(日)

Affine Crystal Structures and Promotion Operators

Jason Bandlow Joint with Anne Schilling and Nicolas Thiéry

University of California Davis

May 4, 2008

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Classical Crystals
- Affine Crystals

▲□▶▲圖▶▲필▶▲필▶ - 亘 - 釣�?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

What is a crystal?

What is a crystal?

(I'm not really going to tell you.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

What is a crystal?

(I'm not really going to tell you.)

I will say: for g a Kac-Moody algebra, a *crystal* is a collection of data which encodes the structure of an integrable, highest-weight $U_q(g)$ -module. For this talk g will always be \mathfrak{sl}_n or $\widehat{\mathfrak{sl}}_n$.

What is a crystal?

(I'm not really going to tell you.)

I will say: for \mathfrak{g} a Kac-Moody algebra, a *crystal* is a collection of data which encodes the structure of an integrable, highest-weight $U_q(\mathfrak{g})$ -module. For this talk \mathfrak{g} will always be \mathfrak{sl}_n or $\widehat{\mathfrak{sl}}_n$.

Applications:

- Representation theory
- Topology
- Mathematical physics

Type A Crystals

Combinatorics of \mathfrak{sl}_n crystals

A combinatorial model:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Combinatorics of \mathfrak{sl}_n crystals

A combinatorial model:

The \mathfrak{sl}_n crystal indexed by the partition λ is

• A directed, edge-colored graph

Combinatorics of \mathfrak{sl}_n crystals

A *combinatorial* model:

The \mathfrak{sl}_n crystal indexed by the partition λ is

- A directed, edge-colored graph
- Vertex set: all semistandard tableaux of shape λ on the alphabet {1,..., n}

Combinatorics of \mathfrak{sl}_n crystals

A combinatorial model:

The \mathfrak{sl}_n crystal indexed by the partition λ is

- A directed, edge-colored graph
- Vertex set: all semistandard tableaux of shape λ on the alphabet {1,..., n}
- Edges: An *i*-colored edge changes a single tableau entry $i \rightarrow i + 1$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Edges in the crystal graph

- Oconsider *i*'s and i + 1's in the reading word of the tableau
- **2** "Bracket" pairs of the form (i + 1, i)
- Solution Change last unbracketed *i* to an i + 1

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Edges in the crystal graph

- Consider *i*'s and i + 1's in the reading word of the tableau
- **2** "Bracket" pairs of the form (i + 1, i)
- Change last unbracketed i to an i + 1

Edges in the crystal graph

- Oconsider *i*'s and i + 1's in the reading word of the tableau
- **2** "Bracket" pairs of the form (i + 1, i)
- Solution Change last unbracketed i to an i + 1

3 3 4 5 2 2 3 4 1 1 2 2 3

Edges in the crystal graph

- Oconsider *i*'s and i + 1's in the reading word of the tableau
- **2** "Bracket" pairs of the form (i + 1, i)
- Schange last unbracketed *i* to an i + 1

3 3 4 5 2 2 3 4 1 1 2 2 3

(日) (日) (日) (日) (日) (日) (日)

Edges in the crystal graph

- Consider i's and i + 1's in the reading word of the tableau
- 2 "Bracket" pairs of the form (i + 1, i)
- Schange last unbracketed *i* to an i + 1

3 3 4 5 2 2 3 4 1 1 2 2 3 ((· · ·)) (· · ·)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Edges in the crystal graph

- Consider i's and i + 1's in the reading word of the tableau
- 2 "Bracket" pairs of the form (i + 1, i)
- Change last unbracketed i to an i + 1

Example

The \mathfrak{sl}_2 crystal indexed by the partition (3,3):

Tensor products

The tensor product $B(\lambda) \otimes B(\mu)$

- Vertex set: $v \otimes w$ with $v \in B(\lambda)$, $w \in B(\mu)$
- Edges: Described exactly as before (concatenate the reading word of *v* with that of *w*).

Tensor products

The tensor product $B(\lambda) \otimes B(\mu)$

- Vertex set: $v \otimes w$ with $v \in B(\lambda)$, $w \in B(\mu)$
- Edges: Described exactly as before (concatenate the reading word of *v* with that of *w*).

Example

$$\begin{bmatrix}
 2 & 3 \\
 1 & 1
 \end{bmatrix} \otimes
 \begin{bmatrix}
 2 & 2 \\
 1 & 1
 \end{bmatrix}
 \xrightarrow{2}$$

・ロト・日本・日本・日本・日本

Tensor products

The tensor product $B(\lambda) \otimes B(\mu)$

- Vertex set: $v \otimes w$ with $v \in B(\lambda)$, $w \in B(\mu)$
- Edges: Described exactly as before (concatenate the reading word of *v* with that of *w*).

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

• Nontrivial $U_q(\widehat{\mathfrak{sl}}_n)$ modules are infinite dimensional

シック・ 川 ・ 山 ・ 山 ・ ・ 山 ・ ・ 山 ・

The $\widehat{\mathfrak{sl}}_n$ situation

- Nontrivial $U_q(\widehat{\mathfrak{sl}}_n)$ modules are infinite dimensional
- There is a subgroup U'_q(st_n) with finite dimensional modules
 NOTE: Not all U'_q(st_n) modules have a crystal basis

- ロト・日本・日本・日本・日本・日本

The $\widehat{\mathfrak{sl}}_n$ situation

- Nontrivial $U_q(\widehat{\mathfrak{sl}}_n)$ modules are infinite dimensional
- There is a subgroup U'_q(ŝl_n) with finite dimensional modules
 NOTE: Not all U'_q(ŝl_n) modules have a crystal basis
- Finite dimensional, irreducible U'_q(ŝl_n) modules classified by Chari-Pressley (Drinfeld polynomials)

シック・ボート (中下・) マック

The $\widehat{\mathfrak{sl}}_n$ situation

- Nontrivial $U_q(\widehat{\mathfrak{sl}}_n)$ modules are infinite dimensional
- There is a subgroup U'_q(ŝl_n) with finite dimensional modules
 NOTE: Not all U'_q(ŝl_n) modules have a crystal basis
- Finite dimensional, irreducible U'_q(ŝl_n) modules classified by Chari-Pressley (Drinfeld polynomials)
- Kirillov-Reshetikhin modules: A subset of these *with* a crystal basis

Kirillov-Reshetikhin Crystals

A combinatorial description of the KR crystal for $(\widehat{\mathfrak{sl}}_n)$, $B^{r,s}$

- Vertex set: Semistandard tableaux of shape (s^r), on the alphabet {1,..., n}
- Edges: $\{1, \ldots, n-1\}$ edges described exactly as before

Kirillov-Reshetikhin Crystals

A combinatorial description of the KR crystal for $(\widehat{\mathfrak{sl}}_n)$, $B^{r,s}$

- Vertex set: Semistandard tableaux of shape (s^r), on the alphabet {1,..., n}
- Edges: $\{1, \ldots, n-1\}$ edges described exactly as before
- Additionally, 0-edges, which replace a tableau entry *n* with a 1.

Kirillov-Reshetikhin Crystals

A combinatorial description of the KR crystal for $(\widehat{\mathfrak{sl}}_n)$, $B^{r,s}$

- Vertex set: Semistandard tableaux of shape (s^r), on the alphabet {1,..., n}
- Edges: $\{1, \ldots, n-1\}$ edges described exactly as before
- Additionally, 0-edges, which replace a tableau entry *n* with a 1.

The 0-edges have a wonderful combinatorial description due to Mark Shimozono.

・ロン ・四 と ・ ヨ と ・ ヨ と

3

A Dynkin diagram automorphism

The Dynkin diagram for $(\widehat{\mathfrak{sl}}_n)$ is

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

A Dynkin diagram automorphism

The Dynkin diagram for $(\widehat{\mathfrak{sl}}_n)$ is

There is an automorphism of this graph (call it Ω) given by rotating all entries one unit counter-clockwise.

The KR crystals have a corresponding automorphism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Promotion

A crystal automorphism pr compatible with Ω is called a *promotion* operator

Promotion

A crystal automorphism pr compatible with Ω is called a *promotion* operator

- *pr* shifts arrows: $pr \circ e_i = e_{i+1} \circ pr$ and $pr \circ f_i = f_{i+1} \circ pr$ for $i \in \{1, 2, ..., n-1\}$;
- *pr* shifts content: If *wt*(*b*) = (*m*₁,..., *m_n*) is the content of the crystal element *b* ∈ *B*, then *wt*(*pr*(*b*)) = (*m_n*, *m*₁,..., *m_{n-1}*);
- $pr^n = id$.

Promotion

A crystal automorphism pr compatible with Ω is called a *promotion* operator

- *pr* shifts arrows: $pr \circ e_i = e_{i+1} \circ pr$ and $pr \circ f_i = f_{i+1} \circ pr$ for $i \in \{1, 2, ..., n-1\}$;
- *pr* shifts content: If *wt*(*b*) = (*m*₁,..., *m_n*) is the content of the crystal element *b* ∈ *B*, then *wt*(*pr*(*b*)) = (*m_n*, *m*₁,..., *m_{n-1}*);

•
$$pr^n = id$$
.

Properties can be verified from classical data.

The promotion operator pr

The promotion operator pr

- Remove all n's.
- Play jeu de taquin.
- Increase all entries by 1.
- Place 1's in the empty space.
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

The promotion operator pr

- Remove all n's.
- Play jeu de taquin.
- Increase all entries by 1.
- Place 1's in the empty space.

Theorem (Shimozono)

This operation satisfies the definition of a promotion operator.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example		
3 4 4 2 3 3 1 2 2		

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example 3 4 • 2 3 3 1 2 2

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example 3 4 2 3 1 2

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example	e		
3 3 4 2 • 3 1 2 2			

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example 3 3 4 2 2 3 1 2 3

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example	
3 3 4 2 2 3 • 1 2	

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example 3 • 2 2 • 1

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example	le	
3 3 3 2 2 • • 1 2		

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example	9	
333 2222 •1•		

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example	
3 3 3 2 2 2 • • 1	

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Example	le		
4 4 4 3 3 3 • • 2			

- Remove all n's.
- Increase all entries by 1.
- Play jeux de taquin.
- Place 1's in the empty space.

Exampl	le		
4 4 4 3 3 3 1 1 2	4 33 2		

Back to crystals

A definition of 0-edges:

The edge $b \xrightarrow{0} b'$ exists if and only if the edge $pr(b) \xrightarrow{1} pr(b')$ exists.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Back to crystals

A definition of 0-edges:

The edge $b \xrightarrow{0} b'$ exists if and only if the edge $pr(b) \xrightarrow{1} pr(b')$ exists.

therefore

Example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ◆ ○ ◆

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 (Shimozono) The operator pt is the unique promotion operator on rectangles.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- (Shimozono) The operator pt is the unique promotion operator on rectangles.
- Under the assumption that any affine crystal has a promotion operator, this shows that there is a unique affine structure on rectangles.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- (Shimozono) The operator pt is the unique promotion operator on rectangles.
- Under the assumption that any affine crystal has a promotion operator, this shows that there is a unique affine structure on rectangles.
- What can we say about tensor products?

- (Shimozono) The operator pt is the unique promotion operator on rectangles.
- Under the assumption that any affine crystal has a promotion operator, this shows that there is a unique affine structure on rectangles.
- What can we say about tensor products?

Theorem (BST)

There is a **unique** promotion operator on the tensor product of two distinct irreducible \mathfrak{sl}_n crystals.

We want to better understand how finite-dimensional affine crystal structures arise.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

We want to better understand how finite-dimensional affine crystal structures arise.

• It is conjectured that the only finite-dimensional affine crystals are the KR crystals *B*^{*r*,*s*}, and tensor products of these.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

We want to better understand how finite-dimensional affine crystal structures arise.

- It is conjectured that the only finite-dimensional affine crystals are the KR crystals *B*^{*r*, *s*}, and tensor products of these.
- Understand the correspondence with rigged configurations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Main Ingredients

- Content consideration/"bracketing" arguments
- Reduction to special elements
- Induction
- Duality

Bracketing Arguments

In $B^{1,2} \otimes B^{1,1}$ (as \mathfrak{sl}_3 crystals) consider:

$$23 \otimes 1 \stackrel{pr}{\longrightarrow} 13 \otimes 2$$

Fixed by bracketing.

Bracketing Arguments

In $B^{1,2} \otimes B^{1,1}$ (as \mathfrak{sl}_3 crystals) consider:

$$23 \otimes 1 \stackrel{pr}{\longrightarrow} 13 \otimes 2$$

Fixed by bracketing.

$$13 \otimes 2 \rightarrow ?$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bracketing Arguments

In $B^{1,2} \otimes B^{1,1}$ (as \mathfrak{sl}_3 crystals) consider:

$$23 \otimes 1 \stackrel{pr}{\longrightarrow} 13 \otimes 2$$

Fixed by bracketing.

$$13\otimes 2 \rightarrow ? \rightarrow 23\otimes 1$$

So we must have

$$13 \otimes 2 \rightarrow 12 \otimes 3$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Reduction to special elements

Lemma

If pr(b) is fixed and there is a path from $b \rightarrow b'$ without using (n-1)-colored edges, then pr(b') is fixed.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Reduction to special elements

Lemma

If pr(b) is fixed and there is a path from $b \rightarrow b'$ without using (n-1)-colored edges, then pr(b') is fixed.

Proof: Apply promotion to *b* and follow the image of the path.

Reduction to special elements

Lemma

If pr(b) is fixed and there is a path from $b \rightarrow b'$ without using (n-1)-colored edges, then pr(b') is fixed.

Proof: Apply promotion to *b* and follow the image of the path.

Example:

$$13 \otimes 2 \xrightarrow{pr} 12 \otimes 3$$

$$1 \downarrow \qquad \qquad \downarrow^{2}$$

$$23 \otimes 2 \xrightarrow{pr} 13 \otimes 3$$

・ロト・日本・日本・日本・日本・日本

Induction

Lemma

In the crystal $B^{r,s} \otimes B^{r',s'}$, there is a only one possibility for promotion on any element with s + s' occurences of 1.

Induction

Lemma

In the crystal $B^{r,s} \otimes B^{r',s'}$, there is a only one possibility for promotion on any element with s + s' occurences of 1.

We assume by induction that there is a unique promotion on the crystal $B^{r-1,s} \otimes B^{r'-1,s'}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Induction

Lemma

In the crystal $B^{r,s} \otimes B^{r',s'}$, there is a only one possibility for promotion on any element with s + s' occurences of 1.

We assume by induction that there is a unique promotion on the crystal $B^{r-1,s} \otimes B^{r'-1,s'}$.

Set C_i = set of elements with s + s' copies of *i*, along with all "internal" edges (those edges not colored *i* or *i* – 1).

Induction

Set
$$D = B^{r-1,s} \otimes B^{r'-1,s'}$$
 as an \mathfrak{sl}_{n-1} crystal.

Induction

Set $D = B^{r-1,s} \otimes B^{r'-1,s'}$ as an \mathfrak{sl}_{n-1} crystal. There is a *unique* crystal map $\phi_1 : C_1 \to D$.

Given a proposed promotion p, define $\phi_2 : C_2 \rightarrow D$ by

$$\phi_2 = \mathrm{pr}_D \circ \phi_1 \circ \mathrm{pr}_C^{-1}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

There is an isomorphism of \mathfrak{sl}_n crystals $B^{r,s} \cong B^{n-r,s}$. Thus for a fixed tensor product $B^{r,s} \otimes B^{r',s'}$, it is sufficient to consider $n \le r + r'$.

