
H[A1]⊗H[A2∪A3]

id⊗∆A1,A2

// H[A1]⊗H[A2]⊗H[A3]

Compatibility: Given two decomposition of I: (A1, A2) |= I and (B1, B2) |= I'
&

$
%

P Q

R T'
&

$
%

A1

A2

'
&

$
%B1 B2

H[P ]⊗H[Q]⊗H[R]⊗H[T ]
∼= // H[P ]⊗H[R]⊗H[Q]⊗H[T ]

µP,R⊗µQ,T

��
H[A1]⊗H[A2] µA1,A2

//

∆P,Q⊗∆R,T

OO

H[I]
∆B1,B2

// H[B1]⊗H[B2]

Unity: u∅ : k→ H[∅] and Counity: ε∅ : H[∅]→ k.

Connected: H[∅] = k with H[I]⊗H[∅]
µI,∅ //

H[I]
∆I,∅
oo and H[∅]⊗H[I]

µ∅,I //
H[I]

∆∅,I
oo .

Antipode (Takeuchi-Sweedler’s formula) SI =
∑
A|=I

(−1)`(A)µA∆A : H[I]→ H[I]

(Co)Commutative?

H[A1]⊗H[A2]

τA1,A2 //

µA1,A2 ##

H[A2]⊗H[A1]

µA2,A1{{
H[I]

H[A1]⊗H[A2]

τA1,A2 // H[A2]⊗H[A1]

H[I]

∆A1,A2

cc

∆A2,A1

;;
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Linearized Hopf monoids

A set species h is a collection of sets h[I], one for each finite set I, equivariant with
respect to bijections I ∼= J . We say that h is a basis for a Hopf monoid H if for every
finite set I we have that

H[I] = kh[I]

The monoid H is linearized in the basis h if

µA1,A2 : H[A1]⊗H[A2]→ H[I] and ∆A1,A2 : H[I]→ H[A1]⊗H[A2]

are the linearization of a maps

µA1,A2 : h[A1]⊗ h[A2]→ h[I] and ∆A1,A2 : h[I]→ (h[A1]⊗ h[A2]) ∪ {0} .

Form Hopf monoids to Hopf algebras

The functors K and K [4] [n] := {1, 2, . . . , n} and char(k) = 0. Sn acts on H[n].

K(H) =
⊕
n≥0

H[n] K(H) =
⊕
n≥0

H[n]Sn

where
H[n]Sn = H[n]

/
〈x−H[σ](x) | σ ∈ Sn; x ∈ H[n]〉

The spaces K(H) and K(H) are graded Hopf algebras with (co)multiplication

µm,n : H[m]⊗H[n] → H[m+ n]
x⊗ y 7→ µ[m],{m+1,...,m+n}(x⊗ ↑m y)

and

∆m,n : H[m+ n] → H[m]⊗H[n]

x 7→
∑

(A,B)|=[m+n]
|A|=m,|B|=n

(St⊗ St)∆A,B(x)

K does not preserve antipode but K does.

Fortunately [4] we have

K(L×H) ∼= K(H)
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1. (Theorem 1) Antipode for linearized Hopf Monoid L×H

Let (α, x) ∈ (l× h)[I], where l× h linearize L×H. Takeuchi-Sweedler:

SI(α, x) =
∑
A|=I

(−1)`(A)µA∆A(α, x) =
∑
A|=I

∆A(x)6=0

(−1)`(A)(αA, xA)

Each composition A gives rise to single elements αA and xA. The coefficient of (β, y)
in SI(α, x) is a signed sum of the element in

Cβ,yα,x =
{
A |= I : (αA, xA) = (β, y)

}
we order this set using refinement.

Lemma 1.1. If Cβ,yα,x 6= ∅, then there is a unique minimal element Λ in (Cβ,yα,x,≤).

Lemma 1.2. If Cβ,yα,x 6= ∅, then for any A ∈ Cβ,yα,x we have that [Λ, A] ⊆ Cβ,yα,x.

Lemma 1.3. For Cβ,yα,x 6= ∅, the minimal elements of [Λ, (I)] \ Cβ,yα,x are all of the form

(Λ1, . . . ,Λi−1,Λi ∪ Λi+1 ∪ · · · ∪ Λj,Λj+1, . . . ,Λm)

for some 1 ≤ i < j ≤ m.

The minimal (i, j) given by lemma 1.3 define an oriented linear graph Gβ,y
α,x

Example A (of poster): For

x = {{a, c}, {b, h}, {d, e, f}}, α = abcdefh, y = {{d, e, f}} and β = abdefhc,

We have Λ = (a, b, def, h, c). The poset Cβ,yα,x is

1,2,3,4,5

12,3,4,5 1,23,4,5 1,2,34,5 1,2,3,45

123,4,5 12,34,5 1,234,5

The graph Gβ,y
α,x is then given by

• • • • •
1 2 3 4 5

defines Cβ,yα,x

Lemma 1.4. If Gβ,y
α,x is disconnected, then c(Gβ,y

α,x)
β,y

α,x
=
∑

A∈Cβ,yα,x(−1)`(A) = 0.

Lemma 1.5. If (i, i+ 1) ∈ G = Gβ,y
α,x, then c(G) = c

(
G|{1,...,i}

)
· c
(
G|{i+1,...,m}

)
.

When Gβ,y
α,x is non-nested, connected, with no short egdes, we construct a sign reversing

involution on Cβ,yα,x with at most two fixed points of opposite sign. The involution

depends only on the structure of the graph Gβ,y
α,x. This shows that in all cases The

coefficient of (β, y) in SI(α, x) is

c(Gβ,y
α,x) =

∑
A∈Cβ,yα,x

(−1)`(A) = 0, 1 or − 1.
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Orientations of Hypergraphs

A hypergraph on the vertex set [m] is G ⊂ 2[m] such that U ∈ G =⇒ U ≥ 2.

G =
{
{2, 3}, {1, 2, 5}, {1, 4, 5, f}, {2, 3, 5}, {3, 6}

}
=

1 2 3

4
5

6

An orientation (a, b) of a hyperedge U ∈ G is a partition (a, b) |= U . We represent
it as a flow on U from a single vertex of a to the vertices in b. a is the head of the
orientation. If |U | = n, then there are a total of 2n − 2 possible orientations.

An orientation O of G is an orientation of all its hyperedges.

We construct an oriented graph G/O on [m]/O be the finest equivalence class of
elements of V defined by the heads of O. For each oriented hyperedge (a, b) of O, we
have |b| oriented edges ([a], [b]) in G/O where [a], [b] ∈ [m]/O.

O={({2},{3}),({1},{2,5}),({1,5},{4,6}),({2,3},{5}),({6},{3})} → G/O =
15

23

4

6

An orientation O of G is acyclic if the oriented graph G/O has no cycles.

Let G =
{
{1, 2, 4}, {2, 3, 4}

}
. There are (23−2)(23−2) = 36 possible orientations. The

list of all 20 possible acyclic orientation is

{({4},{1,2}),({4},{2,3})}; {({4},{1,2}),({3},{2,4})}; {({4},{1,2}),({3,4},{2})}; {({2},{1,4}),({3},{2,4})};

{({2},{1,4}),({2},{3,4})}; {({2},{1,4}),({2,3},{4})}; {({1},{2,4}),({4},{2,3})}; {({1},{2,4}),({3},{2,4})};

{({1},{2,4}),({2},{3,4})}; {({1},{2,4}),({2,3},{4})}; {({1},{2,4}),({2,4},{3})}; {({1},{2,4}),({3,4},{2})};

{({1,2},{4}),({3},{2,4})}; {({1,2},{4}),({2},{3,4})}; {({1,2},{4}),({2,3},{4})}; {({1,4},{2}),({4},{2,3})};

{({1,4},{2}),({3},{2,4})}; {({1,4},{2}),({3,4},{2})}; {({2,4},{1}),({3},{2,4})}; {({2,4},{1}),({2,4},{3})}.
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2. (Theorem 2 and 3) Antipode for commutative linearized Hopf monoid

Let x ∈ h[I], where h linearize H co-comutative. Takeuchi-Sweedler:.

SI(x) =
∑
A|=I

(−1)`(A)µA∆A(x) =
∑
A|=I

∆A(x)6=0

(−1)`(A)xA.

The coefficient of y in SI(x) is a signed sum of the elements of

Cyx =
{
A |= I : xA = y

}
Lemma 2.1. Let Λ ∈ Cyx minimal. Any A ∈ Cyx is minimal iff A = σ(Λ).

Lemma 2.2. If Cyx 6= ∅, then for any A ≤ B ∈ Cyx we have that [A,B] ⊆ Cyx.

Lemma 2.3. The minimal elements of
(⋃

σ∈Sm [σΛ, (I)]
)
\ Cyx are of the form

σ(
⋃
i∈U

Λi,Λv1 ,Λv2 , . . . ,Λvr)

for some U ⊆ {1, 2, . . . ,m}, σ ∈ Sr+1, where r = m− |U | and {v1, . . . , vr} = I \ U .

This gives us an hypergraph Gy
x = {U ⊆ I : U minimal,

∏
i∈U xΛi 6= x⋃

i∈U Λi}

Lemma 2.4. There is a surjective map Ω: Cyx → Oy
x (acyclic orientation of Gy

x).

(a) Ω(A) ∈ Oy
x is such that for U ∈ Gy

x the orientation of U is given by (U∩Ai, U\Ai)
for i minimal. Furthermore V/Ω(A) is a refinement of {A1, A2, . . . , A`}.

(b) there is a unique Ω(AO) = O such that AO = (A1, A2, . . . , A`), A = V/O and
Ai is the unique maximal source of G/Oi,`.

EXAMPLE x =

a b c

d
e

y =

a b c

d
e

The minimum is Λ = (a, bc, d, e) ∈ Cyx.

Gy
x =

1
2

3
4

exclude {1, 3, 4} and {2, 4} in parts of Cyx. (12, 34)
Ω7→

1
2

3
4

An signed reversing involution on the fibers of Ω has unique fixed point AO

Theorem cyx =
∑
O∈Oyx

(−1)`(AO) = a(Gx
y).

Corollary cyx = cεGxy (Here the RHS is always in hypergraphs monoid)
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3. Some examples of applications

Theorem 3.1. For α ∈ l[n], the chromatic polynomial χα(t) counts the number of ways
to color increasing sequences of α with at most t distinct colors. We have the identity

χα(−1) = (−1)ndα,ε,

where dα,ε is the number of α-decreasing order.

Example 3.2. Let ζ21 : PR→ k defined by ζ21(x) = 1 if x = 2143 . . . (2n)(2n−1), zero
otherwise. This defines a symmetric functions Ψ21 : PR→ QSym:

Ψ21(α) =
∑
a|=n

c′a(α)Ma,

where

c′a(α) =
∣∣{A |= [n] : for 1 ≤ i ≤ `, |Ai| = 2ai and st(α|Ai) = 2143 . . . (2ai)(2ai − 1)}

∣∣.
The chromatic polynomial χ21

α (t) is then

χ21
α (t) =

∑
a|=n

c′a(α)

(
t

`(a)

)
.

We get the identity

Theorem 3.3. ∑
a|=n

(−1)`(a)c′a(α) = (−1)n/2dα,2143...(2n)(2n−1).

Conjecture 3.4. (−1)n/2Ψ21(α)(−h1,−h2, . . .) is h-positive for any α. So far, our
computer evidence suggests that this fact seams to be true as well for any kind of
chromatic symmetric function.
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