
SAWS AND SAPS ON THE CAYLEY GRAPH OF A GROUP

MIKE ZABROCKI

These are notes from the talk that I gave at the Algebraic combinatorics seminar at
Fields on Friday, October 31, 2014.

A walk in a lattices is a sequence of points

origin = p0 → p1 → p2 → . . .→ pr

such that pi and pi+1 are adjacent in the lattice. A walk is self avoiding (SAW) if pi 6= pj
for any i 6= j. The length of the walk is r. A walk is a self avoiding polygon (SAP) if
pr = origin and p0 → p1 → p2 → . . .→ pr−1 is a SAW.

Now the lattice of this walk can be any sort of configuration of regular points. The usual
lattice that one considers is the square lattice, but one could also imagine a triangular,
hexagonal (as Neal spoke about) or the three dimensional cubic lattice (integer points
(a1, a2, a3) for ai ∈ Z).

One of the lattices that we can consider is the Cayley graph of a group. Let

identity = g0 → g1 → g2 → . . .→ gr

where the gi are the elements of the group G with generators {s1, s2, . . . , sn} and gi and
gi+1 are adjacent if gi+1 = gisdi with 1 ≤ di ≤ n.

The condition that the path intersects itself is that gi = sd1sd2 · · · sdi is equal to gj =
sd1sd2 · · · sdj for some j > i. This implies that sdi+1

sdi+2
· · · sdj = id.

One of the reasons that this could be an interesting way of looking at the problem
is that there are classes of groups whose Cayley graphs coincide with lattices that have
previously been studied. But is is also interesting because there are other groups in this
family whose lattices have not been as well studied. It motivates study of these other
lattices and encourages us to look at them from the group theory perspective. We are
especially interested in the lattices for groups that arise because they can be classified for
geometric reasons.

Example 1. Consider the group Ã1 generated by two generators {s0, s1} satisfying the
relations s20 = s21 = 1 and s0s1 6= s1s0. The elements of the group are indexed by
s0s1s0 · · · s1/0 and s1s0 · · · s1/0. The Cayley graph resembles a single line.

1

2 MIKE ZABROCKI

Example 2. Consider the group Ã1× Ã1 generated by two generators {s0, s1, t0, t1}. The
generators satisfy the relations s2i = t2i = 1 for i = 0, 1, sitj = tjsi for i, j ∈ {0, 1} and
otherwise we have that s0s1 6= s1s0 and t1t0 6= t0t1. are indexed by s0s1s0 · · · s1/0 and
s1s0 · · · s1/0. The Cayley graph can be represented as a square lattice.

Example 3. Consider the group Ã2 which has three generators {s0, s1, s2}. The generators
satisfy the relations s2i = 1 and sisi+1si = si+1sisi+1 for i = 0, 1, 2 where the indices of the
generators are all taken to be mod 3. The Cayley graph is the hexagonal lattice.

Example 4. The next most general example is the group called C̃2 (affine C2) which
has three generators again {s0, s1, s2} but now this time the relations that the generators

SAWS AND SAPS ON THE CAYLEY GRAPH OF A GROUP 3

satisfy are s2i = 1 for i = 0, 1, 2 and sisi+1sisi+1 = si+1sisi+1si for i = 0, 1 and s0s2 = s2s0.
This group has the truncated square tiling lattice (also referred to as (4, 82)) as its Cayley
graph. It looks like the following diagram without the labeling of the vertices.

Example 5. The only other two dimensional affine group that can be realized in the plane
is G̃2 (affine G2) which has three generators {s0, s1, s2} that satisfy are s2i = 1 for i = 0, 1, 2
and (s0s1)

3 = (s1s2)
6 = (s0s1)

2 = 1. The Cayley graph has the following form.

4 MIKE ZABROCKI

It is difficult to find pictures of this lattice on the internet. I have seen in a book that it is
sometimes called the cross lattice or a (4, 6, 12) tiling of the plane. I would normally just
call it the Cayley graph of affine G2. It is also called the truncated trihexagonal tiling or
(as Conway calls it truncated hexadeltille) and even has a wikipedia page [3].

All of these examples are planar lattices, but we can just as easily define walks on groups
that are reflection groups in higher dimensions or in hyberbolic spaces.

Now lets see how we can use algebraic computational tools to count paths in these
lattices. These techniques are not supposed to compete with enumeration methods for

SAWS AND SAPS ON THE CAYLEY GRAPH OF A GROUP 5

computing these paths, because certainly generating them with a low level language is
much more efficient. Instead these techniques can be used to look at enumeration for all
lattices arising from groups in the same light.

Denote si as the generators of my group and let s̃i be non-commutative variables in a
free algebra. Let An = Q 〈s̃0, s̃1, · · · , s̃n〉. Also let I be the monomial ideal

〈s̃d1 s̃d2 · · · s̃d` : sd1sd2 · · · sd` = id〉 .

A basis of A consists of words in the non-commutative variables s̃i which we will consider
as a walk on the lattice of the Cayley graph of the group.

The quotient A/I has as a basis s̃a1 s̃a2 · · · s̃a` such that no sequence of consecutive letters
(factor) in this word are a word in the generators of the group that reduces to the identity.

Moreover we have that the ideal I is minimally generated by

〈s̃d1 s̃d2 · · · s̃d` such that s̃d1 s̃d2 · · · s̃d` represents a SAP in the Cayley graph 〉 .

That is I is the ideal is generated by the words which do not have a subfactor (a consecutive
sequence of letters) which reduces to the identity.

I did a little bit of programming to implement this as generally as possible. The problem
is that I was using GAP and Sage in extremely inefficient manner. They constantly had
to communicate back and forth between each other while it would have been much easier
to just to implement it all in GAP or all in Sage.

I needed to rely on the GBNP package in GAP which computes non-commuative Grobner
bases. This was not hard to install at all. I just unpacked the file that I downloaded from
the internet and placed it in the directory /Applications/sage/local/gap/latest/pkg.
After that I was able to execute the GAP command LoadPackage("GBNP"); or the Sage
command gap.eval("LoadPackage(\"GBNP\");") to load the package so that the com-
mands are available in GAP.

Here are my Sage programs:

def is_identity(w, Grp):

"""

w is a word in 1...n and Grp is a group with n generators

then return true if w reduces to the identity

"""

gens = list(Grp.group_generators())

return mul([gens[a-1] for a in w], Grp.one())==Grp.one()

def makeGB(ell, Grp):

"""

Grp must be a group with generators that can be accessed

by the method .group_generators()

6 MIKE ZABROCKI

ell is the maximum length of the SAPs that we are looking for

Note: remove the line mod(d,2)==0 if using a lattice that

has self avoiding polygons of odd length

"""

out = [] # list consisting of all self avoiding polygons

n = len(Grp.group_generators())

for d in range(1,ell+1):

if mod(d,2)==0:

for w in Words(n,d):

if all(not u.is_factor(w) for u in out)

and is_identity(w, Grp):

out.append(w)

return [list(w) for w in out]

The function makeGB computes a list consisting of all self avoiding polygons in the
Cayley graph of Grp of length less than or equal to ell.

Then if we compute

sage: gap.eval("LoadPackage(\"GBNP\");")

’true’

sage: G = WeylGroup([’C’,2,1])

sage: gap.set(’LM’,gap(makeGB(10,G)))

gap.eval("HilbertSeriesQA(LM,3,12);")

’[1, 3, 6, 12, 22, 42, 80, 152, 284, 536, 988, 1848, 3448]’

then the first 11 terms of this sequence are correct, the last one should be off by some
amount. Note that in the command HilbertSeriesQA(LM,3,12); the 3 indicates that
there are three generators of the group. I also computed the number of self avoiding
polygons up to length 18 (up to length 20 might be long). I entered this data in the oeis
under sequence A249565.

Note that the number of unrooted, unoriented SAPs of length 2n is equal to the number
of oriented SAPs divided by n. These numbers were published in [1] up to length 150.
Unfortunately in order to squeeze the number of self avoiding walks out of them you
actually need the words themselves and not just the numbers of those words.

SAWS AND SAPS ON THE CAYLEY GRAPH OF A GROUP 7

length oriented SAPs unoriented SAPs unrooted unoriented SAPs
2 3 3
4 2 1 1
6 0 0 0
8 4 2 1
10 20 10 4
12 36 18 6
14 84 42 12
16 280 140 35
18 684 342 76

This code really isn’t fast, but it can be used to compute the self avoiding walks
in the square lattice as well. Assuming that we have already executed the command
gap.eval("LoadPackage(\"GBNP\");") in the Sage session elsewhere, then

sage: G = WeylGroup([’A’,1,1])

sage: G2 = G.cartesian_product(G)

sage: gap.set(’LM’,gap(makeGB(10,G2)))

gap.eval("HilbertSeriesQA(LM,4,12);")

’[1, 4, 12, 36, 100, 284, 780, 2172, 5916, 16268, 44100, 120284, 327868]’

In this case there are 4 generators of our group and so we compute this with the GAP
command HilbertSeriesQA(LM,4,12);. The term 327868 is not going to be right because
we are using the self avoiding polygons of length 10 to compute the the self avoiding walks
of length up to 11. Indeed, if you look at sequence A001411 in the OEIS you see that there
are 324932 self avoiding walks of length 12.

An interesting one is the lattice for G̃2.

sage: gap.set(’LM’,gap(makeGB(18,WeylGroup([’G’,2,1]))))

sage: gap.eval("HilbertSeriesQA(LM,3,19);")

[1, 3, 6, 12, 22, 42, 78, 146, 264, 490, 894, 1646, 3012, 5528, 10086,

18472, 33636, 61436, 111612, 203336]

References

[1] I. Jensen, A. J. Guttmann, Self-avoiding walks, neighbour-avoiding walks and trails on semiregular
lattices, J. Phys. A: Math. Gen. 31 (1998) 8137–8145.

[2] A. J. Guttmann, slides for talk “Self-avoiding walks and polygons on non-regular lattices”,
http://www.ms.unimelb.edu.au/~tonyg/lectures/hyper1.pdf.

[3] some relevant Wikipedia entries,
http://en.wikipedia.org/wiki/Connective constant

http://en.wikipedia.org/wiki/List of convex uniform tilings

http://en.wikipedia.org/wiki/Truncated square tiling

http://en.wikipedia.org/wiki/Square tiling

8 MIKE ZABROCKI

http://en.wikipedia.org/wiki/Hexagonal tiling

http://en.wikipedia.org/wiki/Truncated trihexagonal tiling

