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Abstract. Given an elliptic curve C, we study here the number Nk = #C(Fqk ) of points of C over the finite

field Fqk . We obtain two combinatorial formulas for Nk. In particular we prove that Nk = −Wk(q, t)|t=−N1

where Wk(q, t) is a (q, t)-analogue for the number of spanning trees of the wheel graph.

Résumé. Étant donnée une courbe elliptique C on étudie le nombre Nk = #C(Fqk ) de points de C dans

le corps fini Fqk . On obtient deux formules combinatoires pour Nk. En particulier on démontre que Nk =

−Wk(q, t)|t=−N1
oú Wk(q, t) est une (q, t)-extension du nombre des arbres recouvrants du graphe roue.

1. Introduction

An interesting problem at the cross-roads between combinatorics, number theory, and algebraic geometry,
is that of counting the number of points on an algebraic curve over a finite field. Over a finite field, the locus
of solutions of an algebraic equation is a discrete subset, but since they satisfy a certain type of algebraic
equation this imposes a lot of extra structure below the surface. One of the ways to detect this additional
structure is by looking at field extensions: the infinite sequence of cardinalities is only dependent on a
finite set of data. Specifically the number of points over Fq, Fq2 , . . . , and Fqg will be sufficient data to
determine the number of points on a genus g algebraic curve over any other algebraic field extension. This
observation begs the question of how the points over higher field extensions correspond to points over the
first g extensions. To see this more clearly, we specialize to the case of elliptic curves, where g = 1. Letting
Nk equal the number of points on C over Fqk , we find a polynomial formula for Nk in terms of q and N1.
Moreover, the coefficients in our formula have a combinatorial interpretation related to spanning trees of the
wheel graph.

2. The Zeta Function of a Curve

The zeta function of a curve C is defined to be the exponential generating function

Z(C, T ) = exp

(

∑

k≥1

Nk

T k

k

)

.

A result due to Weil [7] is that the zeta function of an elliptic curve, in fact for any curve, Z(C, T ) is
rational, and moreover can be expressed as

Z(C, T ) =
(1 − α1T )(1− α2T )

(1− T )(1− qT )
=

1− (α1 + α2)T + α1α2T
2

(1− T )(1− qT )
.

The inverse roots α1 and α2 satisfy a functional equation which reduces to

α1α2 = q

in the elliptic curve case.
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Among other things, rationality and the functional equation implies that Nk = 1 + qk − αk
1 − αk

2 , which
can be written in plethystic notation as pk[1 + q − α1 − α2]. As a special case,

α1 + α2 = 1 + q −N1.

Hence we can rewrite the Zeta function Z(C, T ) totally in terms of q and N1, hence all the Nk’s are actually
dependent on these two quantities. The first few formulas are given below.

N2 = (2 + 2q)N1 −N2
1

N3 = (3 + 3q + 3q2)N1 − (3 + 3q)N2
1 + N3

1

N4 = (4 + 4q + 4q2 + 4q3)N1 − (6 + 8q + 6q2)N2
1 + (4 + 4q)N3

1 −N4
1

N5 = (5 + 5q + 5q2 + 5q3 + 5q4)N1 − (10 + 15q + 15q2 + 10q3)N2
1

+ (10 + 15q + 10q2)N3
1 − (5 + 5q)N4

1 + N5
1

This data gives rise to our first observation.

Theorem 2.1.

Nk =

k
∑

i=1

(−1)i+1Pi,k(q)N i
1

where the Pi,k’s are polynomials with positive integer coefficients.

We will prove this in the course of the deriviations in Section 3. Also see [3] for a direct proof. This
result motivates the combinatorial question: what are the objects that the family of polynomials, {Pi,k}
enumerate?

3. The Lucas Numbers and a (q, t)-analogue

Definition 3.1. We define the (q, t)−Lucas numbers to be a sequence of polynomials in variables q

and t such that Ln(q, t) is defined as

Ln(q, t) =
∑

S⊆{1,2,...,n} : S∩S
(n)
1 =φ

q# even elements in S tb
n
2 c−#S .(3.1)

Here S
(n)
1 is the circular shift of set S modulo n, i.e. element x ∈ S1 if and only if x− 1 ( mod n ) ∈ S. In

other words, the sum is over subsets S with no two numbers circularly consecutive.

These polynomials are a generalization of the sequence of Lucas numbers Ln which have the initial
conditions L1 = 1, L2 = 3 (or L0 = 2 and L1 = 1) and satisfy the Fibonacci recurrence Ln = Ln−1 + Ln−2.
The first few Lucas numbers are

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .

As described in numerous sources, e.g. [1], Ln is equal to the number of ways to color an n−beaded
necklace black and white so that no two black beads are consecutive. You can also think of this as choosing
a subset of {1, 2, . . . , n} with no consecutive elements, nor the pair 1, n. (We call this circularly consecutive.)
Thus letting q and t both equal one, we get by definition that Ln(1, 1, ) = Ln.

We will prove the following theorem, which relates our newly defined (q, t)−Lucas numbers to the
polynomials of interest, namely the Nk’s.

Theorem 3.2.

1 + qk −Nk = L2k(q, t)

∣

∣

∣

∣

t=−N1

(3.2)

for all k ≥ 1.

To prove this result it suffices to prove that both sides are equal for k ∈ {1, 2}, and that both sides
satisfy the same three-term recurrence relation. Since

L2(q, t) = 1 + q + t and

L4(q, t) = 1 + q2 + (2q + 2)t + t2
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we have proven that the initial conditions agree. Note that the sets of (3.1) yielding the terms of these sums
are respectively

{1}, {2}, { } and {1, 3}, {2, 4}, {1}, {2}, {3}, {4}, { }.

It remains to prove that both sides of (3.2) satisfy the recursion

Gk+1 = (1 + q −N1)Gk − qGk−1

for k ≥ 1.

Proposition 3.1. For the (q, t)−Lucas Numbers Lk(q, t) defined as above,

L2k+2(q, t) = (1 + q + t)L2k(q, t)− qL2k−2(q, t).(3.3)

Proof. To prove this we actually define an auxiliary set of polynomials, {L̃2k}, such that

L2k(q, t) = tkL̃2k(q, t−1).

Thus recurrence (3.3) for the L2k’s translates into

L̃2k+2(q, t) = (1 + t + qt)L̃2k(q, t)− qt2L̃2k−2(q, t)(3.4)

for the L̃2k’s. The L̃2k’s happen to have a nice combinatorial interpretation also, namely

L̃2k(q, t) =
∑

S⊆{1,2,...,2k} : S∩S
(2k)
1 =φ

q# even elements in S t#S .

Recall our slightly different description which considers these as the generating function of 2-colored, labeled
necklaces. We will find this terminology slightly easier to work with. We can think of the beads labeled 1
through 2k + 2 to be constructed from a pair of necklaces; one of length 2k with beads labeled 1 through
2k, and one of length 2 with beads labeled 2k + 1 and 2k + 2.

Almost all possible necklaces of length 2k + 2 can be decomposed in such a way since the coloring
requirements of the 2k+2 necklace are more stringent than those of the pairs. However not all necklaces can
be decomposed this way, nor can all pairs be pulled apart and reformed as a (2k +2)-necklace. For example,
if k = 2:

Decomposable

1 2

3

45

6

=

6

5 4

3

21
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Not Decomposable

1 2

3

45

6

6=

6

5 4

3

21

It is clear enough that the number of pairs is L̃2(q, t)L̃2k(q, t) = (1 + t + qt)L̃2k(q, t). To get the third

term of the recurrence, i.e. qt2L̃2k−2, we must define linear analogues, F̃n(q, t)’s, of the previous generating

function. Just as the L̃n(1, 1)’s were Lucas numbers, the F̃n(1, 1)’s will be Fibonacci numbers.

Definition 3.3. The (twisted) (q, t)−Fibonacci polynomials, denoted as F̃n(q, t), will be defined as

F̃k(q, t) =
∑

S⊆{1,2,...,k−1} : S∩(S
(k−1)
1 −{1})=φ

q# even elements in S t#S.

The summands here are subsets of {1, 2, . . . , k− 1} such that no two elements are linearly consecutive,
i.e. we now allow a subset with both the first and last elements. An alternate description of the objects
involved are as (linear) chains of k− 1 beads which are black or white with no two consecutive black beads.
With these new polynomials at our disposal, we can calculate the third term of the recurrence, which is the
difference between the number of pairs that cannot be recombined and the number of necklaces that cannot
be decomposed.

Lemma 3.4. The number of pairs that cannot be recombined into a longer necklace is 2qt2F̃2k−2(q, t).

Proof. We have two cases: either both 1 and 2k + 2 are black, or both 2k and 2k + 1 are black. These
contribute a factor of qt2, and imply that beads 2, 2k, and 2k +1 are white, or that 1, 2k− 1, and 2k +2 are
white, respectively. In either case, we are left counting chains of length 2k − 3, which have no consecutive
black beads. In one case we start at an odd-labeled bead and go to an evenly labeled one, and the other
case is the reverse, thus summing over all possibilities yields the same generating function in both cases. �

Lemma 3.5. The number of (2k + 2)-necklaces that cannot be decomposed into a 2-necklace and a 2k-

necklace is qt2F̃2k−3(q, t).

Proof. The only ones the cannot be decomposed are those which have beads 1 and 2k both black.
Since such a necklace would have no consecutive black beads, this implies that beads 2, 2k − 1, 2k + 1, and
2k + 2 are all white. Thus we are reduced to looking at chains of length 2k− 4, starting at an odd, 3, which
have no consecutive black beads. �

Lemma 3.6. The difference of the quantity referred to in Lemma 3.5 from the quantity in Lemma 3.4 is

exactly qt2L̃2k−2(q, t).

Proof. It suffices to prove the relation

qt2L̃2k−2(q, t) = 2qt2F̃2k−2(q, t)− qt2F̃2k−3(q, t)

which is equivalent to

qt2L̃2k−2(q, t) = qt2F̃2k−2(q, t) + q2t3F̃2k−4(q, t)(3.5)

since
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F̃2k−2(q, t) = qtF̃2k−4(q, t) + F̃2k−3(q, t).(3.6)

Note that identity (3.6) simply comes from the fact that the (2k− 2)nd bead can be black or white. Finally
we prove (3.5) by dividing by qt2, and then breaking it into the cases where bead 1 is white or black. If
bead 1 is white, we remove that bead and cut the necklace accordingly. If bead 1 is black, then beads 2 and
2k + 2 must be white, and we remove all three of the beads.

�

With this Lemma proven, the recursion for the L̃2k’s, hence the L2k’s follows immediately. �

Proposition 3.2. For an elliptic curve C with Nk points over Fqk we have that

1 + qk+1 −Nk+1 = (1 + q −N1)(1 + qk −Nk)− q(1 + qk−1 −Nk−1).

Proof. Recalling that for an elliptic curve C we have the identity Nk = 1+qk−αk
1−αk

2 , we can rewrite
the statement of this Proposition as

αk+1
1 + αk+1

2 = (α1 + α2)(α
k
1 + αk

2)− q(αk−1
1 + αk−1

2 ).(3.7)

Noting that q = α1α2 we obtain this Proposition after expanding out algebraically the right-hand-side of
(3.7). �

With the proof of Proposition 3.1 and 3.2, we have proven Theorem 3.2.

4. (q, t)−Wheel Numbers

Given that we found the Lucas numbers are related to the polynomial formulas Nk(q, N1), a natural
question concerns how alternative interpretations of the Lucas numbers can help us better understand Nk.
As noted in [1], [4], and [5, Seq. A004146], the sequence {L2n − 2} counts the number of spanning trees in
the wheel graph Wn; a graph which consists of n + 1 vertices, n of which lie on a circle and one vertex in
the center, a hub, which is connected to all the other vertices. This combinatorial interpretation motivates
the following definition.

Definition 4.1.

Wn(q, t) =
∑

T a spanning tree of Wn

qsum of arc tail distance in T t# spokes of T .

Here the exponent of t counts the number of edges emanating from the central vertex, and the exponent
of q requires further explanation. We note that a spanning tree T of Wn consists of spokes and a collection
of disconnected arcs on the rim. Further, since there are no cycles, each spoke will intersect exactly one arc.
(An isolated vertex is considered to be an arc of length 1.) We imagine the circle being oriented clockwise,
and imagine the tail of each arc being the vertex which is the sink for that arc. In the case of an isolated
vertex, the lone vertex is the tail of that arc. Since the spoke intersects each arc exactly once, if an arc has
length k, meaning that it contains k vertices, there will be k choices of where the spoke and the arc meet.
We define the q−weight of an arc to be q number of edges between the spoke and the tail. We define the q−weight
of the tree to be the product of the q−weights for all arcs on the rim of the tree.
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q2t3

dist = 1

dist = 1

dist = 0

q3t3

dist = 0

dist = 1

dist = 2

This definition actually provides exactly the generating function that we desired, namely we have

Theorem 4.2 (Main Theorem).

Nk = −Wk(q, t)
∣

∣

t=−N1

for all k ≥ 1.

Notice that this yields an exact interpretation of the Pi,k polynomials as follows:

Pi,k(q) =
∑

T a spanning tree of Wn with exactly i spokes

qsum of arc tail distance in T .

We will prove this Theorem in two different ways. The first method will utilize Theorem 3.2 and an
analogue of the bijection given in [1] which relates perfect and imperfect matchings of the circle of length 2k

and spanning trees of Wk. Our second proof will use the observation that we can categorize the spanning
trees bases on the sizes of the various connected arcs on the rims. Since this categorization will correspond
to partitions, this method will exploit formulas for decomposing pk into a linear combination of hλ’s, as
described in Section 6.

5. First Proof: Bijective

There is a simple bijection between subsets of [2n] with no two elements circularly consecutive and
spanning trees of the wheel graph Wn. We will use this bijection to give our first proof of Theorem 4.2. The
bijection is as follows:

Given a subset S of the set {1, 2, . . . , 2n− 1, 2n} with no circularly consecutive elements, we define the
corresponding spanning tree TS of Wn (with the correct q and t weight) in the following way:

1) We will use the convention that the vertices of the graph Wn are labeled so that the vertices on the
rim are w1 through wn, and the central vertex is w0.

2) We will exclude the two subsets which consist of all the odds or all the evens from this bijection. Thus
we will only be looking at subsets which contain n− 1 or fewer elements.

3) For 1 ≤ i ≤ n, an edge exists from w0 to wi if and only if neither 2i − 2 nor 2i − 1 (element 0 is
identified with element 2n) is contained in S.

4) For 1 ≤ i ≤ n, an edge exists from wi to wi+1 (wn+1 is identified with w1) if and only if element 2i−1
or element 2i is contained in S.
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 Or 
Elt  6

Elt  5

Elt  4
 Or 

Elt  3

Elt  2

Elt  1
 Or 

Not   5

Not   4

Not   3

Not   2

And 
Not   6

Not   1

And 

And 

{ }

←→

{

3

}

←→

{

2, 5

}

←→

Proposition 5.1. Given this construction, TS is in fact a spanning tree of Wn and further, tree TS has

the same q− and t−weights as set S.

Proof. Suppose that set S contains k elements. From our above restriction, we have that 0 ≤ k ≤
n − 1. Since S is a k-subset of a 2n element set with no circularly consecutive elements, there will be
n−k pairs {2i−2, 2i−1} with neither element in set S, and k pairs {2i−1, 2i} with one element in set S.
Consequently, subgraph TS will consist of exactly (n−k)+k = n edges. Since n = (# vertices of Wn)−1, to
prove TS is a spanning tree, it suffices to show that each vertex of Wn is included. For every oddly-labeled
element of {1, 2, . . . , 2n}, i.e. 2i− 1 for 1 ≤ i ≤ n, we have the following rubric:

1) If (2i− 1) ∈ S then the subgraph TS contains the edge from wi to wi+1.
2) If (2i− 1) 6∈ S and additionally (2i− 2) 6∈ S, then TS contains the spoke from w0 to wi.
3) If (2i− 1) 6∈ S and additionally (2i− 2) ∈ S, then TS contains the edge from wi−1 to wi.

Since one of these three cases will happen for all 1 ≤ i ≤ n, vertex wi is incident to an edge in TS. Also, the
central vertex, w0, has to be included since by our restriction, 0 ≤ k ≤ n − 1 and thus there are n− k ≥ 1
pairs {2i− 2, 2i− 1} which contain no elements of S.

The number of spokes in TS is n− k which agrees with the t−weight of a set S with k elements. Finally,
we prove that the q-weight is preserved by induction on the number of elements in the set S. If set S has no
elements, the q−weight should be q0, and spanning tree TS will consist of n spokes which also has q−weight
q0.

Now given a k element subset S (0 ≤ k ≤ n− 2), it is only possible to adjoin an odd number if there is
a sequence of three consecutive numbers starting with an even, i.e. {2i− 2, 2i− 1, 2i}, which is disjoint from
S. Such a sequence of S corresponds to a segment of TS where a spoke and tail of an arc intersect. (Note
this includes the case of vertex wi being an isolated vertex.)

In this case, subset S′ = S ∪ {odd} corresponds to TS′ , which is equivalent to spanning tree TS except
that one of the spokes w0 to wi has been deleted and replaced with an edge from wi to wi+1. The arc



G. Musiker

corresponding to the spoke from wi will now be connected to the next arc, clockwise. Thus the distance
between the spoke and the tail of this arc will not have changed, hence the q−weight of TS′ will be the same
as the q−weight of TS .

Alternatively, it is only possible to adjoin an even number to S if there is a sequence {2i− 1, 2i, 2i + 1}
which is disjoint from S. Such a sequence of S corresponds to a segment of TS where a spoke meets the end

of an arc. (Note this includes the case of vertex wi being an isolated vertex.)
Here, subset S′′ = S∪{even} corresponds to TS′′ , which is equivalent to spanning tree TS except that one

of the spokes w0 to wi+1 has been deleted and replaced with an edge from wi to wi+1. The arc corresponding
to the spoke from wi+1 will now be connected to the previous arc, clockwise. Thus the cumulative change
to the total distance between spokes and the tails of arcs will be an increase of one, hence the q−weight of
TS′′ will be q1 times the q−weight of TS.

Since any subset S can be built up this way from the empty set, our proof is complete via this induction.
�

Since the two sets we excluded, of size k had (q, t)−weights q0t0 and qkt0 respectively, we have proven
Theorem 4.2.

6. Brick Tabloids and Symmetric Function Expansions

Recall that we wrote Nk plethystically as pk[1 + q − α1 − α2]. One advantage of plethystic notation is
that we can exploit the following symmetric function identity [6, pg. 21]:

∞
∑

n=0

hnT n =
∏

k∈I

1

1− tkT
= exp

(

∑

n=1

pn

T n

n

)

(6.1)

where hn and pn are symmetric functions in the variables in I. We note that Z(C, T ) resembles the right-
hand-side of this identity, and consequently, if we had written Z(C, T ) as an ordinary power series

Z(C, T ) =
∑

k≥0

HkT k

we obtain that Hk = hk[1 + q − α1 − α2], where hk denotes the kth homogeneous symmetric function.

Remark 6.1. In fact Hk has an algebraic geometric interpretation also, just as the Nk’s did. Hk equals
the number of positive divisors of degree k on curve C.

For a general curve we can thus, by plethysm, write cardinalities Nk in terms of H1 through Hk, using
the same coefficients as those that appear in the expansion of pk in terms of h1 through hk:

Nk =
∑

λ`k

cλHλ1Hλ2 · · ·Hλ|λ|
(6.2)

where the cλ can be written down concisely as

cλ = (−1)l(λ)−1 k

l(λ)

(

l(λ)

d1, d2, . . . , dk

)

(6.3)

where l(λ) denotes the length of λ, which is a partition of k with type 1d12d2 · · · kdk .
We give one proof of this using Egecioglu and Remmel’s interpretation involving weighted brick tabloids

[2]. We will give another proof of this, involving a possibly new combinatorial interpretation for these
coefficients, further on, in Section 7.

A brick tabloid [2] of type λ = 1d12d2 · · · kdk and shape µ is a filling of the Ferrers’ Diagram µ with
bricks of various sizes, d1 which are 1× 1, d2 which are 2× 1, d3 which are 3× 1, etc. The weight of a brick
tabloid is the product of the lengths of all bricks at the end of the rows of the Ferrers’ Diagram. We let
w(Bλ,µ) denote the weighted-number of brick tabloids of type λ and shape µ, where each tabloid is counted
with multiplicity according to its weight.

Proposition 6.1 (Egecioglu-Remmel 1991, [2]).

pµ =
∑

λ

(−1)l(λ)−l(µ)w(Bλ,µ)
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and in particular

pk =
∑

λ

(−1)l(λ)−1w(Bλ,(k)).

Brick tabloids of type λ and shape (k) are simply fillings of the k × 1 board with bricks as specified by
λ. Thus if divide these tabloids into classes based on the size of the last brick, we obtain, by counting the
number of rearrangements, that there are

(

l(λ)− 1

d1, . . . , di − 1, . . . , dk

)

brick tabloids of type (k) and shape λ = 1d12d2 · · · kdk which have a last brick of length i.
Since each of these tabloids has weight i, summing up over all possible i, we get that (by abusing

multinomial notation slightly)

w(Bλ,(k)) =

k
∑

i=0

i ·

(

l(λ)− 1

d1, . . . , di − 1, . . . , dk

)

=

( k
∑

i=0

idi

)

·

(

l(λ)− 1

d1, . . . , di, . . . , dk

)

= k ·

(

l(λ)− 1

d1, d2, . . . , dk

)

=
k

l(λ)
·

(

l(λ)

d1, d2, . . . , dk

)

Thus after comparing signs, we obtain that cλ equals exactly the desired expression.
We now specialize to the case of g = 1. Here we can write Hk in terms of N1 and q. We expand the

series

Z(C, T ) =
1− (1 + q −N1)T + qT 2

(1− T )(1− qT )

with respect to T , and obtain H0 = 1 and Hk = N1(1 + q + q2 + · · ·+ qk−1) for k ≥ 1. Plugging these into
formula (6.2), and using (6.3), we get polynomial formulas for Nk in terms of q and N1, which in fact are an
alternative expression for the formulas found in section 2.

Nk =
∑

λ`k

(−1)l(λ)−1 k

l(λ)

(

l(λ)

d1, d2, . . . dk

)( l(λ)
∏

i=1

(1 + q + q2 + · · ·+ qλi−1)

)

N
l(λ)
1 .

Thus using these alternative expressions for Nk, we have that Theorem 4.2 is equivalent to the statement

Wk =
∑

λ`k

k

l(λ)

(

l(λ)

d1, d2, . . . dk

)( l(λ)
∏

i=1

(1 + q + q2 + · · ·+ qλi−1)

)

tl(λ).

7. Second Proof: Via Symmetric Functions

For our second proof of Theorem 4.2, we start with the observation that the sequence of lengths of all
disjoint arcs on the rim of Wn corresponds to a partition of n. We will construct a spanning tree of Wn from
the following choices:

First we choose a partition λ = 1d12d2 · · ·kdk of n. We let this dictate how many arcs of each length
occur, i.e. we have d1 isolated vertices, d2 arcs of length 2, etc. Note that this choice also dictates the
number of spokes, which is equal to the number of arcs, i.e. the length of the partition.

Second, we pick an arrangement of l(λ) arcs on the circle. After picking one to start with, without loss
of generality since we are on a circle, we have

1

l(λ)

(

l(λ)

d1, d2, . . . dk

)

choices for such an arrangement.
Third, we pick which vertex wi of the rim to start with. There are n such choices.
Fourth, we pick where the l(λ) spokes actually intersect the arcs. There will be |arc| choices for each

arc, and the q−weight of this sum will be (1 + q + q2 + · · ·+ q|arc|) for each arc.
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Summing up all the possibilities yields

Wn =
∑

λ`n

n

l(λ)

(

l(λ)

d1, d2, . . . dk

)( l(λ)
∏

i=1

(1 + q + q2 + · · ·+ qλi−1)

)

tl(λ).

As noted in Section 6, these coefficients are exactly the correct expansion coefficients by identities (6.1),
(6.3), and plethysm. Thus we have given a second proof of Theorem 4.2.

Remark 7.1. We note that in the course of this second proof we have obtained a combinatorial inter-
pretation for the cλ’s that is distinct from the one given in Egecioglu and Remmel’s paper [2]. In particular
this interpretation does not require weighted counting, only signed counting. Instead of defining cλ as
(−1)l(λ)−1w(Bλ,(k)), we could define it as

(−1)l(λ)−1|CBλ,(k)|

where we define a new combinatorial class of circular brick tabloids which we denote as CBλ,µ. We define
this for the case of µ = (k) just as we defined the usual brick tabloids, except we are not filling a k × 1
rectangle, but are filling an annulus of circumference k and width 1 with curved bricks of sizes designated
by λ. In this way we mimic our construction of the spanning trees.

Additionally, by using the fact that the power symmetric functions are multiplicative, i.e. pλ =
pλ1pλ2 · · · pλr

, we are able to generalize our definition of circular brick tabloids to allow µ to be any partition.
We simply let λ designate what collection of bricks we have to use, and µ determines the filling: we are
trying to fill l(µ) concentric circles where each circle has µi spaces. To summarize,

pµ =
∑

λ

(−1)l(λ)−l(µ)|CBλ,µ|hλ.

Consequently, all identities of [2] now involve cardinalities of Bλ,µ, OBλ,µ (Ordered Brick Tabloids), or
CBλ,µ and signs depending on l(λ) and l(µ), with no additional weightings needed.

8. Conclusion

The new combinatorial formula for Nk presented in this write-up appears fruitful. It leads one to ask
how spanning trees of the wheel graph are related to points on elliptic curves. For instance, is there an
involution on (weighted) spanning trees whose fixed points enumerate points on C(Fqk)? The fact that the
Lucas numbers also enter the picture is also exciting since the Fibonacci numbers and Lucas numbers have so
many different combinatorial interpretations, and there is such an extensive literature about them. Perhaps
these combinatorial interpretations will lend insight into why Nk depends only on the finite data of N1 and
q for an elliptic curve, and how we can associate points over higher extension fields to points on C(Fq).

9. Ackowledgements

The author would like to thank Adriano Garsia for his support and many helpful conversations.

References

[1] A. Benjamin and C. Yerger, Combinatorial Interpretations of Spanning Tree Identities, Bulletin of the Institute for Com-

binatorics and its Applications, to appear.
[2] O. Egecioglu and J. Remmel, Brick Tabloids and the Connection Matrices Between Bases of Symmetric Functions, Disc.

Appl. Math., 34 (1991), 107-120.
[3] A. Garsia and G. Musiker, Basics on Hyperelliptic Curves over Finite Fields, in progress.
[4] B. R. Myers, Number of Spanning Trees in a Wheel, IEEE Trans. Circuit Theory, 18 (1971), 280-282.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/̃ njas/sequences/index.html.
[6] R. P. Stanley, Enumerative Combinatorics Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics, Cambridge

University Press, Cambridge (1999).
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