Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Quiver Representations

Andrew Douglas

University of Toronto

March 5, 2006

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Overview	of Talk		

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Overview	of Talk		

Introduction to quivers.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Overview	of Talk		

- Introduction to quivers.
- Quiver representations.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References			
Overview of Talk								

- Introduction to quivers.
- ▶ Quiver representations. Finite, tame, wild.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References			
Overview of Talk								

- Introduction to quivers.
- Quiver representations. Finite, tame, wild.
- Classification of the representation types of quivers (Gabriel's Theorem).

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Overview	of Talk		

- Introduction to quivers.
- Quiver representations. Finite, tame, wild.
- Classification of the representation types of quivers (Gabriel's Theorem).
- Path algebras.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Overview	of Talk		

- Introduction to quivers.
- Quiver representations. Finite, tame, wild.
- Classification of the representation types of quivers (Gabriel's Theorem).
- Path algebras. Path algebras provide a close connection between quivers and the representation theory of finite-dimensional associative algebras.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Overview	of Talk		

- Introduction to quivers.
- Quiver representations. Finite, tame, wild.
- Classification of the representation types of quivers (Gabriel's Theorem).
- Path algebras. Path algebras provide a close connection between quivers and the representation theory of finite-dimensional associative algebras.

The slides will be on my website www.math.toronto.edu/adouglas/quivers.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quiv	vers		

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quiv	/ers		

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quiv	/ers		

Formally, a quiver in a pair $Q = (Q_0, Q_1)$ where Q_0 is a finite set of vertices and Q_1 is a finite set of arrows between them.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quiv	/ers		

Formally, a quiver in a pair $Q = (Q_0, Q_1)$ where Q_0 is a finite set of vertices and Q_1 is a finite set of arrows between them. If $a \in Q_1$ is an arrow, *ta* and *ha* denote the tail and head respectively.

Formally, a quiver in a pair $Q = (Q_0, Q_1)$ where Q_0 is a finite set of vertices and Q_1 is a finite set of arrows between them. If $a \in Q_1$ is an arrow, ta and ha denote the tail and head respectively.

Example:

 $Q_0 = \{1, 2, 3\}, Q_1 = \{a, b\}, ta = 1, ha = tb = 2, hb = 3.$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example:

Figure: (a) Jordan quiver (b) star quiver.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References	
Quiver Representations						

	quivers			Tatil Algebras	References		
Quiver Representations							

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quiver Repr	esentations		

A representation of a quiver Q is an assignment of a vector space to each vertex and to each arrow a linear map between the vector spaces assigned to its tail and head.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quiver Repr	esentations		

A representation of a quiver Q is an assignment of a vector space to each vertex and to each arrow a linear map between the vector spaces assigned to its tail and head.

Formally, a representation V of Q is a collection

 $\{V_x|x\in Q_0\}$

of finite dimensional K-vector spaces

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quiver Repr	esentations		

A representation of a quiver Q is an assignment of a vector space to each vertex and to each arrow a linear map between the vector spaces assigned to its tail and head.

Formally, a representation V of Q is a collection

 $\{V_x|x\in Q_0\}$

of finite dimensional K-vector spaces together with a collection

$$\{V_a: V_{ta} \longrightarrow V_{ha} | a \in Q_1\}$$

of K-linear maps.

Quivers

Example: For any quiver there exists the zero representation which assigns the zero space to each vertex (and hence the zero map to each arrow).

Example: For any quiver there exists the zero representation which assigns the zero space to each vertex (and hence the zero map to each arrow). ■

Example: Consider the quiver

Example: For any quiver there exists the zero representation which assigns the zero space to each vertex (and hence the zero map to each arrow). ■

Example: Consider the quiver

Two of its representations are

$$\mathbf{K} \xrightarrow{1} \mathbf{K} \xrightarrow{0} \mathbf{0} \qquad \qquad \mathbf{K} \xrightarrow{0} \mathbf{0} \xrightarrow{0} \mathbf{0}$$

Example: Consider the quiver

Quivers

Example: Consider the quiver

Two of its representations are

If V and W are two representations of Q, then a morphism $F: V \longrightarrow W$ is a collection of K-linear maps

$$\{F_x: V_x \longrightarrow W_x | x \in Q_0\}$$

such that the diagram

Quivers

If V and W are two representations of Q, then a morphism $F: V \longrightarrow W$ is a collection of K-linear maps

$$\{F_x: V_x \longrightarrow W_x | x \in Q_0\}$$

such that the diagram

commutes for every $a \in Q_1$.

If V and W are two representations of Q, then a morphism $F: V \longrightarrow W$ is a collection of K-linear maps

$$\{F_x: V_x \longrightarrow W_x | x \in Q_0\}$$

such that the diagram

commutes for every $a \in Q_1$.

A morphism $F: V \longrightarrow W$ is an isomorphism if F_x is invertible for every $x \in Q_0$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: For any representation V of Q there is always the identity morphism $1_V : V \longrightarrow V$ defined by the identity maps $(1_V)_x : V_x \longrightarrow V_x$ for any $x \in Q_0$.

with representations

Quivers

with representations

A morphism between these representations is given by

with representations

A morphism between these representations is given by

The morphism is clearly not an isomorphsim. ■

Quivers

with representations

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

A morphism between these representations is given by

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

A morphism between these representations is given by

The morphism is an isomorphsim. ■

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References		
Indecomposable representations							
Overview	Quivers	Quiver Representations	Classification	Path Algebras	References		
----------	---------	------------------------	----------------	---------------	------------		
		Indecomposable	representatio	ons			

If V and W are two representations of the same quiver Q, we define their direct sum $V \oplus W$ by

$$(V \oplus W)_x \equiv V_x \oplus W_x$$

for all $x \in Q_0$,

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Indecomposable	representati	ons	

If V and W are two representations of the same quiver Q, we define their direct sum $V \oplus W$ by

$$(V \oplus W)_x \equiv V_x \oplus W_x$$

for all $x \in Q_0$, and

$$(V \oplus W)_a \equiv \begin{pmatrix} V_a & 0 \\ 0 & W_a \end{pmatrix} : V_{ta} \oplus W_{ta} \longrightarrow V_{ha} \oplus W_{ha}$$

for all $a \in Q_1$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

A representation is trivial if $V_x = 0$ for all $x \in Q_0$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

A representation is trivial if $V_x = 0$ for all $x \in Q_0$.

If V is isomorphic to a direct sum $W \oplus Z$ where W and Z are nontrivial, then V is decomposable.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

A representation is trivial if $V_x = 0$ for all $x \in Q_0$.

If V is isomorphic to a direct sum $W \oplus Z$ where W and Z are nontrivial, then V is decomposable. Otherwise V is indecomposable.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Recall the quiver

with representation

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Let V be the rep above. Then, $V = U \oplus W$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Let V be the rep above. Then, $V = U \oplus W$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Any representation can be decomposed into indecomposable reps uniquely (up to isomorphism and permutation of components)(Krull-Remak-Schmidt).

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Any representation can be decomposed into indecomposable reps uniquely (up to isomorphism and permutation of components)(Krull-Remak-Schmidt).

Thus, the classification problem reduces to finding a complete list of pairwise non-isomorphic indecomposable representations.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Any representation can be decomposed into indecomposable reps uniquely (up to isomorphism and permutation of components)(Krull-Remak-Schmidt).

Thus, the classification problem reduces to finding a complete list of pairwise non-isomorphic indecomposable representations.

We will now attempt to solve the classification problem for certain well chosen examples.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Any representation can be decomposed into indecomposable reps uniquely (up to isomorphism and permutation of components)(Krull-Remak-Schmidt).

Thus, the classification problem reduces to finding a complete list of pairwise non-isomorphic indecomposable representations.

We will now attempt to solve the classification problem for certain well chosen examples. Later we will consider classification in a more general setting.

()				
~	 -		~	

Example:

Quivers

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Exai	mple:				
	•				
		a			
		•			
		1	2		

A representation of this quiver is a collection of two finite dimensional vector spaces V₁ and V₂ together with a linear map V_a : V₁ → V₂.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Eva	mnlo				
LA	inpie.				
		a			
		1	2		

- A representation of this quiver is a collection of two finite dimensional vector spaces V₁ and V₂ together with a linear map V_a : V₁ → V₂.
- For a linear map V_a : V₁ → V₂ we can always choose a basis in which V_a is given by the block matrix

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

where r is the rank of V_a .

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Two	reps V_a :	$K^m \longrightarrow K^n$ and W_a	$: K^{m'} \longrightarrow K$	^{.m'} are isomor	ohic

W,

K^m

if and only if m = m', n = n' and V_a and W_a have the same rank.

W

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
	There are	e 3 indecomposable r	representation	s A, B and C	

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

There are 3 indecomposable representations A, B and C

▶ Then, any representation Z of Q is isomorphic to

$$Z \cong A^{d_1-r} \oplus B^{d_2-r} \oplus C^r$$

where $d_1 = dimV_1$, $d_2 = dimV_2$ and $r = rankV_a$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

There are 3 indecomposable representations A, B and C

Then, any representation Z of Q is isomorphic to

$$Z \cong A^{d_1-r} \oplus B^{d_2-r} \oplus C^r$$

where $d_1 = dimV_1$, $d_2 = dimV_2$ and $r = rankV_a$.

 Thus there are 3 non-isomorphic indecomposable representations.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

There are 3 indecomposable representations A, B and C

Then, any representation Z of Q is isomorphic to

$$Z\cong A^{d_1-r}\oplus B^{d_2-r}\oplus C^r$$

where $d_1 = \dim V_1$, $d_2 = \dim V_2$ and $r = \operatorname{rank} V_a$.

- Thus there are 3 non-isomorphic indecomposable representations.
- Quivers that have a finite number of pairwise non-isomorphic indecomposable reps are said to be of finite type.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Exa	mple:				
		a			
		1			

A representation of the Jordan quiver is a finite dimensional vector spaces V₁ together with an endomorphism
 V_a: V₁ → V₁.

- A representation of the Jordan quiver is a finite dimensional vector spaces V₁ together with an endomorphism
 V_a : V₁ → V₁.
- Relative some choice of basis, we may put V_a into Jordan normal form (assume K is algebraically closed)

$$\begin{pmatrix} J_{n_1,\lambda_1} & \dots & 0\\ 0 & \ddots & 0\\ 0 & 0 & J_{n_r,\lambda_r} \end{pmatrix}, \quad J_{n,\lambda} = \begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \ddots & \ddots \\ & & & \lambda \end{pmatrix}$$

which is unique up to permutation of the blocks.

Quivers

► Two representations V_a : V₁ → V₁ and W_a : W₁ → W₁ are isomorphic iff there is a K-linear invertible F : V₁ → W₁ such that

Quivers

► Two representations V_a : V₁ → V₁ and W_a : W₁ → W₁ are isomorphic iff there is a K-linear invertible F : V₁ → W₁ such that

$$FV_aF^{-1} = W_a$$

Quivers

► Two representations V_a : V₁ → V₁ and W_a : W₁ → W₁ are isomorphic iff there is a K-linear invertible F : V₁ → W₁ such that

$$FV_aF^{-1} = W_a$$

iff

 $V_a \sim W_a$

► Two representations V_a: V₁ → V₁ and W_a: W₁ → W₁ are isomorphic iff there is a K-linear invertible F : V₁ → W₁ such that

iff

 $V_a \sim W_a$

iff V_a and W_a have the same Jordan normal form.

▶ Representations decompose into there Jordan blocks.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

▶ Representations decompose into there Jordan blocks.

$$\begin{pmatrix} J_{n_1,\lambda_1} & \dots & 0\\ 0 & \ddots & 0\\ 0 & 0 & J_{n_r,\lambda_r} \end{pmatrix} \cong \oplus_{i=1}^r J_{n_i,\lambda_i}$$

Representations decompose into there Jordan blocks.

$$\begin{pmatrix} J_{n_1,\lambda_1} & \dots & 0\\ 0 & \ddots & 0\\ 0 & 0 & J_{n_r,\lambda_r} \end{pmatrix} \cong \oplus_{i=1}^r J_{n_i,\lambda_i}$$

► It can be shown that each of the Jordan blocks J_{n,λ} is indecomposable

Representations decompose into there Jordan blocks.

$$\begin{pmatrix} J_{n_1,\lambda_1} & \dots & 0\\ 0 & \ddots & 0\\ 0 & 0 & J_{n_r,\lambda_r} \end{pmatrix} \cong \oplus_{i=1}^r J_{n_i,\lambda_i}$$

▶ It can be shown that each of the Jordan blocks $J_{n,\lambda}$ is indecomposable (Fitting lemma: V is indecomposable iff every $F \in End_Q(V)$ can be written as a sum of nilpotent endomorphisms with a multiple of the identity).

Representations decompose into there Jordan blocks.

$$\begin{pmatrix} J_{n_1,\lambda_1} & \dots & 0\\ 0 & \ddots & 0\\ 0 & 0 & J_{n_r,\lambda_r} \end{pmatrix} \cong \oplus_{i=1}^r J_{n_i,\lambda_i}$$

- ▶ It can be shown that each of the Jordan blocks $J_{n,\lambda}$ is indecomposable (Fitting lemma: V is indecomposable iff every $F \in End_Q(V)$ can be written as a sum of nilpotent endomorphisms with a multiple of the identity).
- Although there are infinitely many indecomposable reps, they can still be parameterized by a discrete parameter n (the size of the Jordan block) and a continuous parameter λ (the eigenvalue of the block).

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

► A quiver is of tame type if it has infinitely many isoclasses but they can be split into families, each parameterized by a single continuous parameter.
Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example:

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example:

• A representation of this quiver is a pair $V_a : V_1 \longrightarrow V_1$ and $V_b : V_1 \longrightarrow V_1$.

Quivers

• Two representations $V = \{V_a : V_1 \longrightarrow V_1, V_b : V_1 \longrightarrow V_1\}$ and $W = \{W_a : V_1 \longrightarrow V_1, W_b : W_1 \longrightarrow W_1\}$ are isomorphic if and only if

▶ Two representations $V = \{V_a : V_1 \longrightarrow V_1, V_b : V_1 \longrightarrow V_1\}$ and $W = \{W_a : V_1 \longrightarrow V_1, W_b : W_1 \longrightarrow W_1\}$ are isomorphic if and only if we have an invertible $F : V_1 \longrightarrow W_1$ such that

if and only if $FV_aF^{-1} = W_a$ and $FV_bF^{-1} = W_b$.

if and only if $FV_aF^{-1} = W_a$ and $FV_bF^{-1} = W_b$.

► To classify the representations of this quiver we would have to classify all pairs of matrices (V_a, V_b) up to simultaneous conjugation.

if and only if $FV_aF^{-1} = W_a$ and $FV_bF^{-1} = W_b$.

To classify the representations of this quiver we would have to classify all pairs of matrices (V_a, V_b) up to simultaneous conjugation. Thought to be an impossible task.

if and only if $FV_aF^{-1} = W_a$ and $FV_bF^{-1} = W_b$.

- To classify the representations of this quiver we would have to classify all pairs of matrices (V_a, V_b) up to simultaneous conjugation. Thought to be an impossible task.
- ▶ We call the representation theory of this quiver wild.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Definitions:

Definitions:

If a quiver has only finitely many indecomposable reps, it is called a quiver of finite type.

Definitions:

If a quiver has only finitely many indecomposable reps, it is called a quiver of finite type.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Def	initions:				
•	lf a quive called a q	r has only finitely m uiver of finite type.	any indecomp	osable reps, it	is
		•	a		
		1	2		
Þ	A quiver i they can continuou	s of tame type if it be split into families s parameter.	has infinitely 5, each parame	many isoclasses eterized by a si	s but ngle

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Def	initions:				
•	lf a quive called a q	r has only finitely m uiver of finite type.	any indecomp	osable reps, it	is
			a		
		• 1	2		
		1	2		
	A quiver i	s of tame type if it	has infinitely	many isoclasses	; but

they can be split into families, each parameterized by a single continuous parameter.

Overview	Quivers	Quiver representations	classification	Tatil Algebras	
Defi	initions:				
•	If a quiver called a qu	has only finitely ma uiver of finite type.	any indecomp	osable reps, it	is
			a		
		• 1	2		
►	A quiver is they can b	s of tame type if it h	nas infinitely r each parame	nany isoclasses terized by a si	5 but ngle

Classification

Path Algebras

References

Quiver Representations

continuous parameter.

 If a quiver is of tame type we have a hope of classifying its representations.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
	A quiver	is of wild type if it	is neither finit	e nor tame.	

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

• A quiver is of wild type if it is neither finite nor tame.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
•	A quiver i	s of wild type if it	is neither finit	e nor tame.	
	5				
	a ₅		a		b

 If you could classify all pairs of matrices (A, B) up to simultaneous conjugation you could classify all quivers (and associative algebras [Drozd]). Quivers

If V is a representation of Q, then its dimension vector

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$d_V: Q_0 \longrightarrow \mathbb{N}$$

 $x \longmapsto dim_K(V_x)$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$\begin{array}{cccc} d_V: & Q_0 & \longrightarrow & \mathbb{N} \\ & x & \longmapsto & \dim_K(V_x) \end{array}$$

For a quiver Q and a field K we can form a category $Rep_k(Q)$ whose objects are representations of Q with morphisms as defined above.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$\begin{array}{cccc} d_V: & Q_0 & \longrightarrow & \mathbb{N} \\ & x & \longmapsto & \dim_{\mathcal{K}}(V_x) \end{array}$$

For a quiver Q and a field K we can form a category $Rep_k(Q)$ whose objects are representations of Q with morphisms as defined above.

Forgetting the orientation of the arrows yields the underlying graph of a quiver.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$d_V: Q_0 \longrightarrow \mathbb{N}$$

 $x \longmapsto dim_K(V_x)$

For a quiver Q and a field K we can form a category $Rep_k(Q)$ whose objects are representations of Q with morphisms as defined above.

Forgetting the orientation of the arrows yields the underlying graph of a quiver.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The Classification of the representation type of quivers

Quivers

The Classification of the representation type of quivers

Gabriel's Theorem (1): A quiver is of finite type if and only if the underlying undirected graph is a union of Dynkin graphs of type A, D or E.

The Classification of the representation type of quivers

Gabriel's Theorem (1): A quiver is of finite type if and only if the underlying undirected graph is a union of Dynkin graphs of type A, D or E.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Gabriel's Theorem (2): The isoclasses of indecomposable representations of a quiver Q of finite type are in one-to-one correspondence with the positive roots of the root system associated to the underlying graph of Q.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Gabriel's Theorem (2): The isoclasses of indecomposable representations of a quiver Q of finite type are in one-to-one correspondence with the positive roots of the root system associated to the underlying graph of Q. The correspondence is given by

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Gabriel's Theorem (2): The isoclasses of indecomposable representations of a quiver Q of finite type are in one-to-one correspondence with the positive roots of the root system associated to the underlying graph of Q. The correspondence is given by

$$V\mapsto \sum_{x\in Q_0} d_V(x)lpha_x.$$

Quivers

Gabriel's Theorem (3) : A quiver is of tame type if and only if the underlying undirected graph is a union of Dynkin graphs of type A, D or E and extended Dynkin graphs of type \hat{A} , \hat{D} or \hat{E} (with at least one extended Dynkin graphs).

Gabriel's Theorem (3) : A quiver is of tame type if and only if the underlying undirected graph is a union of Dynkin graphs of type A, D or E and extended Dynkin graphs of type \hat{A} , \hat{D} or \hat{E} (with at least one extended Dynkin graphs).

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The Euler form of a quiver Q is defined to be the bilinear form on $\mathbb{Z}^{\,Q_0}$ given by

$$\langle \alpha, \beta \rangle = \sum_{x \in Q_0} \alpha(x) \beta(x) - \sum_{a \in Q_1} \alpha(ta) \beta(ha).$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The Euler form of a quiver Q is defined to be the bilinear form on \mathbb{Z}^{Q_0} given by

$$\langle \alpha, \beta \rangle = \sum_{x \in Q_0} \alpha(x) \beta(x) - \sum_{a \in Q_1} \alpha(ta) \beta(ha).$$

The Tits form B of Q is defined by

$$B(\alpha) = \langle \alpha, \alpha \rangle = \sum_{x \in Q_0} \alpha(x)^2 - \sum_{a \in Q_1} \alpha(ta) \alpha(ha).$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The Euler form of a quiver Q is defined to be the bilinear form on \mathbb{Z}^{Q_0} given by

$$\langle \alpha, \beta \rangle = \sum_{x \in Q_0} \alpha(x) \beta(x) - \sum_{a \in Q_1} \alpha(ta) \beta(ha).$$

The Tits form B of Q is defined by

$$B(\alpha) = \langle \alpha, \alpha \rangle = \sum_{x \in Q_0} \alpha(x)^2 - \sum_{a \in Q_1} \alpha(ta) \alpha(ha).$$

Note that the Tits form is independent of the orientation of arrow in $\mathsf{Q}.$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Proj defin A, D	position1 . iite then tl or E.	Let Q be a connect he underlying graph	ted quiver. If of Q is a Dyr	B_Q is positive nkin graph of t	уре

Proposition1. Let Q be a connected quiver. If B_Q is positive definite then the underlying graph of Q is a Dynkin graph of type A, D or E.

Proof:

1. If Q contains a subgraph of the form

Proposition1. Let Q be a connected quiver. If B_Q is positive definite then the underlying graph of Q is a Dynkin graph of type A, D or E.

Proof:

1. If Q contains a subgraph of the form

then the form B_Q is not positive definite.
Proposition1. Let Q be a connected quiver. If B_Q is positive definite then the underlying graph of Q is a Dynkin graph of type A, D or E. **Proof:**

1. If Q contains a subgraph of the form

then the form B_Q is not positive definite.

Proposition1. Let Q be a connected quiver. If B_Q is positive definite then the underlying graph of Q is a Dynkin graph of type A, D or E.

Proof:

1. If Q contains a subgraph of the form

then the form B_Q is not positive definite. $(B_{Q}(\alpha) = 1^{2} + 1^{2} - 1 \times 1 - 1 \times 1 = 0)$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Thus, if B_Q is positive definite, Q has the form

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Thus, if B_Q is positive definite, Q has the form

where $r \leq p \leq q$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

2. We must r = 0 or 1.

Overview Quivers Quiver Representations Class	sification Path Algebras References	

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

 $B_Q(\alpha) = 1 + 4 + 9 + 4 + 1 + 4 + 1 - 1 \times 2 - 2 \times 3 - 3 \times 2 - 2 \times 1 - 3 \times 2 - 3 \times 1 = 0.$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

 $B_Q(\alpha) = 1 + 4 + 9 + 4 + 1 + 4 + 1 - 1 \times 2 - 2 \times 3 - 3 \times 2 - 2 \times 1 - 3 \times 2 - 3 \times 1 = 0.$

If r = 0 this give A_n .

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

 $B_Q(\alpha) = 1 + 4 + 9 + 4 + 1 + 4 + 1 - 1 \times 2 - 2 \times 3 - 3 \times 2 - 2 \times 1 - 3 \times 2 - 3 \times 1 = 0.$

If r = 0 this give A_n . Assume r = 1.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		•			
				_	
		X 1 X 2 mm X	V	V	
		AI A2 MAp	yq y2	y 1	

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		٩	•		
		• • • • • • • • •	••	•	
		$x_1 \qquad x_2 \cdots x_p$	У q ····· У 2	У 1	

3. We must have $p \leq 2$.

3. We must have $p \leq 2$. If not Q contains a subgraph

3. We must have $p \leq 2$. If not Q contains a subgraph

 $B_Q = 0$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		•			
		• • • • •			
		X 1 X 2 ····· X n	Varia Varia	1	
		-1 -2p	5 q 5 2 5	1	

4. If p = 1, then q arbitrary. This gives D_n .

4. If p = 1, then q arbitrary. This gives D_n . 5. If p = 2, then $q \le 4$, if not

 $B_Q \leq 0.$

4. If p = 1, then q arbitrary. This gives D_n . 5. If p = 2, then $q \le 4$, if not

 $B_Q \leq 0.$ This give E_6 , E_7 or E_8 .

4. If p = 1, then q arbitrary. This gives D_n . 5. If p = 2, then $q \le 4$, if not

 $B_Q \leq 0.$ This give E_6 , E_7 or E_8 . Thus we have only A_n , D_n , E_6 , E_7 and E_8 .

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Proof: (Tits).

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Proof: (Tits). Consider an object $(V, d_V) \in Rep_k(Q)$ with a fixed dimension $d_V = m = (m_x)_{x \in Q_0}$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Proof: (Tits). Consider an object $(V, d_V) \in Rep_k(Q)$ with a fixed dimension $d_V = m = (m_x)_{x \in Q_0}$.

If we fix a basis in each of the spaces V_x , then the object (V, d_V) is completely defined by the set of matrices M_a for $a \in Q_1$, where M_a is the matrix of the mapping $V_a : V_{ta} \longrightarrow V_{ha}$.

Quivers	Quiver Representations	Classification	Path Algebras	References
	Quivers	Quivers Quiver Representations	Quivers Quiver Representations Classification	Quivers Quiver Representations Classification Path Algebras

In each space V_x we change basis by means of a non-singular $m_x \times m_x$ matrix g_x .

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$M_a' = g_{ha}^{-1} M_a g_{ta}. \qquad \bigstar$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$M_a' = g_{ha}^{-1} M_a g_{ta}. \qquad \bigstar$$

Let M be the manifold of all sets of matrices M_a

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$M_a' = g_{ha}^{-1} M_a g_{ta}. \qquad \bigstar$$

Let M be the manifold of all sets of matrices M_a $(M = \prod_{a \in Q_1} M_a = \prod_{a \in Q_1} M_{m_{ha} \times m_{ta}}(K))$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$M_a' = g_{ha}^{-1} M_a g_{ta}. \qquad \bigstar$$

Let M be the manifold of all sets of matrices M_a $(M = \prod_{a \in Q_1} M_a = \prod_{a \in Q_1} M_{m_{ha} \times m_{ta}}(K))$ and G the group of all sets of non-singular matrices g_x

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$M_a' = g_{ha}^{-1} M_a g_{ta}. \qquad \bigstar$$

Let M be the manifold of all sets of matrices M_a $(M = \prod_{a \in Q_1} M_a = \prod_{a \in Q_1} M_{m_{ha} \times m_{ta}}(K))$ and G the group of all sets of non-singular matrices g_X ($G = \prod_{x \in Q_0} GL_{m_x \times m_x}(K)$).

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$M_a' = g_{ha}^{-1} M_a g_{ta}.$$
 \bigstar

Let M be the manifold of all sets of matrices M_a $(M = \prod_{a \in Q_1} M_a = \prod_{a \in Q_1} M_{m_{ha} \times m_{ta}}(K))$ and G the group of all sets of non-singular matrices g_X ($G = \prod_{x \in Q_0} GL_{m_x \times m_x}(K)$). Then G acts on M according to \bigstar .

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

$$M_a' = g_{ha}^{-1} M_a g_{ta}.$$
 \bigstar

Let M be the manifold of all sets of matrices M_a $(M = \prod_{a \in Q_1} M_a = \prod_{a \in Q_1} M_{m_{ha} \times m_{ta}}(K))$ and G the group of all sets of non-singular matrices g_X ($G = \prod_{x \in Q_0} GL_{m_x \times m_x}(K)$).

Then G acts on M according to \bigstar . And, two reps are iso iff the set of matrices $\{M_a\}$ corresponding to them lie in one orbit of G.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Given	$\{M_a\}_{a \in Q_1}$, we have			
	din	$n(G) - dim(\mathcal{O}(\{M\}))$	$I_a\})) = dim(G)$	$(M_{3}).$	
				(

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References	
Given	$\{M_a\}_{a\in Q_1}$, we have				
$dim(G) - dim(\mathcal{O}(\{M_a\})) = dim(G_{\{M_a\}}).$						

If in $Rep_k Q$ there are only finitely many indecomposable objects, then there are only finitely many of dimension m.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References	
Given	$\{M_a\}_{a\in G}$	\mathfrak{g}_1 , we have				
$dim(G) - dim(\mathcal{O}(\{M_a\})) = dim(G_{\{M_a\}}).$						

If in $Rep_k Q$ there are only finitely many indecomposable objects, then there are only finitely many of dimension m. Thus, the manifold M splits into a finite number of orbits of G.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References	
Given	$\{M_a\}_{a\in Q_1}$, we have				
$dim(G) - dim(\mathcal{O}(\{M_a\})) = dim(G_{\{M_a\}}).$						

If in $Rep_k Q$ there are only finitely many indecomposable objects, then there are only finitely many of dimension m. Thus, the manifold M splits into a finite number of orbits of G.

Thus, there is some orbit $\mathcal{O}(\{M_a\})$ such that $dim(M) = dim(\mathcal{O}(\{M_a\}))$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Civo	$n \int M$	a wa hava			
Give	II \ <i>IVIa∫a</i> ∈0	Q_1 , we have			
				- \	
	d	im(G) — dim(O({IV	$(a_{a})) = dim(C)$	$V\{M_a\}$).	

If in $Rep_k Q$ there are only finitely many indecomposable objects, then there are only finitely many of dimension m. Thus, the manifold M splits into a finite number of orbits of G.

Thus, there is some orbit $\mathcal{O}(\{M_a\})$ such that $dim(M) = dim(\mathcal{O}(\{M_a\}))$. Hence

$$dim(G) - dim(M) = dim(G_{\{M_a\}}).$$
Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

We have $\mathit{dim}(\mathit{G}_{\{\mathit{M}_{a}\}}) \geq 1$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

We have $dim(G_{\{M_a\}}) \ge 1$ (G has a 1 dimensional subgroup consisting of the matrices where g_{ha} and g_{ta} are scalar multiples of the identity)

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

We have $dim(G_{\{M_a\}}) \ge 1$ (G has a 1 dimensional subgroup consisting of the matrices where g_{ha} and g_{ta} are scalar multiples of the identity) thus

 $dim(G) - dim(M) \geq 1.$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

We have $dim(G) = \sum_{x \in Q_0} m_x^2$ and $dim(M) = \sum_{a \in Q_1} m_{ta}m_{ha}$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

We have
$$dim(G) = \sum_{x \in Q_0} m_x^2$$
 and $dim(M) = \sum_{a \in Q_1} m_{ta}m_{ha}$.
 $(G = \prod_{x \in Q_0} GL_{m_x \times m_x}(K),$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

We have
$$dim(G) = \sum_{x \in Q_0} m_x^2$$
 and $dim(M) = \sum_{a \in Q_1} m_{ta}m_{ha}$.

Overview Quivers Qu	uiver Representations	Classification	Path Algebras	References

We have
$$dim(G) = \sum_{x \in Q_0} m_x^2$$
 and $dim(M) = \sum_{a \in Q_1} m_{ta}m_{ha}$.

Therefore, $dim(G) - dim(M) - 1 \ge 0$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

We have
$$dim(G) = \sum_{x \in Q_0} m_x^2$$
 and $dim(M) = \sum_{a \in Q_1} m_{ta}m_{ha}$.

Therefore,
$$dim(G) - dim(M) - 1 \ge 0$$
 implies
 $B_Q(m) = \sum_{x \in Q_0} m_x^2 - \sum_{a \in Q_1} m_{ta} m_{ha} > 0. \blacksquare$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Prop defin A, D	oosition 1: hite then the	Let Q be a connec he underlying graph	ted quiver. If of Q is a Dyr	B_Q is positive tkin graph of t	уре

Proposition 2: If in $Rep_k Q$ there are only finitely many indecomposable representations, then B_Q is positive definite.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Pro defin A, E	position1 : nite then t) or E.	Let Q be a connec he underlying graph	ted quiver. If of Q is a Dyr	B_Q is positive nkin graph of t	уре
Pro inde	position 2 composabl	2: If in <i>Rep_kQ</i> there le representations, tl	are only finite hen <i>B_Q</i> is pos	ely many itive definite.	
Gab	riel's The	eorem (1) : A quive	r is of finite ty	$vpe \Longrightarrow the$	

underlying undirected graph is a union of Dynkin graphs of type A, D or E.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
Pro defir A, D	position1 : nite then tl) or E.	Let Q be a connec he underlying graph	ted quiver. If of Q is a Dyr	B_Q is positive nkin graph of t	уре
Pro inde	position 2 composabl	: If in <i>Rep_kQ</i> there e representations, tl	are only finite nen <i>B_Q</i> is pos	ely many itive definite.	
Gab	riel's The	orem (1) : A quive	r is of finite ty	${}^{\prime}pe \Longrightarrow the$	

underlying undirected graph is a union of Dynkin graphs of type A, D or E.

Proving the other direction requires the development of reflection functors .

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

From Gabriel 1 we can count the number of pairwise non-isomorphic indecomposable reps for a (connected) quiver of finite type.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

From Gabriel 1 we can count the number of pairwise non-isomorphic indecomposable reps for a (connected) quiver of finite type.

underlying graph A_n D_n E_6 E_7 E_8 positive roots $\frac{n(n+1)}{2}$ n(n-1) 36 63 120

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Let Q be the quiver of type A_3 with the following orientation

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Let Q be the quiver of type A_3 with the following orientation

The set of positive roots of the Lie algebra of type A_3 are

$$\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2,$$

 $\alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3.$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The root α_1 corresponds to the unique representations V

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The root α_1 corresponds to the unique representations V

$$\mathbf{K} \xrightarrow{\mathbf{0}} \mathbf{0} \xrightarrow{\mathbf{0}} \mathbf{0}$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The root α_1 corresponds to the unique representations V

$$\mathbf{K} \xrightarrow{\mathbf{0}} \mathbf{0} \xrightarrow{\mathbf{0}} \mathbf{0}$$

$$V\mapsto \sum_{x\in Q_0} d_V(x)lpha_x.$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The complete list of non-iso indecomposable reps is

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Let Q be a quiver of type A_n with the following orientation

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Let Q be a quiver of type A_n with the following orientation

The set of positive roots of the Lie algebra of type A_n are

$$\{\sum_{i=j}^{l} \alpha_i | 1 \le j \le l \le n\}.$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

The root $\sum_{i=j}^{l} \alpha_i$ with $1 \le j \le l \le n$ corresponds to the unique representation V with

$$V_i = \begin{cases} K, & \text{if } j \le i \le l, \\ 0 & \text{otherwise.} \end{cases}$$

$$V_{\mathsf{a}_i} = egin{cases} 1, & ext{if } j \leq i \leq l-1, \ 0 & ext{otherwise.} \end{cases}$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quivers and P	ath Algebras		

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References
		Quivers and P	ath Algebras		

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References	
Quivers and Path Algebras						

A path in a quiver Q is a sequence $a_1, a_2, ..., a_r$ of arrows in Q_1 with $ta_i = ha_{i+1}$ for i = 1, 2, ..., r - 1.

Overview	Quivers			Tatil Algebras	References		
Quivers and Path Algebras							

A path in a quiver Q is a sequence $a_1, a_2, ..., a_r$ of arrows in Q_1 with $ta_i = ha_{i+1}$ for i = 1, 2, ..., r - 1.

Quivers and Path Algebras						
Overview	Quivers	Quiver Representations	Classification	Path Algebras	References	

A path in a quiver Q is a sequence $a_1, a_2, ..., a_r$ of arrows in Q_1 with $ta_i = ha_{i+1}$ for i = 1, 2, ..., r - 1.

Let e_x denote trivial path with $te_x = he_x = x$ for all $x \in Q_0$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

To a quiver Q we associate a K-algebra called the path algebra KQ.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

To a quiver Q we associate a K-algebra called the path algebra KQ. The set of paths forms a basis of the underlying vector space and the product is given by concatenation.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

To a quiver Q we associate a K-algebra called the path algebra KQ. The set of paths forms a basis of the underlying vector space and the product is given by concatenation.

Let $a = a_1 a_2 \dots a_r$ and $b = b_1 b_2 \dots b_s$, then

$$a \cdot b = \begin{cases} a_1 a_2 \dots a_r b_1 b_2 \dots b_s, & ta_r = hb_1, \\ 0, & \text{otherwise.} \end{cases}$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

To a quiver Q we associate a K-algebra called the path algebra KQ. The set of paths forms a basis of the underlying vector space and the product is given by concatenation.

Let $a = a_1 a_2 \dots a_r$ and $b = b_1 b_2 \dots b_s$, then

$$a \cdot b = \begin{cases} a_1 a_2 \dots a_r b_1 b_2 \dots b_s, & ta_r = hb_1, \\ 0, & \text{otherwise.} \end{cases}$$

KQ is an associate algebra with unit $(\sum_{x \in Q_0} e_x)$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Consider the quiver Q

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Consider the quiver Q

Then, {e₁, e₂, e₃, a, b, ba} is a K-basis of KQ.Some examples of products are b ⋅ a = ba, a ⋅ b = 0, e₂ ⋅ a = a, a ⋅ e₂ = 0, a ⋅ ba = 0, and ba ⋅ a = 0.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Consider the quiver Q

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Consider the quiver Q

For every $1 \le i \le j \le n$ there is a unique path from *i* to *j*.
Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Consider the quiver Q

- For every $1 \le i \le j \le n$ there is a unique path from *i* to *j*.
- Let f : KQ → M_n(K) be the function that sends the unique path from i to j to E_{ji}.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Example: Consider the quiver Q

- For every $1 \le i \le j \le n$ there is a unique path from *i* to *j*.
- Let $f: KQ \longrightarrow M_n(K)$ be the function that sends the unique path from *i* to *j* to E_{ji} .
- ▶ f is an isomorphism from KQ onto the algebra of lower triangular matrices.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

 $KQ \cong K[a]$.

Example:

 $KQ \cong K[a, b]$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

 $KQ \cong K[a]$.

Example:

 $KQ \cong K[a, b]$.

 $\mathsf{K}\mathsf{Q}$ is finite dimensional iff Q has no oriented cycles.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

There is a natural bijection between representations of the quiver ${\sf Q}$ and left-KQ-modules.

Quivers

There is a natural bijection between representations of the quiver ${\sf Q}$ and left-KQ-modules.

 $V \in \operatorname{\mathit{Rep}}_{\operatorname{\mathit{K}}} Q \mapsto$

There is a natural bijection between representations of the quiver ${\sf Q}$ and left-KQ-modules.

 $V \in \mathit{Rep}_KQ \mapsto$

$$\begin{aligned} & \text{left-KQ-module } V = \oplus_{x \in Q_0} V_x, \\ e_x \cdot v = \begin{cases} v, & v \in V_x, \\ 0, & \text{otherwise} \end{cases}, \\ a = a_1 a_2 \dots a_r \cdot v = \begin{cases} V_{a_1} V_{a_2} \dots V_{a_r}(v), & v \in V_{ta_r}, \\ 0, & \text{otherwise.} \end{cases} \end{aligned}$$

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Let Q be a quiver. A non-zero K-linear combination of paths of length ≥ 2 with the same start vertex and the same end vertex is called a relation on Q.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Let Q be a quiver. A non-zero K-linear combination of paths of length ≥ 2 with the same start vertex and the same end vertex is called a relation on Q. Given a set of relations $\{p_i\}$, let $\langle p_i \rangle$ be the ideal in KQ generated by $\{p_i\}$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Let Q be a quiver. A non-zero K-linear combination of paths of length ≥ 2 with the same start vertex and the same end vertex is called a relation on Q. Given a set of relations $\{p_i\}$, let $\langle p_i \rangle$ be the ideal in KQ generated by $\{p_i\}$.

Then $\frac{KQ}{\langle p_i \rangle}$ is the algebra defined by a quiver with relations.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

In general, if $(Q, \langle p_i \rangle)$ is a quiver with relations,

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

In general, if $(Q, \langle p_i \rangle)$ is a quiver with relations, we identify representations V of Q satisfying $V_{p_i} = 0$ (i.e., if $p_i = a_1 a_2$ then $V_{a_1}V_{a_2} = 0$), $\forall i$, with left modules over $\frac{KQ}{\langle p_i \rangle}$.

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References

Propostion: Let A be a finite dimensional K-algebra. Then the category of representations of A is equivalent to the category of representations of $\frac{KQ}{\mathcal{J}}$ for some quiver with relations (Q, \mathcal{J}) .

Overview	Quivers	Quiver Representations	Classification	Path Algebras	References				
References									
I N	Rernstein	IM Gel'fand and		arev Coveter					

functors and Gabriel's theorem, *Russian Math. Surveys* 28(2): 17-32, 1973.

H. Derksen, and J. Weyman, Quiver representations, *Notices of the AMS*, 52(2):200-206, 2005.

P. Gabriel, and A.V. Roiter, Representations of Finite-dimensional algebras, Springer, 1997.

I. Reiten, Dynkin Diagrams and the representation theory of algebras, *Notices of the AMS*, 44(5): 546-556, 1997.

A. Savage, Finite dimensional algebras and quivers (to appear in the *Encyclopedia of Mathematical Physics*).