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What is a crystal?

(I’m not really going to tell you.)

I will say: for g a Kac-Moody algebra, a crystal is a collection of
data which encodes the structure of an integrable,
highest-weight Uq(g)-module. For this talk g will always be sln

or ŝln.

Applications:

Representation theory

Topology

Mathematical physics
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Combinatorics of sln crystals

A combinatorial model:

The sln crystal indexed by the partition λ is

A directed, edge-colored graph

Vertex set: all semistandard tableaux of shape λ on the
alphabet {1, . . . , n}

Edges: An i-colored edge changes a single tableau entry
i → i + 1.
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Edges in the crystal graph

1 Consider i ’s and i + 1’s in the reading word of the tableau
2 “Bracket” pairs of the form (i + 1, i)
3 Change last unbracketed i to an i + 1

3 3 4 5
2 2 3 4
1 1 2 2 3

2
−→

3 3 4 5
2 2 3 4
1 1 2 3 3

3 3 4 5 2 2 3 4 1 1 2 3 3

( ( · · ) ) ( · · · )
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Example

The sl2 crystal indexed by the partition (3, 3):

2 2 2
1 1 1

2
²²

2 2 3
1 1 1

2
²²

1 // 2 2 3
1 1 2

2
²²

2 3 3
1 1 1

2
²²

1 // 2 3 3
1 1 2

2
²²

1 // 2 3 3
1 2 2

2
²²

3 3 3
1 1 1

1 // 3 3 3
1 1 2

1 // 3 3 3
1 2 2

1 // 3 3 3
2 2 2
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Edges: Described exactly as before (concatenate the
reading word of v with that of w).
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The tensor product B(λ) ⊗ B(µ)

Vertex set: v ⊗ w with v ∈ B(λ), w ∈ B(µ)

Edges: Described exactly as before (concatenate the
reading word of v with that of w).

Example

2 3
1 1

⊗ 2
1 1 3

2
−→
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Tensor products

The tensor product B(λ) ⊗ B(µ)

Vertex set: v ⊗ w with v ∈ B(λ), w ∈ B(µ)

Edges: Described exactly as before (concatenate the
reading word of v with that of w).

Example

2 3
1 1

⊗ 2
1 1 3

2
−→ 3 3

1 1
⊗ 2

1 1 3
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The ŝln situation
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The ŝln situation
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The ŝln situation

Nontrivial Uq(ŝln) modules are infinite dimensional

There is a subgroup U ′

q(ŝln) with finite dimensional
modules
NOTE: Not all U ′

q(ŝln) modules have a crystal basis

Finite dimensional, irreducible U ′

q(ŝln) modules classified
by Chari-Pressley (Drinfeld polynomials)

Kirillov-Reshetikhin modules: A subset of these with a
crystal basis
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Kirillov-Reshetikhin Crystals

A combinatorial description of the KR crystal for (ŝln), Br ,s

Vertex set: Semistandard tableaux of shape (sr ), on the
alphabet {1, . . . , n}

Edges: {1, . . . , n − 1} edges described exactly as before

Additionally, 0-edges, which replace a tableau entry n with
a 1.

The 0-edges have a wonderful combinatorial description due to
Mark Shimozono.
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A Dynkin diagram automorphism

The Dynkin diagram for (ŝln) is

?>=<89:;0

pppppppppppppppp

?>=<89:;1 ?>=<89:;2 . . . WVUTPQRSn − 2 WVUTPQRSn − 1

SSSSSSSSSSSSSSSSSSSS

There is an automorphism of this graph (call it Ω) given by
rotating all entries one unit counter-clockwise.

The KR crystals have a corresponding automorphism.
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Promotion

A crystal automorphism pr compatible with Ω is called a
promotion operator

pr shifts arrows: pr ◦ ei = ei+1 ◦ pr and pr ◦ fi = fi+1 ◦ pr for
i ∈ {1, 2, . . . , n − 1};

pr shifts content: If wt(b) = (m1, . . . , mn) is the content of
the crystal element b ∈ B, then
wt(pr(b)) = (mn, m1, . . . , mn−1);

prn = id .

Properties can be verified from classical data.
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Example

The promotion operator pr

Remove all n’s.

Play jeu de taquin.

Increase all entries by 1.

Place 1’s in the empty space.

Theorem (Shimozono)

This operation satisfies the definition of a promotion operator.
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Remove all n’s.

Increase all entries by 1.

Play jeux de taquin.

Place 1’s in the empty space.

Example

3 3 3
2 2 2
• • 1
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Remove all n’s.

Increase all entries by 1.

Play jeux de taquin.

Place 1’s in the empty space.

Example

4 4 4
3 3 3
• • 2
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Remove all n’s.

Increase all entries by 1.

Play jeux de taquin.

Place 1’s in the empty space.

Example

4 4 4
3 3 3
1 1 2
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Back to crystals

A definition of 0-edges:

The edge b 0
−→ b′ exists if and only if the edge pr(b)

1
−→ pr(b′)

exists.

3 4 4
2 3 3
1 2 2

pr
−→

4 4 4
3 3 3
1 1 2

1
−→

4 4 4
3 3 3
1 2 2

pr−1

−→
3 3 4
2 2 3
1 1 2

therefore

3 4 4
2 3 3
1 2 2

0
−→

3 3 4
2 2 3
1 1 2
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Example

2 2 2
1 1 1

2
²²

2 2 3
1 1 1

2
²²

1 // 2 2 3
1 1 2

0
bbEEEEEEEE

2
²²

2 3 3
1 1 1

2
²²

1 // 2 3 3
1 1 2

0
bbEEEEEEEE

2
²²

1 // 2 3 3
1 2 2

2
²²

0
bbEEEEEEEE

3 3 3
1 1 1

1 // 3 3 3
1 1 2

0
bbEEEEEEEE

1 // 3 3 3
1 2 2

0
bbEEEEEEEE

1 // 3 3 3
2 2 2

0
bbEEEEEEEE
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Question

(Shimozono) The operator pr is the unique promotion
operator on rectangles.

Under the assumption that any affine crystal has a
promotion operator, this shows that there is a unique affine
structure on rectangles.

What can we say about tensor products?

Theorem (BST)

There is a unique promotion operator on the tensor product of
two distinct irreducible sln crystals.
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Why do we care?

We want to better understand how finite-dimensional affine
crystal structures arise.

It is conjectured that the only finite-dimensional affine
crystals are the KR crystals Br ,s, and tensor products of
these.

Understand the correspondence with rigged configurations.
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Main Ingredients

Content consideration/“bracketing” arguments

Reduction to special elements

Induction

Duality
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Bracketing Arguments

In B1,2 ⊗ B1,1 (as sl3 crystals) consider:

23 ⊗ 1
pr
−→ 13 ⊗ 2

Fixed by bracketing.

13 ⊗ 2 →? → 23 ⊗ 1

So we must have
13 ⊗ 2 → 12 ⊗ 3
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Lemma

If pr(b) is fixed and there is a path from b → b′ without using
(n − 1)-colored edges, then pr(b′) is fixed.
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Reduction to special elements

Lemma

If pr(b) is fixed and there is a path from b → b′ without using
(n − 1)-colored edges, then pr(b′) is fixed.

Proof: Apply promotion to b and follow the image of the path.

Example:

13 ⊗ 2
pr //

1
²²

12 ⊗ 3

2
²²

23 ⊗ 2
pr // 13 ⊗ 3
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In the crystal Br ,s ⊗ Br ′,s′ , there is a only one possibility for
promotion on any element with s + s′ occurences of 1.
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We assume by induction that there is a unique promotion on
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Induction

Lemma

In the crystal Br ,s ⊗ Br ′,s′ , there is a only one possibility for
promotion on any element with s + s′ occurences of 1.

We assume by induction that there is a unique promotion on
the crystal Br−1,s ⊗ Br ′−1,s′ .

Set Ci = set of elements with s + s′ copies of i , along with all
“internal” edges (those edges not colored i or i − 1).
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Induction

Set D = Br−1,s ⊗ Br ′−1,s′ as an sln−1 crystal.
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Induction

Set D = Br−1,s ⊗ Br ′−1,s′ as an sln−1 crystal. There is a unique
crystal map φ1 : C1 → D.

Given a proposed promotion p, define φ2 : C2 → D by

φ2 = prD ◦ φ1 ◦ pr−1
C

C1

φ1

²²

p // C2

φ2

²²

p // C3

φ3

²²

p // . . .
p // Cn

p=τ //

φn

²²

C1
φ1

~~||
||

||
||

D
ρ1 // D

ρ1 // D
ρ1 // . . .

ρ1 // D
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Duality

There is an isomorphism of sln crystals Br ,s ∼= Bn−r ,s. Thus for
a fixed tensor product Br ,s ⊗ Br ′,s′ , it is sufficient to consider
n ≤ r + r ′.
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