THE RESTRICTION OF Gi,(C) MODULES TO THE SUBGROUP OF 5,

MIKE ZABROCKI

The character of a Gl,,(C) module is given by the formula

I 0 0
0 X9 0
che, (M) = |b
beM 0 0 ’ 0
0O 0 ... =z,

coef b

where the sum runs over a basis of the module M. This expression is a symmetric function
in the indeterminates x;.

The character determines the decomposition of the module into irreducibles. If the
module has a character given by a Schur function in the variables x1,xo, ..., z, then the
module is irreducible. The character is a function of the eigenvalues of the matrix to C.

Since the symmetric group (represented as permutation matrices) is a natural subgroup
of Gl,,(C) we ask the following question:

Question: Given an irreducible Gl,,(C) module, how does it decompose into irreducible
S, modules?

This turns out to be easy to compute for specific examples. I don’t know the answer
to this question in general and it would be very useful to have a clear expression for this
decomposition. The character of a GI,,(C) module M at a permutation matrix A, will be
the evaluation of the symmetric function chgy, (c)(M)(z1, 22, ..., 7,) at the eigenvalues of
the matrix A,.

Now the eigenvalues of the matrix A, are determined by the cycle structure of the per-
mutation o and they will be E,,,E),, ..., E), where 5, =1, e2mi/m edmifm - o2(m—1)mi/m
(the m roots of unity).

Example: So for instance, the irreducible Gl3(C) module with character s (71, z2, 73)
considered as an S3 module has an S3 character that when evaluated at the identity
has character equal to s(z)(1,1,1) = 21. The character evaluated at the permutation
(12)(3) will be s(5)(1,—1,1) = 3. The character evaluated at the permutation (123) will

be s (1, e2mi/3 64”/3) =0.

Date:
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As an example, we consider M as the GI,,(C) module consisting of the polynomials in n
variables of degree k. That is, M = {y{"" ---y5™ : oq + - - - + ay, = k}. Note that M has a
character given by

I 0 0
0 ro ... 0
char, ) (M) = Y |y* = > 2% =su (w1, 20)
Fot 0 0 . 0 o
0O 0 ... x,

coef y&
We define the Frobenius characteristic of an S,, character as
Fs.(x) = Y _x(@(N)pa/za
AFn

where o()\) is a permutation of cycle type \. For a Gl,,(C) character f(x1,xo,...,x,) we
have that

an(f(.l‘l,.ﬁz, s 7:611)) = Z f[E)\l + et EAg()\)]pA/Z)\-
AFn

Example: The example of the module with character ss) (21, x2,23), we have already
calculated the Frobenius image as Fg,(s(5) (71,72, 73)) = 21p(111)/6 + 3p21)/2. But we
have also determined that the module is isomorphic to the polynomials of degree 5 in three
variables. Since we know that the Frobenius image of the polynomial ring in 3 variables

has a graded Frobenius image of hg [1%1} hence we know that the coefficient of ¢° in the

expression will be equal to the Frobenius image Fg;(s(5) (1,72, 73)). Since we know that

X 1 1 1
hs [ } = 5(3)[X]s(3) {} + S(21) [ X]s(21) L—CJ + saiy[X]say [1_}

1—gq I—gq q

then we know that the coefficient of ¢°s)[X] will be the number of column strict tableaux
of shape A with entries in 0, 1,2, 3, ... whose entries sum to 5.

For)\:(3)weknowthatthetableauxaregivenby’o|0|5‘,’0|1|4‘,’0|2|3H1|1|3‘,

[1]2]2]
5 4 3] [2] 2 3
0 0

(1]
For A\ = (2,1) the tableaux are given by [0 0‘, 0 1‘, 0 4‘, 2‘, 3‘, 1 2‘, 11]

For A = (1,1, 1) the tableaux are given by 10 and [0]

We conclude that Fg,(s(s) (71,72, 73)) = 583y + 7s(21) + 28(111)-

Notice that in general that we can express the special case

Fsn (8 (w1, 20)) = ZCE\’“)S/\
AFn
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(k)

where ¢\ is the number of column strict tableaux of shape A whose entries sum to k.
Macdonald also gives another interpretation of this coefficient (p. 81 example 14). cE\k)
is also the number of column strict plane partitions of shape A. A plane partition is a stack

of blocks with adjacent stacks which are weakly decreasing in height. A plane partition is
column strict if the stacks are strictly decreasing in the columns.

LLeee

VEE Bass
LT

Note that this is similar to the last interpretation except that the order of the alphabet
is reversed since these objects are equivalent to column strict tableaux of shape A with
entries that are weakly decreasing rows and strictly decreasing in columns.

We remark that given two Gl,,(C) modules, their (inner) tensor product will have char-
acter as the product of the product of the modules. That is, for modules M, N,

chai, ) (M ® N) = chay, ) (M)chay,, ) (V).

This follows directly from the definition of the character.
We also have that the Frobenius image satisfies Fg, (fg) = Fs, (f) * Fs, (g) where
is the inner tensor product (Kronecker product). The Kronecker product on symmetric
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functions is defined as py/2zx * pu/2u = rupr/2x- It then follows that

Fs,(f) * Fs,(9) = (Z fEx + -+ EAe(A)]p)\/Z/\> * (Z glEN +-- + E’)\g()\)]p)\/z)\>
AFn AFn

AFn

= Fs,(fg)

Macdonald (p. 50 example 17) talks about the evaluation of a Schur function at the sum
of roots of unity. s)[=Z,,] = £1 if A\ has an empty m-core (i.e. it can be tiled with ribbons
of length m) and s)[Z,,] = 0 otherwise. The sign of s)[Z,,] will be the sign of the unique
permutation o such that A + 6, = 0(d,,) (mod m) where 6,, = (m —1,m —2,...,1,0).

It is quite simple to write a short program which accepts a symmetric function and
a value of n (determining which copy of GI,,(C) on is working in) and which returns a
symmetric function which returns the Frobenius image of this function as an S, character.
> with(SF)
> psum:=proc(lst,k) local ij;
add(1st[i],i=1..k);
end:

> toSnFrob:=proc(expr,n) local i,lambda,j;

add( mul( cat(p,lambdali]), i=1..nops(lambda))/zee(lambda)*
simplify(subs(seq(seq(x[psum(lambda,i-1)+j+1]=exp(2*Pi*I*j/lambdali]),
j=0..lambdal[i]-1), i=1..nops(lambda)),

evalsf (expr, add(x[i],i=1..convert(lambda, ‘+))))),

lambda=Par(n));

end:

The program above substitutes the roots of unity in for the variables of the symmetric
function after evaluating the symmetric function at n variables.
We compute an example using this program:

> for i from 1 to 6 do
> tos(toSnFrob(s[1],i));
> od;

S(1)
S(2) T 511)
5(3) T 5(21)
S(a) T 5(31)
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8(5) T 5(41)
5(6) T 5(51)
Observing the data below, one simple conjecture to make (that should not be that hard
to prove) is

Conjecture 1.
fSn(s(w)(ﬂCla@a ey ) = S(n—k,1k) T S(n—k+1,1k-1)

Here is data for Fg, (sa(x1,22,...,2,)) for n < 6 and [A| < 5. Note that if n < £(X)
then sy(z1,22,...,2,) = 0.

Fs, (sq)) = s

Fs, (s(2)) = s()

Fs,(s3)) = sq)

Fs, (s4)) = s()

Fs,(s(5)) = s(1)
Fs,(s1)) = s@) + sa

Fs,(s41)) = 252) + 2s011)
Fs,(s32)) = s2) + s
Fs,(s1)) = 8(21) + s3)
Fiy(s(2) = 25(3) + 2521

Fsy(san) = saiy + s

Fsy(s(3)) = sy + 3s3) + 350
Fsy(s@1)) = saiy + s@) + 3sa@
Fsy(s(111)) = s(111)
Fsy(s4)) = 511y + 4s(3) + 55021
Fs,(s 31)) 3s(111) + 25(3) + 55
Fs;(s(22)) = 25(3) + 25021
Fsy(s211)) = s(111) + 8(21)
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F53(8(5)) :28(111) + 58(3) + 78(21)
Fsy(sa1)) = 45111y + 4s3) + 8s21)
Fis5(s(32)) = 2511 1) + 3s3) + 55
Fsy(s311)) = 25(111) + 25(21)
Fsy(s221)) = 8(3) + S(21)
Fs,(s(1y) = sy + 5@

Fs,(5(2)) = 2801 + 25(31) + 5(22)
Fs,(s(11)) = s211) + 8(31)
FS4(5(3)) = S@11) + 3su) + 4531 + S22
Fs,(s21)) = 28(211) + Sa) + 3531) + 25(022)
FS4( (111) = S(1111) + S(211)

Fs,(s@)) = 25211) + 58y + 6531y + 35(22)
Fs,(s31)) = 254) + 35(22) + 55211) + Sy + 7S
Fs,(8(22)) = 25a) + 38(22) + 8211y + 35@31)
Fs,(s211)) = 5220 + 3s211) + Sy + S
Fs,(sa111)) = sain)

F54(8(5)) :68(4) + 48(22) + 48(211) + 108(31)
Fs,(s41)) =554y + Ts@2) + 9s@uy + 25111y + 128331
Fs4(3(32)) =45y + 9522) + 6S@211) + Sy + 9@
Fs,(s311)) = 3s(22) + 65211 + 3sa111) + 3s(31)
Fs,(s221)) = 84y + 28(22) + 25211y + 38(31)
Fs,(s@in) = s@i) + sain
Fsy(s(1)) = 850 + Sy
Fs;(s2)) = 285y + 25(41) + 5(32)

Fs;(sany) = s@1) + Sw@)
) = 8@11) T 355) + 2832) + 45
25(311) + S(221) t S(5) + 2532) + 3s(4n)
Fs;(sain)) = s@u) + S
Fs;(s)) = 25311) + S21) + 555 + 45(32) + Ts41)
Fs;(s@31)) = 285y + Ts@1) + 5s@2) + 65311y + S@iin) + 25221
Fsy(s(22)) = 25(5) + 3s1) + 4s32) + s@11) + 280221)
Fs;(s211)) = sa1) + S@2) + 35@11) + 28@111) + 280221)
Fs;(s(1111)) = S2111) + S@1111)
s(5)) = 1sa1) + 7s@32) + 55y + 250221) + 7Ts(5)
FS5(8(41)):14 (41) T+ 38(2111) + 68(221) + 58(5) + 113(32) + 1ls31y)

FS5( 5(3)
Fs,(s(21)) =
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FS5(3(32)) = 108(41) + 28(2111) + 58(221) + 48(5) + 108(32) + 88(311)
Fs;(s311)) = 381y + 5s@iiny + sain + 5S@21) + 4832) + 83311
Fs,(8(221)) = 38(a1) + S2111) + 45221) + 8(5) + 45(32) + 35@311)
Fsy(s2111)) = 3s5@2111) + Saun) + Se21) + 5311
F55(3(11111)) = S(11111)

Fss(s1)) = sis1) + 5(6)

Fss(s(2)) = 28(51) + Sa2) + 25
Fse(san) = si1y + sun)

Fss(s(3)) =4s51) + 2512) + S@3) + 386) + S@1n)
Fss(s(21)) = 3s(51) + 28(12) + S6) + 2511) + 5(321)
Fse(s(111)) = s(3111) + S(a11)

Fss(s(2) =556y + Ts@1) + Bsuz) + S@3) + S@e21) + 2811
Fss(s@31)) = s@111) + 256) + 7851) + 98(a2) + 28(33) + 38(321) + 65411)
Fss(s(22)) = 28(6) + 35(51) + 4S2) + S11) + S@33) + 28321) T S(222)
Fsg(s(211)) = 8(51) + S@2) + 3su11) + 28@21) + 25@3111) + See211)
Fss(s(1111)) = S(21111) + 8(3111)

F56(8(5)) = 123(51) + 88(42) + 58(411) + 38(321) + 78(6) + 38(33)

Fss(8(41)) = 58(6) + 148(51) + 135(42) + 128(411) + 45(33) + 85(321) + 35(3111) + S(222) + S(2211)
Fss(8(32)) = 45(6) + 108(51) + 118(42) + 85(411) + 55(33) + 85(321) + 25(3111) + S(222) + S(2211)
Fse(5(311)) = 38(51) + 48(a2) + 85(a11) + 8(33) + T8(321) + 68(3111) + S(202) + 25(2211) + S(21111)
Fise(8(221)) = 8(6) + 38(51) + 48(42) + 38(a11) + 25(33) + 5S(321) + S(3111) + 28(222) + 25(2211)

Fss(s2111)) = S@11) + S@21) + 38111y + 282211) + 2821111)
FS6(S(11111)) = S(21111) T S@11111)



ON THE DECOMPOSITION OF GI,(C) REPRESENTATIONS INTO
IRREDUCIBLE S, MODULES II: GUIDING FORMULAS

MIKE ZABROCKI

First we list some properties of the Frobenius map which sends a an S,, character x :
S, — C into a symmetric function by the map

F(x) =Y x(a(N)pa/za.

AFn

For an S, module M, denote Frob(M) = F(charg, (M)).

Let M* be a G1,,(C) module with character equal to the symmetric function sy (1, 2, . . .

I mentioned in the last writeup that Frob(M(lk)) = S(n—k1*) T S(n—k+1,1%-1)- I received
an elementary proof of this proposition from Adriano Garsia:

M(lk) ~ L’{a:il/\xh/\- AT, 1< <ag < e <G < n} ~ Indgzxsn_k[,{xl/\xg/\- . -/\.Z‘k;}

where the action of S,,_j is trivial on the module and Sj has the sign action on z1 A x2 A

A T

Therefore FT‘Ob(M(lk)) = 5(1k)3(n—k) = s(n—k,lk) + S(R_k_i_l’lk—l).
That two line proof should be broken down into lemmas

Lemma 1.

M(lk)zﬁ{xil/\xm/\u‘/\xik:1§i1<i2<--~<ik§n}

Proof. We compute the Gl,(C) character of L{zj, Axijy N---Aaxj, 1 <3 <ig<---<

’L.k S ’I’L} Let diag(y173127 e
variables by diag(y1,y2,- -

Z d/iag(yhyQa o

11 <t <---<ig

Therefore L{x;; A zjy N -
with character s (y1, Y2, .-

Lemma 2.

,Yr) represent a diagonal matrix of Gl,,(C) which acts on the
Yk )T = Y.

L UYR)T ATy N AN Xy,

Tiy /\$i2/\~~-/\l’ik

Z YirYis - Yiy, :S(Ik)(ylayQa"'ayn)
11 <t <. <i
Nag, 11 <4 <ig < - < < n} is the irreducible module
2 Yn)- O

L{xil/\xiQ/\---/\xik:1§i1<i2<-~-<ikSn}:Indgzxsnikﬁ{xl/\xg/\"-/\xk}

Date: December 6, 2006.

) T ).
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Proof. Recall that Ind%;;xsn,kﬁ{bi} = L{o ®g, x5, _, bi : 0 € Sp,b;} where we have the
tensor over a group satisfies the relations

ch®yv=0Qg hv.
The isomorphism is given by

1 ook ka1l ...
xileiQA“-AJZikH(. . + n

. & I A WA 2 WAREAN #
(SN 7 F I Jn—k> Sk Sn—k F

where {jl,jg, ce ajn—k} = [n]\{il,iQ, e ,ik}.

The proof is to show that this map is equivariant with respect to the action of the
symmetric group 5, and it suffices to show that the action of the simple transpositions
(4,7 + 1) are equal on both basis elements. There will be four cases to consider, namely
both j and j + 1 are in {iy,i2,...,9}, 7 is in {i1,42,...,9%} and j + 1 is not, 7 + 1 is in
{i1,12,...,1} and j is not, and 7,7 + 1 & {i1,42,...,0%}.

We leave the remainder of the proof as an exercise to the reader. O

The third step of Adriano’s proof is that we need to know some properties of the Frobe-
nius map. We list below some of the images of common S,, modules.

trivial S, module — S(n)
sign .S, module — S(1m)
permutation representation {1,2,...,n} — Su_1)81) = S(n) + S(n-1,1)
regular representation — 37(11)
Indg,, s MeN —  Frobs, (M)Frobs, . (N)
Do Res?:xsn_kM — A(Frobg, (M))
R‘fngxsn,kM = Dk SmebSn (M) ® sx
M ® N (with S, acting diagonally) —  Frobg, (M) ® Frobg, (N)

Adriano also provided me with a construction of the irreducible Gi,,(C) modules. Let T
be a standard tableaux of shape A a partition of k. Let

N(T) = Z sgn(o)o

o€col(T)

PT)= > o

oerow(T)
h) = product of the hooks of A

col(T) and row(T) are the column and row group of the tableau T and are subgroups of
Sk. Sk will act on positions of letters in words, that is, a right action. Gl,,(C) will have a
left action on the variables.

Next set

Er = N(T)P(T)/hy.
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Now set
M ~ L{wEy : w € [n]*}.
Note that the elements wE7 form a spanning set and not a basis so one will have to linearly
reduce these elements to a basis.

What is interesting to note from this construction is that it is possible to decompose
M? into submodules of a fixed content. We define the content of a word to be the tuple
representing the number of 1s, the number 2s, ..., the number of ns in the word. This
tuple is then sorted so that order of the elements does not matter. 0 entries are allowed
in this tuple so that the content of a word will be content(w) = 0m™1™ -..r"™" where
no+mni+---+n, =nand Ong + Iny + ---rn, = k (e.g. if n = 4 then content(114414) =
content(222111) = (0%32)). Next we set

M) = {wEr : w € [n]", content(w) = a}.

Now we have reduced the problem of finding a decomposition of the module M* as an
S, module to finding a decomposition of the module M} for each . For many special
cases of « this is not a difficult problem.

Proposition 3.
Frobg,, (Mf‘w) = S).

Proof. This is Schur-Weyl duality.
Mf‘w ={wEr:we€S,}

O
Proposition 4.
Frobs, (M yny ...pnn) = S(no)F'robs, ., (M )
Proof. (idea) Show that
Mo tnsqme = Indg? g Mihy pn
where the action of S, is trivial. O

Proposition 5.
k
Frobs, (Mg n1..nr) = S0n0)S(ar) =~ S0

Proof. I showed what the decomposition of M*) was last time using only symmetric func-
tion theory. This is (somewhat) a refinement of the statement that

Frobg, (M%) =" sy [X]
T

where the sum is over all column strict tableaux T (non-neg entries less than or equal to
n) with content that sums to k.
What I am saying here is that

Frobg, (M) = > s [X]
T
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where the sum is over all column strict tableaux T of size n whose content is «.
By definition we have that
(1) M®) = L{wEr : content(w) = o} = L{TwEy : 7 € S,,}

(where in the second equality w is any single word such that content(w) = «).
Since Er = )¢5 0 (remember that it acts on positions of the word), we can easily

show that
wEp = ¢y Z U
u

where the sum is over the all words such that the number of is in u is equal to the number
of is in w. So fix w to be the smallest word in lex order such that content(w) = a (really I
am just choosing any such word but that is OK). Now, for v = (0"01™...k"™ ). Check that
Sy X Spy X -+ X Sy, X Spy € Sy, has the trivial action on the element wE7. By equation

(1) we see that
k Shn
MP) = Inds 1xsn2x---x5nkanO£{WET}'

n

Therefore the Frobenius image is equal t0 $(;,0)S(ny) = * S(n,) as stated. ([l

Conjecture 6.
Frobg, (M(’\M,%) = 5(1)5@5)\

Conjecture 7.

A A
Frobs, (M{inigns...qgne)) = '_Z HCZ CpyFrobs,, (M(’y2n2“.£ne))8'u
pEny yEk—ny
Conjecture 8.
Frobgn(M(’\dnd,_,gng)) = Z Z cﬁwFrob(M(v(dH)ndH“_Enl))Frob(Mgnd)

pHdng yFk—dng

This last conjecture is a ‘master’ conjecture since it implies all the others. Using it we
have reduced the calculation from the determination of the decomposition of M7 to the
decomposition of M ()Zl by

I still don’t know how to compute F'robg, (M (Aa b)), but I do have the following clues:

Conjecture 9.
sy if A= (2a —b,b) with b odd
Frobs,(M(z)) = s if A= (2a — b,b) with b even
0 else

This conjecture is implied by the more general theorem:

Conjecture 10.

b
Frobs, (Mg ") = s(1s) © Frobs, (M), 1)
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I have a good idea on how to prove most of the conjectures above since their very
formulas suggest that there is some module isomorphism that can be used to demonstrate
them.

The first cases where one of the conjectures above does not apply is a = (23). I was able
to compute by process of elimination (since I can compute Frob(M?) and Frob(M é‘) for

3 # a, then we can deduce Frob(M?)) that

33
Frobg3(M((22%)) = 5(13)

4
Frobg, (M((QQQQ))) = 8(2)5(1)
F’I“Ob5'3 (M((2521;)) = 8(21)

Any clues about why?
Example: We have by Conjecture 8

42 4 31 22
Frobg, (M((22%1)) = Frobg, (M((2%))S(2) + Frobg, (M((ZQ)))S%D + Frobg, (M((22)))5(2)
since F'robg, (M(/\H)) = Sx.
In addition we know Frobg, (M((;g)) = 2 by Proposition 5 and F'robg, (M((gzl))) = sa11)

and Frob52(M((2222))) = 5(2) by Conjecture 9. Therefore,

4
Frobg, (M((222%1)) = 25(2)8(2) + 8(11)8%1)

I have placed data for A a partition of 6 for my conjectures on the decomposition of
homogeneous components on the web page for this seminar.
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I have used the conjectures above to compute some Frobenius images for a = (2,2),
(27 27 2)7 (27 27 27 2)7 (27 27 27 27 2)7 (27 27 27 27 27 2)7 (37 3)7 (37 37 3)7 (37 37 37 3)7 (47 4)7 (47 74)7
(4,4,4,4), (5,5,5), (6,6,6). Note that the n that I use is determined by /().

From this data I conjecture the following:

Conjecture 11. Let A = (m, \) where A+ k. Then for a > Ay,
bh—k,A
(2) F(Myy) = F(M ™)
I am pretty sure that this is easy to prove and that it is a matter of showing
A ~ (bj‘l_kyj‘)
Mian =My
I am calling it a conjecture until I check the details.
This is useful because I can’t calculate using my programs (presently) F (M, ((?};ég’;g))), but

I know that this is equal to F (M ((2853’222)2

Since we know by Schur-Weyl duality that F(M (>‘1| M)) = s), we can conclude

)) which I can calculate.

Corollary 12. For k < b,

ab—Fk,1%
f(M((ab) ' )) = S(b—k,1%)-
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FMY)) =

(22)) = S(2)

(31)
f(M(QQ)) =351

(22)
]:(M(22)) =32

6) \ —
f(M(gg)) = 5(2)

(51)
F (M3,

(42)y _
]:(M(33)) =52

)= S(11)

(33)y _
‘7:(M(33)) = S(11)

6) \ _ 9 \ _ (12)
]:(M(QQQ)) - ]:(M(333)) = ]:(M(444))
FME))

(222) :J:(M

(333) )

F(M{y)) =
(10

(42)
F(Mzz)

( (222)) 111

(93) 12,3
]:(M(444)) - f(M((555))) -

(84)
F(M (444))

(63)
F(M, (333))

(555)
(711)
F(M (333) )

_ (621)
- }—(M(333))

(831)
F(M (444) )

f(M(“l))

10,1,1
(222) = f(M( ))

(444)

]__(M(321))

921
(222) = f(M( ))

(444)

(531)
F(M, (333) ) =

(741)
F(M (444) ) =

(522)
F(M (333) ) =

(555)

(555)

]__(M(822))

(222)
F (M )= (444)

(222)

432))

(732)
(333) F (M )

‘7:( 444)

= F(M{g) = F(M{y)) = F(M{ss)

_ ]__(M(13,1,1)) _

_ }_(M(11,3,1)

_ (15)
= JT(M(555)) =513

(14,1)y _
f(M(555) ) = (1)

(555) ) = s(1) +5@3)

5(3) T S(21) T S(111)
= f(M(HA)) =83+ 2 S2.1

(555) S(111)

= F(MZ") = sy

(555)

) = S@21) + Sa11)
f(M(10’4’1)) =83+ S21+51,1,1
_ ]__(M(n,2,2)) = s

(555)

(10,3,2)\
JT(M(555) ) = 5(21)
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)= S(111)

F(Mg) = FME) = s3+ 521
F (M((ggg)) )=F (M((fﬁ))) =7 (M((E?gg))

F (M((§2)2)) =513

f(M((25212))) = S5(21)
F(Miyp)) = 51+ 5(3)

f(M(g)Sz))) = S@11)
f(M((;ng))) = S(111)
F <Mé§’§§§> = 5(21)
‘7:(M((222222))) =503)

F (M<(§§3)> =513
]:(M((:islg)) =521
F(Mi) = s + s
F(Migy) = s3) + 521 + sum)
f(M<(§§§>> =521
]:(M((g;:sl))) = S@11)
F(Miggs)) = scan)

F (M((§§§>)> = 5(1) + 5011
F (M((gg))> =503)
F (Mf§§§>)) = 5(3)
F (Mf§§’§>) = 5(21)
]:(M((ggg)) = S(11)
f(M((ﬁi)) =93
f(M((iijS)) =821
FOMBD) = 5y 4 55,
F(M{gn ™) = s111
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F(M((jji)) =83+ S21+s1,11

921
f(M((444))) = 52,1

F(M{3y)) = s3+ 2521

]:(M((fji))) =581+ S1,1,1

822
F(M((444))) =93
f(M((Zfi)) =821+ S1,1,1
f(M((Zﬁ))) =583+ 821+5111

j:(M(732)) = 501

(444)
}—(M((fﬁ)) =53
FOLE) = 0,
]:(M((fﬁ))) = 53+ 521
FOIE) = 11
FOIE) = 5114
f(M((jff))) = 521

(555
FORED) =
j:(M((51535§)) =83+ S21
-7:(M((51§5’§71)) = 511,01
‘7:<M((;§5§)) =83+ 821+ 8111
FOMEED) = o,
j:(M((;;S)) = s3+ 2821
f(M((;;g’,?’l)) =521+ S1,1,1
F(Mgsi™) = s3
f(M((Qgg?)) =83+2821+ 8111

10,4,1
F(M((555) )) =83+ 521+ 81,11



10 MIKE ZABROCKI

FME™) = 52,

(555)

]:(M((59§5))) =83+ S21+ 81,11
f(M((5955§))) =2s91+ 51,11
f(M((59§52))) =83+ 821
FOLE) sy,
f(M((58575))) = 521
F(ME)) = 53+ 52,1
f(M((??;))) =583+ 821+51,11
FOLE) =
FOTD) = 1
FOIT) = o,
f(M((g;:))) = 5.1+ 51,1,1
F(M555) = 55
f(M((5655§>)) = 5211
FMER)) = 1,11
F(Mgegy) = 53
FOLEY) — o,
f(M((égé?) =s3+ 821
F(Mggey™) = 5111
‘7:<M((é65é§)) =583+ 821+5111
FOLE) = o,
j:(M((égé;L)) = s3+2s21
f(M((ééé:;’l)) =521+ S1,1,1
F(Migq")) = s3
f(M((égé?)) =83+2821+ 8111

4
f(M(%gé)’l)) =83+ 521+ 81,11
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F(0{iaey™) = 52,

(666)

]:(M((ggé?)) =2s3+2521+ 5111
f(M((égé?l)) =2s21+ 51,11
FOMUZ) = g5 4 55,
F(Mgaey™) = s111
F(Mgei)) =221+ 5111
F( ((égﬁﬁ Y ) =583+2s21+ 51,11
F(M, éééS’Q)) =83+ 821+ 81,11

AU — 5y,
FMI) = 55 + $2.1

(666)
—F(M(%gé;’l)) =83+ 521+ 81,11
f(M(1076’2)) =53+ 2 S2.1

(666)
f(Mfégé?’?’)) =821+ 51,11
F(Mggpy™) = 53
f(Mfé)ﬁ?ﬂ =511l
f(M((gﬁsﬁ)l)) =521
f(M((gﬁéf)) =s21 18111
f(M((6962)3)) =83+ 521+ 81,11
F(Migig!) = s2.
ﬂM&if)) =383
FOIET) = o,
F(Miges") = 53+ 521
FMGe?) = s1
FMGe) = si
f(M((()T@g)E))) = 82,1

(6,6,6)y _
F (M) ) = 3
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(8) _
]:(M(2222)) =54

(71)
f(M(2222)) 5(31)

62
}-(M((22;2)) S(4) T 8@31) T S(22)

7(M((§23%2)) = 5(31) T S(211)

(44) \ _
]:(M(2222)) = S(4) t S(22)

(611)
F(M(2222)) (211)

F (Mfffgl%)) = 5(31) + 8(22) T 5(211)

5111
f(M((2222))) = S(1111)

]'—(M((;fgl%)) S(31) T S(211) T S(1111)
F (M((ﬁfgﬁ)) S(4) T 5(31) T 5(22)
F(M ;1222121))) $(211)
) =

F( (332

(2222) (211)

(3311)y
f(M(2222)) = 5(22)

.F(M(3221)) — s1)

(2222)
(2222),
F(M3599)) = (1)
12
.7-"(M((33:,23)) =54
11,1
f(M((3333))) = 831
f(M((?}gé?)) =54+ 822+ 531
10,1,1
f(M((gggg) )) = 52,11
F(M((:?ggg)) = 54 + 2 83,1 + 827171
j:(M((g?;;g),)) =822+ 831+ 8211
9111
f(M((gggg))) = S1,1,1,1

f(M((??;gs)) =S4+2s22+ 531+ 5211

‘F(M((gg;;y),))_322+2331+25211+31111

5Lyt

f(M((§32§93)) =84+ 522+ 831
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J,,__(M(gzn)) = S52,1,1

(3333)
7(M((gg5§3)) =2s31+ 5211
]:(M((;;?g)) =54+ 522+ 2831 +2821,1+ 51,111

]:(M((gg?;;)) =584+ 822+2831+28211

731
]:(M((333?}))) =22+ 82,11 TS1,1,1,1

F(M3) = 531
f(M((ffg),g)) =84+ S22+ 51,111
f(M(GSI) ) =s22+531+25211

]:(M((??:;l;;)) =84+ 2522 +2531+ 21,1+ 51,111

f(M((§§§§))) =531+ 8211

]:(M((:gggzz),)) =831+ 282,11+ 811,11

IR

_7:(M(6321)) =S99+ 531+ 5211

(3333)

F (M((??{???;))) = 54
f(M((§§§§)) =831+ S21,1
f(M((ggf’;;))) =822+ 811,11
f(M((gf’;gg,)) =822+ 831+ S21,1
f(M((;’;;;))) =584+ 831+5211
f(M((§’§’§’§))) =822+ 8211+ S1,1,1,1
F(Mgsa)) = 3.1
F(Mzya) = 54
F(Mgy55)) = 3.1
F(Mzyaa)) = 922
f(M((§§§§))) = 521,1
f(M((g’fgg))) = S1,1,1,1

(16) \ _
JT(M(4444)) =54

F(M{gg) = s3a
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f(M((ifii))) =S54+ 822+ 831

F (M((iiﬁﬁ)l)) =s21,1

F(M{gii) = 542,831 + 52,11

13,2,1
JT(M((44214) )) =S92+ 831+ 5211

13,1,1,1
f(M((4444) )) = S1,1,1,1

f(M((iiﬁ))) =2,84+2,822+2,831+ 52.1,1
f(M((iiﬁ’)l)) =822+ 2, 83,1 + 2, $2,1,1 T 81,1,1,1
f(M((ifii’)z)) =S4+ S22+ S3.1

12,2,1,1
]:(M((4444) )) = S2,1,1

F(M{yi) = s22 3,551 + 2,521

byt

11,4,1
f(M((4444) )) =584+ 2, S22 + 3, S31+ 3, S2.1,1 + 51,1,1,1
11,3,2
f(M((4444) )) =584+ 822+2,831+2,8211

11,3,1,1)
F(M((4444) ) = S22+ s2,11 +s1,1,1

11,2,2,1
}—(M((4444) )) =831

0,6
f(M((i444))) =2,54+2,822+2,831+ 8211+ 811,11

byt

f(M((ifi§131)) =54+ 2,822+ 3,831 +4,5211+51,1,1,1
4
f(M((i£i4’)2)) =2,81+3,822+4,831+2,85211+ 511,11

s byt

10,4,1,1
]:(M((4444) )) =831+ 2, $2,1,1 +81,1,1,1

sbyty

IRt ]

10,3,3
f(M((4444) )) =831+ 2,8211+ 511,11
10,3,2,1
]:(M((4444) )) =822+ 831+ 5211

(10,2,2,2)y __
f(M(4444) ) = s4

j:(M((ZiZ)) =2,831+2,821,1

9,6,1
f(M((4ai474))) =84+2,822+3,831+3,8211+ 51,111

EE Rat]

9,5,2
]:(M((Qil;))) =s4+2,522+4,s31+4, 5211+ s11,11

9,5,1,1
]:(M((4444) =2, S22 T 831+ 82,11 + 511,11

y byt

4
j:(M((f@f))) =84+2,522+3,831+3,5211+ 11,11

syt
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F(M((jﬁf)’l)) =54+5220+2,831+2,511
7:(M((fiif)’l)) =S92+ 5211+ 511,11
(9,322)\
f(M(4444) ) = 31

f(MffﬁL)) =54+ 2,522

PRkt ]

j'-(M((fiZﬁl))) =89292+2,831+2,821,1+581,1,1,1
f(M((fiif))) = 2,84+ 3,822+ 3,831 +2,8211+ 811,11

]:(M((fiiﬁl)’l)) =531+2,8211

byt

j:(M((fiif))) =2,502+3,s31+4, 5211+ 51,111
f(M((iif)’l)) =54+ S22+2,831+2,8211+ 81,111
]:(M((fﬁf))) =2,54+2,802+2,531+ 5211
f(M((fiif),l)) =s22+2,831+2,5211 +51,1,1,1

.7:(M(8’4’2’2)) = 54+ S22+ 31

(4444)
8,3,3,2
F(M((4444) )) =521,1
F(My) = 531+ 25211

77,11
f(M((4i4’41)7 =+ S22+ S1,1,1,1
f(M((Llif))) =S4+ 822+ 2,831+ 2,821,1+81,1,1,1

7
f(M((4£1742)’1)) = 52,2 + 27 53,1 + 52.1,1

f(M((Ziif))) =822+ 2,831 +2,8211+ 51,111

s byt

]:(M((Zﬁf)’l)) =54+2,809+531+2,5211+51,1,1,1

f(M((Llif)’Z)) =531+ 52,11

F(M((Zi%’l)) =s4+2,531+ 5211

43,2
]:(M((ZQZ;) )) =829+ 531+ 5211

7,3,3,3
‘7:<M((4444) )) = S1,1,1,1

7(M((fiif))) =S4+ S22+ 831

FM{Gany") = s31+ 20

f(M((fziif)?)) =584+ 522
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6,5,5
F(M((4444))) = 5211
b ’47
F(M((ijm) 1)) = 82,2 + 53,1 + $2.1,1
f(M(fiif)’z)) =831+ 521,181,111

(
]:(M(6,4,4,2)) = 54+ 522 + 831

(4444)

f(M((fiif)B)) = S2,1,1

f(M((fiifjl)) =S11,1,1

F (M((jiif)z)) = 8211
F (M((fiif)ﬁ)) = 82,2
F (M((jiif)yg)) = 83,1
FOM) =5
f(M((21§2)22)) =55
f(M((3212)22)) = S4.1

f(M((28222)22)) = 55+ 832 + 84,1

(811) | _
‘7:(M(22222)) = 53,1,1

73
f(M((22%22)) = 532+ 54,1 + 53,11
721
f(M((mQ;Q)) =532+ 541+ S221 + 53,1,1

7111
f(M((QQQQQ))) = S2,1,1,1

64
j:(M((222)22)) =85+ 832+ 841+ 5221

It At ]

631
‘F(M((2222)2)) =s32+s41+s221+28311+ 52111
622
}_(M((222%2)) =55+ 2832+ 541+ 5221
6211
JT:(M((2222%)) =S221 18311+ 821,11

61111
‘F(M((QQQQQ))) =S1,1,1,1,1

(85) y _
}—(M(QQQQQ)) = 33,11

541
f(M((zmz)z)) =832+ 841+ 8221+ 8311+ 52111

sty

532
f(M((2222)2)) =832+ 841+ 5221 +28311+ 82,111

IR Rt ]

(5311)
F (M gp999)) = 832+ 5221 + 8311 + s2,1,11 + 511,111
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5221
]:(M((22222))) =832+ 841+ 8221+ 8311
52111
f(M((22222))) = 52,1,1,1
442
}—(M( ) ) =55+ 832+ 541+ 5221+ 51,1,1,1,1

(22222)
4411
f(M((2222;)) =83,1,1 T 52,111
433
‘F(M((222%2)) = 831,10+ 82,1,11
4820 )
( (22222)) 83,2 + 84,1+ 8221 +831,1 + 521,11

(43111)\
]:(M(22222)) = 5221
-F(M(4222) ) =585+ 532+ 541

(22222)
f(M((§22222121))) = 53,11
F(Myay) = 5221
F(Mya) = 3.1,
)

(33211
]:(M(22222)) §3,2
7(32221)

22222

)
(22222)
F (M(2222 ))

(15) _
]:(M(33333)) =55

47
]:(M((§33?3)) =841

f(M((ng’g?,é)) =55+ 832+ 54,1

13,1,1
f(M((33333))) =531,

]:(M((:sl??é?é)?))) =55+ 532+2s41+ 8311

12,2,1
f(M((33?;373))) =532+ 84,1+ 5221+ 8311
12,1,1,1
f(M((33333) )) = 52,111

f(M((:’}slé?g)) =55+ 2832+ 2541+ 5221+ 31,1

(12) _
f(M(222222)) = 56

(15,1
‘7:<M(222222)) 85,1
f(M(lw) ) =S¢+ Sa2 + 551

(222222)

(10,1,1) |
J:(M(222222)) = 84,11
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fmﬁgmm%:%3+ﬂa+%4+ﬁm1
921
fm%mémyzﬂz+%J+5wJ+ﬂm1

9111
]:(M((22222)2)) =831,11

84
fwéémm%:%+2ﬂﬁ+%J+%&1
831
Fwﬁmém%:%B+M2+%J+2%g1+2mmr+%@m
822
f(M((QQQQ)gg)) = 56+ 833+ 2842+ 851+ S222+ 8321

8211
fxﬂﬁémgé))::5&114—8&L1%-82211-%83111

14yt It Rkl

81111
]:(M((222222))) =S21,1,11

75
F(M((222)222)) =833+ 851+ 8321+ 8411
741
f@ﬂ ) ) =533+2542+ 551+ 5222+28321+2841,1+S5221,1+83,1,1,1
(222222)
732
*ﬂw@mém%:%3+2M2+%J+3%&1+2Mm1+&&Lr+%mm

(7311)
fxﬂqmznm):3&2+SZZ2+25&21+8¢L1+811L1+283111+821111

(7221)
f(M(222222)) =533+ sa2+ 851+ 5222+ 28321+ 54,11+ 522,11

(72111
}(A4@2m2%>::SZZL14‘33111-F821111

1yt [t Rt ikl

(T11111)y
}(A@2m2m))“3LLLLL1

f(M((2626%222)) =86 1 S42+ 52,22

651
}(Aﬁé2£2ﬁ)::5&24‘5&14‘23&11*—S&Ll%-52211-%53111

144y byt

642
]%A@gm%mﬂ::56+3&3+35&2+25&1+25112+3s&11+6aL1+62211+S3111+821111

14y dy byt byt

6411
f(M((zggzgz)) =s33+2s321+ 28411 +252211+283111+ 521111

sLyty syt

633
fxﬁﬁézﬁgm)::3&34‘8&11%—25&L14-52211%-283111

4Ly IR

6321
fxﬂdngm):3&3+23&2+8a1+3122+48&11+28&L1+2811L1+283111+821111

(63111)
F(Mgypp)) = $222 + 8321 + $2211 + 831,11 + 521,111 + 511,111
(6222)
f@@ﬂmmﬂ:Sw+%3+2M2+%J+Su2+SwJ

(62211
fKAQQﬂQﬁ))::3&114‘3&L14‘32211-%83111

14yt It Rkl

621111
F(M((222222))) =52,1,1,11

552
f(ﬁﬁém£2ﬁ)::5&3*‘5&214‘23&L1-F52211-%53111

14y Ly byt
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(5511)
]:(M(gggggg)) =842+ 8222+ 8321+ 831,1,1 1+ 52,1,1,1,1

(543)
F(M9990)) = Sa2+ 851 + 25321 + 5411 + S221,1 + 531,11 + S2,11,1.1

(5421)
F(M ) = 533+2842+551+5222+38321+25411+25221,1+2831,1,1+52,1,1,1,1+51,1,1,1,1,1

(222222)
(54111
'7:(M(22222%)) =321+ 82211+831,11+8211,11
FMEBY -y = 2 2
(M 999999)) = $4,2 + 5222+ 28321 + 8410 + 52211 + 253111 + 52,1111

5322
]:(M((22222)2)) =833+ 542+ 851 +28321+2841,1+ 52211+ 831,1,1

1454

(53211)
~7:(M(222222)) =833+ S42+S222+28321+ 841,10 +5221,1+831,1,1 +52,1,1,1,1
(531111)

J:(M(222222)) = 52,2,1,1

52221
F(M((222222))) = S42+ 851+ 8321+ 84,11

(522111)y
]:(M(222222)) =S83111

(444)
‘/T(M(QQQQQQ)) = 86 + 84,2+ 5222+ 51,1,1,1,1,1

(4431)
f(M(222222)) =833+ 851+ 8321+ 8411+ 82211+ 83111+ 821111

(4422
f(M(mQ%Q)) =586+ 2842+ 851+ 8222+ 8321+ 52,1,1,1,1

44211)
j:(M((ggggm)) =8321+t 58411 +52211+831,1,1

(441111)y
]:(M(222222)) = 52,2,2

4332
f(M((mg%m) = 53,21 +54,1,1 +5221,1 +831,1,1

14y byt

(43311)
]:(M(222222)) =842+ 8222+ 8321+ 82,211

(43221)
F(Mgppppz)) = $33 T s02 + 85,1+ 8321 + 541,10 + 53,111

(432111)y _
f(M(222222)) = 93.2,1

42222
}—(M((QQQQQQ))) =86+ 54,2 + S5,1

422211
}—(M((222222))) = 5411
F(M )
F(

222909)) = $2,2,2
)
.7-"(]\/[(333111)

M
M

229222 53,2,1

( )
(33321)
( )

(222222)) = 533
(33222) \
]:(M(222222)) =541

)

(332211)y
]:(M(222222)) = 54,2
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(322221)\
F(M(222222)) = 95,1

(222222)\
f(M(222222)) = 56



CONJECTURES AND DATA ON THE S,-IRREP DECOMPOSITION OF
A Gl,(C) MODULE

MIKE ZABROCKI

I have been computing some data and there are some interesting conjectures to be made

about families of modules N2.
I think that these are special cases of the modules that Rota studied with his work on
bitableaux bases. It will still take some work to show that these modules are related to

the decomposition of G, (C) irreducible modules.

Modules of content (1¥) These are the S, irreducible and hence,

f(N(/\ll/\‘)) = S\

Modules of content (a?) We have that ¢()\) < 2, hence A\ = (2a — k, k). In this case it is
easy to calculate that

F (N@a_k’k)) _ 5(2) Zf k even
8(11) Zf k odd

Modules of content (23)

Modules of content (2%)

Date: December 29, 2006 .
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N(3221)) = s3)

‘7:( (24)
F(Ngt ) = s
f(N((;Lf)H)) = 5(211)

F(N((Sj)n)) = S(1111)

f(N((SE)Q)) = S(211)
7:(N(431)) = 5(31) T S(211)

(24)
F(NGty) = s + 5a1) + 5(22)
j:(N((;f)l)) = 5@31) T S(22) t S(211)

f(N((QGj)I)) = S(211)

F(Niy) = s(a) + 5022
f(N(ff))) = 5(@31) t $(211)
6

Modules of content (3%)

f(N((gf)”) = S(21) + S(111)

F(NGn) = s
f(N((gf))) = 5(21)
F(N(Gs)):s + 5(21) +
(33) 3) (21) T S(111)
f(N((;?))) = 5@3) T S(21)
f(N((fg,l))) = S(21)
f(N(fQ)) = 5(21)
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Modules of content (3*)

34
F(NG) = s

7(N((§f)31)) = S(22) t S(211) + S(1111)

f(N(‘?f’ff”) = 5@31) T S(211)

f(N(fff”) = 5(31) T S(22) T S(211)

f(N((gf)ll)) = S(22) T S(1111)

F(N((gf)“)) = 5@31) + S(211)

f(Ngf)n)) = 5@31) t S(22) t S(211)

f(N((gsf)H)) = S(211)

f(N((??All)ll)) = 5(1111)

43

f(N((34))) = S(4)

f(N((gfff)) = 5(31) T S(22) + S(211)

f(N(fff)) = 5@31) + S(211)

f(N((fff)) = S(4) + S(31) + 28(22) + S(211) + S(1111)

f(N((gff)) = 8(4) + 28(31) + 5(22) + 28(211)

FINGD) = sy + s@1) + s(22)

f(N((g?f)l)) = 5(31) + 28(211)
FNTD

(34) ) = 8@y +25(31) + 5(22) + S211) + S(1111)

]:(N((gf)l)) = 25(31) + S(22) + 28(211)

F(N((;)f)l)) = s@31) + S(22) T S(211)

f(N(lo’l’l)

(31) )= S(211)
FINEDY = 504y + s22) +
(34) (4) T S(22) T S(1111)
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f(Ngf))) = 25(31) + S(211)
f(N(ff))) = S(4) + 5@31) T 25(22) T S(211)

F(N((??f))) = S(4) +28(31) T S(211)
FNGH) = s+ s + 52

F(Ngty”) = sy

F(NG)

5(4)

Conjecture, Modules of two row shape For 1 < k < a,
b—k,k
f(N((;Ib) ’ )) = Sk(ﬁ{xl —Z2,T1 — X3,...,L] — xb})
where L{x1 — x9,21 — x3,...,21 — 2} is the S, module with Frobenius image equal to
8(()—171)‘

Proposition For a > 1

a+1)? at+1)*! a
f(N((LE(atl))))) = ]:(N((((ai—ll))au))) =w +1(S(aJrl))

Conjecture For a > 1
a+2)®
HN(((EJW))))) = 2.
o(\)=3

where the sum is over all partitions A with 3 even parts or 3 odd parts. The first 4 of these
I calculated. The last 4 are just conjectured. I observed (conjectured again) that these
modules are related to Motzkin numbers. We have that

dim N((é?(:?);) + dim N((((:jll))(j:)) = the number of Motzkin paths of length a + 1

f(N((3553))) = 5(311)
f(N((fg))) = S(6) T S(42) + S(222)
f(N((gj))) = 5(511) T 5(331)
f(N{SS}) = 5(8) + S(62) T S(a4) T S(422)
]—"(N(79))) = S(711) T S(531) T 5(333)
}_(N(%Pos))) = 5(10) t S(64) T 5(82) T S(622) T S(442)
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Calculated: ’
f(N((14))) = 5(22)
f(N((;f))) = S@1) + S(22)
f(N((ﬁf))) = S(4) + 8(22) + S(1111)
f(N((ff))) = 8(4) + 28(22)
f(N((;f)’w)) = S(4) +28(22) + s(1111)
F(Ngy™) = 2502y + 2502 + s
f(N((;f)’M)) = S(4) T 38(22) + S(1111)
f(N(%f)’w)) = 25(4) + 38(22) + S(1111)
f(N((9148)718)) = 28(4) + 38(22) + 28(1111)
f(N((fgifo)) = 25(4) +45(22) + S(1111)
conjectured
FNGE?) = 250 + 450) + 250111)
F(N{aiy ") = 3s(a) + 4s0) + 250111)
f(N((fgiie))) = 28(4) + 58(22) + 28(1111)
f(N((ifi?S)) = 38(4) + 58(22) + 28(1111)
f(N((fé)iz)%o)) = 38(4) + 58(22) + 38(1111)
f(N((fgj;)?)) = 33(4) + 68(22) + 28(1111)



ON THE DECOMPOSITION OF GI,(C) REPRESENTATIONS INTO
IRREDUCIBLE S,, MODULES III: GARNIR REPRESENTATIONS

1. THE GARNIR REPRESENTATION OF COLUMN STRICT TABLEAUX
For a column strict tableau T' of shape A define the Garnir polynomial as
G(T) = A(zr,, X1, - - - ,xTwl)A(:UTm,me, . ,ZETM,Q) ATy, Ty - ,mTﬂé)

where A(z1,22,...,2) = [[1<;<j<,(¥i — ;) is the Vandermonde determinant.
The content of a column strict tableau will be partition of fixed length n (padded with
0’s if necessary). Fix n (we will be creating an S,, module), define

N2 = L{G(T) : T column strict tableauz, content(T) = a, shape(T) = A}.

The N2 will be the Garnir representation.
In the last pdf file, I defined Eg = N(S)P(S) for a standard tableau S of shape A with
the right action (on positions) and

M) = L{wEgs : content(w) = a}.

In that write-up I conjectured that MO); is a representation of dimension the number of
column strict tableaux of shape A and content «. I believe that I have a proof of this fact
now and I will present this in a future write-up.

My original intuition says the following:
It should be that

N2 ~ M.
Conjecture 1. N} is an S, module and the Garnir polynomials which defines the NOTE

space is a basis.

It turns out that both of these statements are FALSE. These were in the first version of
this write-up and I am now commenting them out. Keep reading to see some examples.

I want to know how N7 decomposes into irreducibles and understand the relationship
between N and M. I know examples of where N2 has dimension which is smaller than
the number of column strict tableaux of shape A and content a. Studying the module N7

Date: December 21, 2006.



2 GARNIR REPRESENTATION PROBLEM

raises more questions but it might help give us some understanding of the M} that were
not obvious from other perspectives.

Conjecture 2. If dim N} = the number of column strict tableauz of shape A and content
o, then N2 ~ M.

2. SOME EXAMPLES

Example: If the Garnir polynomials are standard (i.e. o = (1")) then N()‘ln) is an irre-

ducible module of shape A and isomorphic to M, ()in)'

Example: Consider N, ((2211)). The two spanning elements are

2 2
L1]=g — a9 =[1]2]

and therefore J”-'(Ngll))) = 8(12)-

Example: Consider N (52)

(32) The two spanning elements are

22 22
L[] = (2 —2y)2 =[1[1]2]

and therefore F(N, ((??22))) = 5(2)-

Note that in the last two examples above, ]:(Mgll))) = ]-'(M(32)) = 5%1).

Example: A larger and more complex example where the the Garnir module is not the

(431)

same as the classical module representation is ) Consider the two basis elements

(2222
(4]
21313
1]1]2 4|:(331—ZL’2)(ZL’1—J)4)(SL‘2—IL‘4)(1‘1—113)(1’2—$3)
3]
21414
111[2 3|:(x1—mg)(an—333)(9?2—353)(951—$4)($2_w4)

These two elements are clearly equal but the dimension of M* cannot be less than the
number of column strict tableaux of shape A so we clearly do not have M* ~ € N2.

Example:
A= (4,4) and o = (2,2,2,2). There are 3 column strict tableaux listed below and they
correspond to the following Garnir polynomials.
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(.%'1 — 1’2)(1’1 — 332 xg — .%'4)(.%'3 — 1'4)
(x1 — x2) (1 — w3) (22 — 24) (23 — T4)
(x1 —x3) (21 — 23)(¥2 — 24) (T2 — T4)

This is a 3 dimensional module of Sy and the Frobenius image works out to be s(3 2)+$(4)-

3. GARNIR REPRESENTATIONS INDEXED BY RECTANGLES

There are a few special cases that I know for sure. F(N = s). From this inter-

Aiany)

(1A
pretation it is clear that each element of N ((n)) is an element of N} multiplied by a
Vandermonde, hence we have

Proposition 3.

F(N)THD) = w(F(ND)

if {(a) = n (padded with 0 parts if necessary).

Proposition 4.

FNEM) 2 {8(a+1) if a odd

+1 -
Ca S(at1y  if a even

Proof. We show by induction that there is exactly one tableau of content (a%*!) and shape
((a 4 1)*). The statement by induction says that the i row must be filled with a +1 — 1
’sand ¢ ¢+ 1’s.

The first row must be filled this way because the 1’s all go in the first row and the rest
of the row must be filled with one 2 because the last column has the numbers 2 through
a + 1. Assume that the first i — 1 rows are filled this way, then the i*” row must contain
the rest of the ¢’s (of which there are a — (i — 1)) and the remaining entries in the row
are filled with numbers greater than i. But since this is the " row, the entries in these
columns must be the entries ¢ + 1 through a + 1 because there are a rows in the tableau.

From this description we conclude that the j** column contains the number 1 up to
a+1—j and then the numbers a + 1 — j 4 2 through a4 1 (in other words, the j** column
all of the numbers except a + 2 — j).

The Garnir polynomial corresponding to this tableau is

a+1

HA 131,272,..., VR l‘a+1) H (xi_xj)a_l‘

1<i<j<a+1

And clearly the action of ¢ € S,41 on this polynomial is the alternating action if a even
and trivial if a odd. O
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It is not true in general, that N is an irreducible representation (even for a = (a%)).

Try for example N, ((;122)2) There are three tableaux:

3[3 213 212
1l1]2]2] (1]1]2]3] [1]1]3]3]

The corresponding polynomials are
(21— 23)%, (21 — 22) (21 — 23), (21 — 22)°

The Frobenius image of this module (by computing the trace of elements of cycle type):
3p7/6 + p21/2 = s(2.1) + 5(3)
4. A HOMOMORPHISM FROM M} 1O N2

For a word w that is the same length as the size of the partitions A and «, the letter in
the it" position of the word corresponds to a cell in the partition X, (r,s). If w; = a, then
set

w; — 2371
where x, is a commutative variable. I believe that this map sends an element from an
element in M2 to (a multiple of) an element in N_.

Example: Let A = (3,2). Then Eg = ((1)—(14))((1)—(25))P(S). wEs = (wjwowswsws—
WWW3WI W5 — Wi WsW3wawe + wawswswiws ) P(S). The order of the row group of S is 12.
The image of this element under the morphism will be

(Ww4lWs

12(xw4xw5 = Ty Tws — TwgLwy + Ty Tuy) = 12(Tay, — xw1)(xw5 — Tyy) = G2 3')

because elements of the row group will preserve the image of these words.
It is not as clear for a general shape, but I claim that this will always happen that the
image of wFg will be the Garnir polynomial filled with the entries of w.



ON THE DECOMPOSITION OF GI,(C) REPRESENTATIONS INTO
IRREDUCIBLE S, MODULES IV: SOME CORRESPONDING
CHARACTERS AND FROBENIUS IMAGES

Module Gl,(C) character graded S,,-Frobenius image

d

Q(Xy) =T(V) m =D >0 Pk [An] =0 Tagry Pn—d.1a) [X]

Q[Xn] =~ S(V) [Ti-, ﬁ = k>0 hi[An] hy, [%q}
A(V) [ (L + ai) = 325 exl[An] >0 @ hn—i[X]ei[X]
= hll-o)X]|
A ﬁ > d—0 {q?;i}d hn—a19)[ X (1 —q)]

=D k>0 Zf:o(_l)ie(i,lk*i)[An]

Although I think that it is clear what T'(V), S(V) and A (V') are (because their definitions
can be found in a typical algebra text), I should mention that A/, is the subspace of
Q(X,) ~ T(V) killed by all partial derivative operators d,,. Alternatively, A, is the ring
of polynomials of all possible brackets of variables (note that T'(V) ~ Al @ S(V)).

In particular we have

(1) Fs, (ex[An]) = ex[X]hp—i[X]
©) Foultulaal) =t [ 12|
k
(3) Fs (hamy[An]) =D Skiln—i1i)[X]
=1

Date: January 31, 2007.
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where Sy ; = the number of set partitions of size k with ¢ parts (the Stirling number of the
second kind). These

Let me provide an alternate proof of equation (3) using some proof techniques that might
be useful later on.

Proof. Because F(f[An]g[An]) = F(f[An]) * F(g[An]) and F(h1[An]) = hg—1,1)[X] from
either equation (1) or (2). Therefore we have that

T, (hmy[An]) = hio1,1) [X]*.

Now using techniques of symmetric functions it is not difficult to show that h,_1,1)* f =
hihi f. This follows from the computation

(hn1,1) % 1-9) = (hn11), S 5 9) = (s, () 5 (hg) ) = (ni £t} = (b f.g)

Now we proceed by induction since hlh%(h(n_i,li)) = ih(n_i1iy + P(n—i—11i+1). Thus if
we assume (3) holds for all values smaller than k& we then have

*k
hn-11) = htn-1,0) % R )

k—1
= hihy <Z Skl,ih(ni,li)>

i=1

k—1 k-1

= Z 0Sk—1,ih(n—i1i) + Z Sk—1,if(n—i—1,10+1)
i=1 i=1
k-1 k

- Z isk—l,ih(n—i,li) + Z Sk—l,i—lh(n—i,li)
1=1 i

k
—lek 1i + Sk—1,i-1)P(n—i 19 Zsmh(n i,19)

=1
]

It is interesting that we can compute very easily F(sy) which is equal to the Frobenius
image of the S, module M* ~ @ M2, but I have no idea what symmetric function
corresponds to M. We should have that sy = >, f2 such that F(f2) =the Frobenius
image of M.

Lets do a special case which can be worked out from what we know here. Recall that
the coefficient of s)[X]¢* in h,[X/(1 —¢)] is the number of column strict tableaux of shape
A in the entries {0,1,2,3,...} which sum to k. Denote this coefficient by A’f\. In this case
we have

Fs, (hi[An]) = Afsi[X
AFn
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Proposition 1.
Fon(hge—1[An]) =Y corners(\N)AS sy +> (> AR sy
AFn AFn [pAN=2

where pAX are the cells which are not in both u and A and corners(X) is the number of
corners of .

Proof.
Fsn (hge-1,1)[An]) = Fs, (h1[An]) * Fg, (hi-1[An])

=hihi Y AF 1, [X]
pukn

:ZA;“;1 corners(p)s, + Z EN

ukn [LAN=2

=3 corners(u) Al s, + 3 AR ST

ukn pEn [LAN=2

= Z corners(u)Afflsu + Z Z A,’ifl 5x

pkn AFn \ | pAN=2
O

However this combinatorial interpretation isn’t too helpful when we wish to calculate
Fs, (8(k—1,1)[An]) since we don’t know the difference between the coefficients A’;\_l and Af.

I think that my next goal should be to identify some sort of formula for the Frobenius
images of the M} (in particular for the case of o = (a®)).



ON THE DECOMPOSITION OF GI,(C) REPRESENTATIONS INTO
IRREDUCIBLE S, MODULES V: ANOTHER PRESENTATION OF THE
Gl,,(C) MODULE

Recall that we have defined for a partition \ + k
M* = L{wE7r : w € [n]*}

where Ep is an idempotent N (T')P(T') acting on the right (permutation of positions in the
word) and T is the super standard tableau of shape .
In particular we set
M) = L{wEr : content(w) = a}
and we clearly have that M* = @, M.
I have also defined a Garnir polynomial representation N* and Né‘ and although I
originally thought that N2 ~ M2, it turns out that these are not isomorphic.

Conjecture 1. There exists an onto homomorphism from M) to N2.
Problem 2. Compute the kernel of this homomorphism.

One thing that might make this easier is a second presentation of the irreducible Gi,,(C)
module. I was not aware until recently of the classical definition of the irreducible mod-
ules. I learned of the definition of M7 from Adriano and at Aaron Lauve showed me a
presentation in terms of matrix minors at a conference in Montreal in January.

Let A be a partition of k and consider the matrix

11 X112 o Tin

To1 X2  Top

Inl Tp2 - Tnn

Let (i1 i --- i,), be the determinant of the matrix minor consisting of the first r rows
and the columns specified by the sequence i1, i2,...,%,.. That is
T3y Llig e 14,
o ) T2i, X2y 0 T2,
(7[17/2...27,): .

Triy  Lripg  °°  Tri,

Date: February 1, 2007.
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For a column strict tableau S of shape A (with entries S;;), we set
X(8) = (511 S1z -+ Sin)(S21 S22 -+ Sany) -+ (Sea Sez -+ Sey)-
We define
P> ={X(S) : S column strict tableauz shape \}.

Note that the minors (i; 2 --- i,) are multilinear since the determinants are. For
example we have

2
XL = (1 2)1) = (211222 — 212221211
(2]
xX(L2)) = (1 2)(2) = (z11220 — 212221 ) 212
(3]
XL = (1 3)(1) = (w1223 — T13221)211
(3]
X(LI3)) = (1 3)(3) = (w1223 — w13221) 213
(3]
x(212)) = (2 3)(2) = (w1923 — 213222) 212
(3]
X(213)) = (2 3)(3) = (z12223 — w13222) 213
(3]
X (2] = (1 3)(2) = (11293 — 213221 ) 212
(2]
X(LL3) = (1 2)(3) = (z11222 — 12221 )13
The linear span of theses polynomials is a Gl3(C) module where for A € GI,,(C) and
a1 a2z - Qg
a1 azy -+ a2
A(zij) = arjain + agjTio + - + anjTin = | [wa @2 -+ Tin)
anl1 Aap2 - dpn

J

This presentation of the G1,(C) module has a simple homomorphism from P* to N*
(easier than the one from M?* to N*) which sends x;; to xé-_l.

The classical definition is nicer in some ways because we are in a commutative poly-
nomial ring. The first coordinate is telling us the ‘row’ of an entry in a tableau. The
commutative part erases the column position of the entry (in some ways this is similar to
the multiplication by P(T") on the right).

We also define P to be the linear span X (7T') where T is a column strict tableau of
shape A and content «.

P) = L{X(T): T CST>}
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Conjecture 3.
P} ~ M)

I will have to think carefully about how to prove this isomorphism exists. We know that
because both M* and P* are the irreducible GI,,(C) modules indexed by a partition A that
they are isomorphic.

One of my conjectures from before is clear.

Proposition 4.

A+(1™) L p(1™) A
Potany = Piny ® Py

Proof. For every T € C'ST? we have that T € C’STO’:((ll:))

(12 --- n)X((T)=
where on the right we mean to attach a full column on the tableaux 7' on the left. Since
P(ln)) =L{(12 --- n)} Therefore we have the isomorphism which sends a basis element

(1
12 WX(T)=X(T)— 12 n)oX(T)

where T € CSTO):((}:)) and 7" € CST? is the tableau T with the first column removed. [J



ON THE DECOMPOSITION OF GI,(C) REPRESENTATIONS INTO
IRREDUCIBLE S, MODULES VI: A STRAIGHTENING ALGORITHM

In the second write up I did not make clear that there are some details that need to be
addressed.

Proposition 1. dim M) = is the number of column strict tableauz of shape \ and content
a.

Given that T is the super standard tableau of shape A, for any tableau (no restriction
on the entries) S of shape A we define R(S) (the reading word of S) to be the reading of
the entries in the order specified by T' (that is read the rows from the bottom up). For
example, if

colro|~afeo]

3
4
1

S —
then R(S) = 31234244257323. We have that
M} = L{R(S)E7 : shape(S) = ), content(S) = o}

(simply because this is clearly equal to L{wEr : content(w) = a}).
I will show that

M) = L{R(S)Er : S € CST}}
where C'ST? is the set of all column strict tableaux of shape A and content a.
Proof. Since R(S)Er = R(S)N(T)P(T), we know that R(S)Er = £R(S’)Ep where S’ is
the tableau formed by taking the columns of S and rearranging them so that they are in
increasing order. For example in the example listed above we have that

414
312[3[5
112(2(4

7
3
3
2

S =

If there are two or more entries which are equal in the same column then R(S)Er = 0.
Now assume that the entries in S are in strictly increasing in columns. Let C(S) be the
reading order of columns from right to left, bottom to top. (e.g. in the running example
C(S") = 45232241342337). Now following this order there is a ’first’ position where the
tableau breaks from being column strict, this occurs across two columns. Consider the
cells in the left column above this break point (which we will label by a1, as,...,a;) and

Date: February 1, 2007.
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the cells in the right column below this breakpoint (which we will label by b1,ba, ..., by).
In a diagram these cells appear as

ai
a2
ay b1
|
[
with
ar>ag > >ap > by >by > > by
Consider all possible interchanges of the cells in the set {ay, ag, ..., ax} with the cells in the

set {b1,ba,...,bp}. Clearly over this set of tableau, C(S’) is lexicographically smallest for
S’ equal to the original tableau. There exists a permutation ogg which sends the tableau
S to the tableau S’. Let

F = Z sgn(ogs )R(Soss )N(T') = Z sgn(oss )R(S")N(T).
S’ S’
Let 7 be the transposition which exchanges a; and by, then clearly we have FF = —F7 and
hence F — Fr = F+ F = 2F, or simply F = %F(l — 7). Since T is in the row group of T,
we also have .
FP(T)= §F(1 —7)P(T) =0.

We conclude that

> sgn(oss)R(S)Er = 0.

S/

Since C(S) is the lexicographically smallest element of all of the possible C(S’) we have
a method of rewriting

R(S)Er = — > R(S")Er.
5':C(8")>1C(S)

We conclude that the terms where S is a column strict tableau linearly spans the space

M.
It is known that the dimension of the module M* is the number of column strict tableau
of shape A, therefore the spanning set must be a basis. ]
Example: Choose A = (3,2) and we will use the tableau represent the expression
R(S)Ep. Consider the tableau
53
4]1]2]
Then we have
5(3 5(3 413
(1) 4l1]2]-[1[4]2]4+[1][5]2]=0
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5]3 5[4
(2) 1{4[2]= [1]3]2]
5]4 5[4 5]3
(3) 1[3[2]_[1]2]3]+[1]2]4]=0
5]4 415 215
(4) 1[2[3] - [1]2]3]4+[1]4]3]=0
2[5 2[5 2[4
(5) 1]4[3][1314]4+[1[3][5]=0
5]3 3[5 215
(6) 1[274]_[1]274]4+[11314]=0
413 415
(7) 1[5[2]= _[1[3]2]
415 415 413
(8) 1[3[2] - [1]2]3]4+[1]2]5]=0
413 314 2[4
(9) 1[2]5]—[1]2]5]+[1]3]5]=0
From (7), (8) and (9),
4 415 3[4 24
(10) 1]5]2]= —[1]2]3]-[1]2]5]+[1]3]5]
From (2), (3), (4), (5), (6)
5 415 2[4 3[5
(11) 1l4]2]= _[1]2]3] [1]3[5]+[1]2]4]
Putting these together,
5 2]4 3[5 3]4
(12) 411[2)= —o[1[3[5|+[1]2]4]+[1]2]5]



ON THE DECOMPOSITION OF GI,(C) REPRESENTATIONS INTO
IRREDUCIBLE S,, MODULES VII: A DECOMPOSITION OF THE
MODULE OF WORDS IN n LETTERS INTO IRREDUCIBLE S,
MODULES

The following is an excerpt from a paper ‘On the &,-module structure of the noncom-
mutative harmonics’ by E. Briand, M. Rosas and M. Zabrocki. Note that here we are
considering the ring Q(X,,) which is isomorphic to €;~,Q[n]*. Except that the field is
different, this is the space which is decomposed in earlier parts of these notes by Schur-Weyl
duality.

In the following lemma we compute the graded Frobenius characteristic for the module

Q(Xn).

Lemma 1 (The Frobenius characteristic of Q(X,,)).

n d
Frobe, (Q(Xn) =S ——h_g10)[X].
dzo{q,q}d (=19

Proof. For each monomial z;, - - - z;,, we define its type V(z;, - - - z;,) to be the set partition
of [r] ={1,2,...,r} such that a and b are in the same part of the set partition if and only
if i, = 4 in the monomial. For a set partition A with at most n parts, we will let N4 equal
the &,, submodule of Q(X,,) spanned by all monomials of type A. As &,—module,

n

QX)) ~ P NA

d=0 A: £(A)=d

where the second direct sum is taken over all set partitions A with d parts.

Fix a set partition A, and let d be the number of parts of A, and x; = x;, z4,...7;, be
the smallest monomial in lex order in N4. It involves only the variables z1, o, ..., Z4.
The representation N4 is the representation of &,, induced by the action of the subgroup
Sy x 6711_d ~ &, on the subspace Q[&y] - x;. The representation Q[&y] - x; of &g is
isomorphic to the regular representation. We use the rule for a representation R of &4
induced to G,,,

Frobe, (R1g") = hn—a[X]Frobs,(R),
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and conclude that the Frobenius characteristic of N4 is h(n_d71d)[X ]. Hence the graded
Frobenius characteristic of Q(Xn) is

n d
2 : 2 : 2 : q
fTObG | |h (n— dld ] = ﬁh(n7d7ld)[X].
d—0 q,495d

d=0 A:6(A)=d

So now, we know the Frobenius characteristic of Q(X,,) by computing it through sym-
metric function techniques. In particular if we concentrate on the words of length k,
Q(Xn>k, (rather than, as it is written above, all possible words of any length), then we
have

Frobg, (Q ZZS"“ a¥y(n—day8u[X]
pkn d=0
where S, 4 is the Stirling number of the second(?) kind which counts the number of set
partitions of size n and length d.
Moreover, if we restrict ourselves to the words of content o and denote the partition of
k corresponding to the set partition A as A(A), then we notice that

Frobe, | @ N4 Z > K pey 1@ sulX]
AMA)=«a

ukEn
/\(A)—a

We can also decompose the module AA)=a N 4in terms of the modules
= L{xzEr : AM(V(x7)) = o}

where T is some standard tableau of shape A - k. By applying the operators ET on the
right for each of these standard tableau, we have

b V=D W
A(A)=a TeSTk

where we may assume that the shape of T is less than or equal to « in dominance order.
Since what we wish to know is the decomposition numbers dy, the modules VI into
irreducible S;, modules we have

Vg — @(Mﬂ)@di(T)a
puEn
then we may also compute

Frobg, @ NA| = Z Zd’;(T)aSM[X

AA)= TeSTk pn
ANT)>a
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In particular we conclude that for a fixed y F n and for a - k,

Y Kunet@aten = D gy, -

AF[k] TeST*
A(A)=a ANT)>a
This is tantalizingly close to a combinatorial interpretation for the d’;(T)a which we would
ideally like to be able to isolate from this equation.
By what I have written in previous parts of these notes I would say that we have a
combinatorial interpretation for the coefficients d’;(T)a if we can determine the coefficients
dy ) where £(\) < n, and Ay > r (see Conjecture 8, 10, 11 from part IT of these notes).

(e



