EXERCISE:
Decompose the module of the regular representation of S_3 into irreducible submodules
> S3:=Sn(3);
> regS3:=regmodule(S3);
> charS3:=module2char(regS3);
> map(charS3(classfunc),permute(3));
Step 1: The sum of all of the elements is a one dimensional module
> triv(group):=S3; triv(classfunc):=g->1;
> reynoldsop(triv,regS3,v[[1,2,3]]);
> blinform(charS3,triv);
Step 2: The sign representation is also a one dimensional submodule
> sgn(group):=S3; sgn(classfunc):=g->(-1)^lengthperm(g);
> blinform(charS3,sgn);
> reynoldsop(sgn,regS3,v[[1,2,3]]);
Step 3: The remaining 4 dimensional module will not be irreducible
> rest(group):=S3; rest(classfunc):=g->charS3(classfunc)(g)-triv(classfunc)(g)-sgn(classfunc)(g);
> blinform(rest,rest);
There are only 3 conjugacy classes and so only 3 irreducible characters, therefore
the multiplicity of the last
> nops(conjclass(S3));
> map(rest(classfunc),permute(3));
> permute(3);
Find an irreducible submodule of dimension 2, show that it is invariant by acting
on the basis elements and show that they are still in the submodule.
>
tdim(group):=S3;
tdim(classfunc)([1,2,3]):=2;
tdim(classfunc)([1,3,2]):=0;
tdim(classfunc)([2,1,3]):=0;
tdim(classfunc)([2,3,1]):=-1;
tdim(classfunc)([3,1,2]):=-1;
tdim(classfunc)([3,2,1]):=0;
> reynoldsop(tdim,regS3,v[[1,2,3]]);
>
>
>
Exercise: To continue, decompose the regular representation of S4
>