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Overview of Talk

I Introduction to quivers.

I Quiver representations. Finite, tame, wild.

I Classification of the representation types of quivers (Gabriel’s
Theorem).

I Path algebras. Path algebras provide a close connection
between quivers and the representation theory of
finite-dimensional associative algebras.

The slides will be on my website
www.math.toronto.edu/adouglas/quivers.
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Quivers

A quiver is a directed graph.

Formally, a quiver in a pair Q = (Q0,Q1) where Q0 is a finite set of
vertices and Q1 is a finite set of arrows between them. If a ∈ Q1 is
an arrow, ta and ha denote the tail and head respectively.

Example:

b

1 2

a

3

Q0 = {1, 2, 3}, Q1 = {a, b}, ta = 1, ha = tb = 2, hb = 3.�
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Example:
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Figure: (a) Jordan quiver (b) star quiver.
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Quiver Representations

Fix a base field K.

A representation of a quiver Q is an assignment of a vector space
to each vertex and to each arrow a linear map between the vector
spaces assigned to its tail and head.

Formally, a representation V of Q is a collection

{Vx |x ∈ Q0}

of finite dimensional K-vector spaces together with a collection

{Va : Vta −→ Vha|a ∈ Q1}

of K-linear maps.
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Example: For any quiver there exists the zero representation
which assigns the zero space to each vertex (and hence the zero
map to each arrow). �

Example: Consider the quiver

b

1 2

a

3

Two of its representations are

K K
0

0
1

K 00
0 0

�
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If V and W are two representations of Q, then a morphism
F : V −→ W is a collection of K-linear maps

{Fx : Vx −→ Wx |x ∈ Q0}

such that the diagram

ta Vha

Wta Wha
Wa

V
Va

Fta Fha

commutes for every a ∈ Q1.

A morphism F : V −→ W is an isomorphism if Fx is invertible for
every x ∈ Q0.
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Example: For any representation V of Q there is always the
identity morphism 1V : V −→ V defined by the identity maps
(1V )x : Vx −→ Vx for any x ∈ Q0.
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Example: Recall the quiver

b

1 2

a

3

with representations

K K
0

0
1

K 00
0 0

A morphism between these representations is given by

K K

K 0 0 0

0

1

1

0
0

0

0

The morphism is clearly not an isomorphsim. �
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A morphism between these representations is given by

K2

−25

K2
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Indecomposable representations

If V and W are two representations of the same quiver Q, we
define their direct sum V ⊕W by

(V ⊕W )x ≡ Vx ⊕Wx

for all x ∈ Q0, and

(V ⊕W )a ≡
(

Va 0
0 Wa

)
: Vta ⊕Wta −→ Vha ⊕Wha

for all a ∈ Q1.
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A representation is trivial if Vx = 0 for all x ∈ Q0.

If V is isomorphic to a direct sum W ⊕ Z where W and Z are
nontrivial, then V is decomposable. Otherwise V is
indecomposable.
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Let V be the rep above. Then, V = U ⊕W

K200

K

K K

K

0 0
1 0

W:

0

U:

1

1
0

1
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Any representation can be decomposed into indecomposable reps
uniquely (up to isomorphism and permutation of
components)(Krull-Remak-Schmidt).

Thus, the classification problem reduces to finding a complete list
of pairwise non-isomorphic indecomposable representations.

We will now attempt to solve the classification problem for certain
well chosen examples. Later we will consider classification in a
more general setting.
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Example:

a

21

I A representation of this quiver is a collection of two finite
dimensional vector spaces V1 and V2 together with a linear
map Va : V1 −→ V2.

I For a linear map Va : V1 −→ V2 we can always choose a basis
in which Va is given by the block matrix(

Ir 0
0 0

)
where r is the rank of Va.
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Two reps Va : Km −→ Kn and Wa : Km
′
−→ Km

′
are isomorphic

if and only if there are invertible maps Fta : Km −→ Km
′

and

Fha : Kn −→ Kn
′

such that

KmK

n’Km’K

F

n

ta F ha

Va

Wa

if and only if m = m
′
, n = n

′
and Va and Wa have the same rank.
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I There are 3 indecomposable representations A, B and C

A:  K 0

B:  0

0

1
K

KC:  K

0

I Then, any representation Z of Q is isomorphic to

Z ∼= Ad1−r ⊕ Bd2−r ⊕ C r

where d1 = dimV1, d2 = dimV2 and r = rankVa.

I Thus there are 3 non-isomorphic indecomposable
representations.

I Quivers that have a finite number of pairwise non-isomorphic
indecomposable reps are said to be of finite type.

�
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Example:

a

1

I A representation of the Jordan quiver is a finite dimensional
vector spaces V1 together with an endomorphism
Va : V1 −→ V1.

I Relative some choice of basis, we may put Va into Jordan
normal form (assume K is algebraically closed)Jn1,λ1 . . . 0

0
. . . 0

0 0 Jnr ,λr

 , Jn,λ =


λ 1

λ 1
. . .

. . .

λ


which is unique up to permutation of the blocks.
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I Two representations Va : V1 −→ V1 and Wa : W1 −→ W1 are
isomorphic iff there is a K-linear invertible F : V1 −→ W1

such that

Va

F

W

F

W
a

V1 V1

11 W

FVaF
−1 = Wa

iff

Va ∼ Wa

iff Va and Wa have the same Jordan normal form.
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I Representations decompose into there Jordan blocks.

Jn1,λ1 . . . 0

0
. . . 0

0 0 Jnr ,λr

 ∼= ⊕r
i=1Jni ,λi

I It can be shown that each of the Jordan blocks Jn,λ is
indecomposable (Fitting lemma: V is indecomposable iff every
F ∈ EndQ(V ) can be written as a sum of nilpotent
endomorphisms with a multiple of the identity ).

I Although there are infinitely many indecomposable reps, they
can still be parameterized by a discrete parameter n (the size
of the Jordan block) and a continuous parameter λ (the
eigenvalue of the block).
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I A quiver is of tame type if it has infinitely many isoclasses but
they can be split into families, each parameterized by a single
continuous parameter. �
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Example:

a b

I A representation of this quiver is a pair Va : V1 −→ V1 and
Vb : V1 −→ V1.
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I Two representations V = {Va : V1 −→ V1,Vb : V1 −→ V1}
and W = {Wa : V1 −→ V1,Wb : W1 −→ W1} are isomorphic
if and only if

we have an invertible F : V1 −→ W1 such that

Va

F

W W

V1 V1

1

F

1 WWa

F

Vb

W

V1

1b

if and only if FVaF
−1 = Wa and FVbF

−1 = Wb.

I To classify the representations of this quiver we would have to
classify all pairs of matrices (Va,Vb) up to simultaneous
conjugation. Thought to be an impossible task.

I We call the representation theory of this quiver wild. �
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Definitions:

I If a quiver has only finitely many indecomposable reps, it is
called a quiver of finite type.

a

21

I A quiver is of tame type if it has infinitely many isoclasses but
they can be split into families, each parameterized by a single
continuous parameter.

a

1

I If a quiver is of tame type we have a hope of classifying its
representations.
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I A quiver is of wild type if it is neither finite nor tame.

a

3

5

1

2

1

2

a

3

4

4

5

6

a

a

a a b

I If you could classify all pairs of matrices (A,B) up to
simultaneous conjugation you could classify all quivers (and
associative algebras [Drozd]) .
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If V is a representation of Q, then its dimension vector

dV : Q0 −→ N
x 7−→ dimK (Vx)

For a quiver Q and a field K we can form a category Repk(Q)
whose objects are representations of Q with morphisms as defined
above.

Forgetting the orientation of the arrows yields the underlying graph
of a quiver.
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The Classification of the representation type of quivers

Gabriel’s Theorem (1) : A quiver is of finite type if and only if
the underlying undirected graph is a union of Dynkin graphs of
type A, D or E.

E 7

E 8

E 6

Dn

An
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Gabriel’s Theorem (2) : The isoclasses of indecomposable
representations of a quiver Q of finite type are in one-to-one
correspondence with the positive roots of the root system
associated to the underlying graph of Q.

The correspondence is
given by

V 7→
∑
x∈Q0

dV (x)αx .
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Gabriel’s Theorem (3) : A quiver is of tame type if and only if
the underlying undirected graph is a union of Dynkin graphs of
type A, D or E and extended Dynkin graphs of type Â, D̂ or Ê
(with at least one extended Dynkin graphs).
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The Euler form of a quiver Q is defined to be the bilinear form on
ZQ0 given by

〈α, β〉 =
∑
x∈Q0

α(x)β(x)−
∑
a∈Q1

α(ta)β(ha).

The Tits form B of Q is defined by

B(α) = 〈α, α〉 =
∑
x∈Q0

α(x)2 −
∑
a∈Q1

α(ta)α(ha).

Note that the Tits form is independent of the orientation of arrow
in Q.
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Proposition1. Let Q be a connected quiver. If BQ is positive
definite then the underlying graph of Q is a Dynkin graph of type
A, D or E.

Proof:
1. If Q contains a subgraph of the form

then the form BQ is not positive definite.
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(BQ(α) = 12 + 12 − 1× 1− 1× 1 = 0)
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Thus, if BQ is positive definite, Q has the form

x 1 x 2 x p y 2 y 1

z r

z 2

z 1

y q

where r ≤ p ≤ q.
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2. We must r = 0 or 1.

Otherwise Q has a subgraph of the form

11 2 3

2

1

2

BQ(α) =
1+4+9+4+1+4+1−1×2−2×3−3×2−2×1−3×2−3×1 = 0.

If r = 0 this give An. Assume r = 1.
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x 1 x 2 x p y 2 y 1y q

3. We must have p ≤ 2. If not Q contains a subgraph

2

1 2 3 4 3 2 1

BQ = 0
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x 1 x 2 x p y 2 y 1y q

4. If p = 1, then q arbitrary. This gives Dn.
5. If p = 2, then q ≤ 4, if not

2 4 6 5 2 1

3

4 3

BQ ≤ 0.
This give E6, E7 or E8.
Thus we have only An, Dn, E6, E7 and E8. �
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Proposition 2. If in RepkQ there are only finitely many
indecomposable representations, then BQ is positive definite.

Proof: (Tits). Consider an object (V , dV ) ∈ Repk(Q) with a fixed
dimension dV = m = (mx)x∈Q0 .

If we fix a basis in each of the spaces Vx , then the object (V , dV )
is completely defined by the set of matrices Ma for a ∈ Q1, where
Ma is the matrix of the mapping Va : Vta −→ Vha.
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In each space Vx we change basis by means of a non-singular
mx ×mx matrix gx .

Then the matrices Ma are replaced by

M ′
a = g−1

ha Magta. F

Let M be the manifold of all sets of matrices Ma

(M =
∏

a∈Q1
Ma =

∏
a∈Q1

Mmha×mta(K )) and G the group of all
sets of non-singular matrices gx (G =

∏
x∈Q0

GLmx×mx (K )).
Then G acts on M according to F. And, two reps are iso iff the

set of matrices {Ma} corresponding to them lie in one orbit of G.
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Given {Ma}a∈Q1 , we have

dim(G )− dim(O({Ma})) = dim(G{Ma}).

If in RepkQ there are only finitely many indecomposable objects,
then there are only finitely many of dimension m. Thus, the
manifold M splits into a finite number of orbits of G.

Thus, there is some orbit O({Ma}) such that
dim(M) = dim(O({Ma})). Hence

dim(G )− dim(M) = dim(G{Ma}).



Overview Quivers Quiver Representations Classification Path Algebras References

Given {Ma}a∈Q1 , we have

dim(G )− dim(O({Ma})) = dim(G{Ma}).

If in RepkQ there are only finitely many indecomposable objects,
then there are only finitely many of dimension m.

Thus, the
manifold M splits into a finite number of orbits of G.

Thus, there is some orbit O({Ma}) such that
dim(M) = dim(O({Ma})). Hence

dim(G )− dim(M) = dim(G{Ma}).



Overview Quivers Quiver Representations Classification Path Algebras References

Given {Ma}a∈Q1 , we have

dim(G )− dim(O({Ma})) = dim(G{Ma}).

If in RepkQ there are only finitely many indecomposable objects,
then there are only finitely many of dimension m. Thus, the
manifold M splits into a finite number of orbits of G.

Thus, there is some orbit O({Ma}) such that
dim(M) = dim(O({Ma})). Hence

dim(G )− dim(M) = dim(G{Ma}).



Overview Quivers Quiver Representations Classification Path Algebras References

Given {Ma}a∈Q1 , we have

dim(G )− dim(O({Ma})) = dim(G{Ma}).

If in RepkQ there are only finitely many indecomposable objects,
then there are only finitely many of dimension m. Thus, the
manifold M splits into a finite number of orbits of G.

Thus, there is some orbit O({Ma}) such that
dim(M) = dim(O({Ma})).

Hence

dim(G )− dim(M) = dim(G{Ma}).



Overview Quivers Quiver Representations Classification Path Algebras References

Given {Ma}a∈Q1 , we have

dim(G )− dim(O({Ma})) = dim(G{Ma}).

If in RepkQ there are only finitely many indecomposable objects,
then there are only finitely many of dimension m. Thus, the
manifold M splits into a finite number of orbits of G.

Thus, there is some orbit O({Ma}) such that
dim(M) = dim(O({Ma})). Hence

dim(G )− dim(M) = dim(G{Ma}).



Overview Quivers Quiver Representations Classification Path Algebras References

We have dim(G{Ma}) ≥ 1

(G has a 1 dimensional subgroup
consisting of the matrices where gha and gta are scalar multiples of
the identity) thus

dim(G )− dim(M) ≥ 1.
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We have dim(G ) =
∑

x∈Q0
mx

2 and dim(M) =
∑

a∈Q1
mtamha.

(G =
∏

x∈Q0
GLmx×mx (K ),

M =
∏

a∈Q1
Ma =

∏
a∈Q1

Mmha×mta(K ))

Therefore, dim(G )− dim(M)− 1 ≥ 0 implies
BQ(m) =

∑
x∈Q0

mx
2 −

∑
a∈Q1

mtamha > 0. �
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Proposition1: Let Q be a connected quiver. If BQ is positive
definite then the underlying graph of Q is a Dynkin graph of type
A, D or E.

Proposition 2: If in RepkQ there are only finitely many
indecomposable representations, then BQ is positive definite.

Gabriel’s Theorem (1) : A quiver is of finite type =⇒ the
underlying undirected graph is a union of Dynkin graphs of type A,
D or E.

Proving the other direction requires the development of reflection
functors .
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From Gabriel 1 we can count the number of pairwise
non-isomorphic indecomposable reps for a (connected) quiver of
finite type.

underlying graph An Dn E6 E7 E8

positive roots n(n+1)
2 n(n − 1) 36 63 120



Overview Quivers Quiver Representations Classification Path Algebras References

From Gabriel 1 we can count the number of pairwise
non-isomorphic indecomposable reps for a (connected) quiver of
finite type.

underlying graph An Dn E6 E7 E8

positive roots n(n+1)
2 n(n − 1) 36 63 120



Overview Quivers Quiver Representations Classification Path Algebras References

Example: Let Q be the quiver of type A3 with the following
orientation

b

1 2

a

3

The set of positive roots of the Lie algebra of type A3 are

α1, α2, α3, α1 + α2,

α2 + α3, α1 + α2 + α3.
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The root α1 corresponds to the unique representations V

K 0
0

0
0

V 7→
∑
x∈Q0

dV (x)αx .
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The complete list of non-iso indecomposable reps is

K 0 0
0 0

0 0 K
0 0

K K K
1 1

0 K 0
0 0

K K 0
1

+

0

0 K K
0 1

a1

a3

a2

a1

a2 a3

a2

a1 a2 a3

+

+

+

�
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Example: Let Q be a quiver of type An with the following
orientation

n−1n−232

a1 a2 an−2

1

a

n

n−1

The set of positive roots of the Lie algebra of type An are

{
l∑

i=j

αi |1 ≤ j ≤ l ≤ n}.



Overview Quivers Quiver Representations Classification Path Algebras References

Example: Let Q be a quiver of type An with the following
orientation

n−1n−232

a1 a2 an−2

1

a

n

n−1

The set of positive roots of the Lie algebra of type An are

{
l∑

i=j

αi |1 ≤ j ≤ l ≤ n}.



Overview Quivers Quiver Representations Classification Path Algebras References

The root
∑l

i=j αi with 1 ≤ j ≤ l ≤ n corresponds to the unique
representation V with

Vi =

{
K , if j ≤ i ≤ l ,

0 otherwise.

Vai =

{
1, if j ≤ i ≤ l − 1,

0 otherwise.

�
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Quivers and Path Algebras

There is a close connection between quivers and the representation
theory of finite-dimensional algebras.

A path in a quiver Q is a sequence a1, a2, ..., ar of arrows in Q1

with tai = hai+1 for i = 1, 2, ..., r − 1.

a3
a1a2

Let ex denote trivial path with tex = hex = x for all x ∈ Q0.
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To a quiver Q we associate a K-algebra called the path algebra
KQ.

The set of paths forms a basis of the underlying vector space
and the product is given by concatenation.

Let a = a1a2...ar and b = b1b2...bs , then

a · b =

{
a1a2...arb1b2...bs , tar = hb1,

0, otherwise.

KQ is an associate algebra with unit (
∑

x∈Q0
ex).
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Example:
Consider the quiver Q

a b

1 2 3

I Then, {e1, e2, e3, a, b, ba} is a K-basis of KQ.Some examples
of products are b · a = ba, a · b = 0, e2 · a = a, a · e2 = 0,
a · ba = 0, and ba · a = 0. �
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Example:
Consider the quiver Q

n−1 n3

a2a1 a

2

n−1

1

I For every 1 ≤ i ≤ j ≤ n there is a unique path from i to j .

I Let f : KQ −→ Mn(K ) be the function that sends the unique
path from i to j to Eji .

I f is an isomorphism from KQ onto the algebra of lower
triangular matrices. �
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Example:

a

1

KQ ∼= K [a]. �

Example:

a b

KQ ∼= K [a, b]. �

KQ is finite dimensional iff Q has no oriented cycles.
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There is a natural bijection between representations of the quiver
Q and left-KQ-modules.

V ∈ RepKQ 7→

left-KQ-module V = ⊕x∈Q0Vx ,

ex · v =

{
v , v ∈ Vx ,

0, otherwise
,

a=a1a2...ar · v =

{
Va1Va2 ...Var (v), v ∈ Vtar ,

0, otherwise.
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Let Q be a quiver. A non-zero K-linear combination of paths of
length ≥ 2 with the same start vertex and the same end vertex is
called a relation on Q.

Given a set of relations {pi}, let 〈pi 〉 be
the ideal in KQ generated by {pi}.

Then KQ
〈pi 〉 is the algebra defined by a quiver with relations.
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In general, if (Q, 〈pi 〉) is a quiver with relations,

we identify
representations V of Q satisfying Vpi = 0 (i.e., if pi = a1a2 then
Va1Va2 = 0), ∀i , with left modules over KQ

〈pi 〉 .
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Propostion: Let A be a finite dimensional K-algebra. Then the
category of representations of A is equivalent to the category of
representations of KQ

J for some quiver with relations (Q,J ).
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