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When we introduce a new symbol or definition we will use the convenient form := which
means that the term introduced at its left is defined by the expression at its right. A
typical example could be P := {x ∈ N|2 divides x} which stands for: P is by definition
the set of all natural numbers x such that 2 divides x.

The symbol π : A→ B denotes a mapping named π from the set A to the set B.

Most of our work will be for algebras over the field of real or complex numbers, sometimes
we will take a more combinatorial point of view and analyze some properties over the
integers. Associative algebras will implicitely be assumed to have a unit elment. When
we discuss matrices over a ring A we always identify A with the scalar matrices (constant
multiples of the identity matrix).

We use the standard notations:

N, Z, Q, R, C

for the natural numbers (including 0), the integers, rational, real and complex numbers.
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Introduction In this chapter we will develop the basic facts of the representation

theory of the symmetric group.

1 Symmetric functions

1.1 The theory of symmetric functions is a classical theory developed (by Lagrange,
Ruffini, Galois and others) in connection with the theory of algebraic equations in one
variable and the classical question of resolution by radicals.

The main link are the formulas expressing the coefficients of a polynomial through its
roots. A formal approach is the following.

Consider polynomials in variables x1, x2, . . . , xn and an extra variable t over the ring
of integers. The elementary symmetric functions ei := ei(x1, x2, . . . , xn) are implicitely
defined by the formula:

(1.1.1) p(t) :=

n
∏

i=1

(1 + txi) := 1 +

n
∑

i=1

eit
i.

More explicitely ei(x1, x2, . . . , xn) is the sum of
(

n
i

)

terms, the products, over all subsets
of {1, 2, . . . , n} with i elements, of the variables with indeces in that subset.

(1.1.2) ei =
∑

1≤a1<a2<···<ai≤n

xa1
xa2

. . . xai
.

If σ is a permutation of the indeces we obviously have
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n
∏

i=1

(1 + txi) =

n
∏

i=1

(1 + txσi)

and thus the elements ei are invariant under permutation of the variables.

Of course the polynomial tnp(− 1
t
) has the elements xi as its roots.

Definition. A polynomial in the variables (x1, x2, . . . , xn), invariant under permutation
of these variables, is called a symmetric function.

The functions ei are called elementary symmetric functions.

There are several obviously symmetric functions. The power sums ψk :=
∑n

i=1 x
k
i and

the funtions Sk defined as the sum of all monomials of degree k.

These are particular cases of the following general construction.

Consider the basis of the ring of polynomials given by the monomials which is permuted
by the symmetric group.

By Proposition 2.4 we have:

A basis of the space of symmetric functions is given by the sums of monomials in the
same orbit, for all orbits.

Orbits correspond to non increasing vectors (h1 ≥ h2 ≥ . . . ≥ hn), hi ∈ N and we may
set Σ(h1,h2,... ,hn) to be the sum of monomials in the corresponding orbit.

As we will see soon there are also some subtler symmetric functions (the Schur functions)
that will play an important role in the sequel.

We can start with a first important fact, the explicit connection between the functions
ei and the ψk.

To do this we will perform the next computations in the ring of formal power series,
although the series that we will consider have also a meanining as convergent series.

Start from the identity
∏n

i=1(txi + 1) =
∑n

i=0 eit
i and take the logaritmic derivative

(relative to the variable t) of both sides. We use the fact that such an operator transforms
products into sums to get

n
∑

i=1

xi

(txi + 1)
=

∑n
i=1 ieit

i−1

∑n
i=0 eiti

.

The left hand side of this formula can be developed as

n
∑

i=1

xi

∞
∑

h=0

(−txi)
h =

∞
∑

h=0

(−t)hψh+1.

From this we get the identity

(
∞
∑

h=0

(−t)hψh+1)(
n

∑

i=0

eit
i) = (

n
∑

i=1

ieit
i−1)
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which gives, equating coefficients:

(−1)mψm+1 +
m

∑

i=1

(−1)iψiem+1−i =
∑

i+j=m

(−1)iψi+1ej = (m+ 1)em+1

where we intend ei = 0 if i > n.

It is clear that these formulas give recursive ways of expressing the ψi in terms of the
ej with integral coefficients, on the other hand they can also be used to express the ei

in terms of the ψj , but in this case it is necessary to perform some divisions and the
coefficients are rational and usually not integers.1

It is useful to give a second proof, consider the map:

πn : Z[x1, x2, . . . , xn] → Z[x1, x2, . . . , xn−1]

given by evaluating xn in 0.

Lemma. The intersection of Ker(πn) with the space of symmetric functions of degree < n
is reduced to 0.

Proof. Consider Σ(h1,h2,... ,hn), a sum of monomials in an orbit, if the degree is less than n
we have hn = 0; under πn we get πn(Σ(h1,h2,... ,hn)) = Σ(h1,h2,... ,hn−1) thus if the degree is
less than n the map πn maps these basis elements into distinct basis elements.

Now the second proof. In the identity
∏n

i=1(t − xi) :=
∑n

i=0(−1)ieit
n−i substitute t

with xi and then sum over all i we get:

0 =

n
∑

i=0

(−1)ieiψn−i, or ψn =

n
∑

i=1

(−1)i−1eiψn−i.

By the previous lemma this identity remains valid also for symmetric functions in more
than n variables and gives the required recursion.

It is in fact a general fact that symmetric functions can be expressed as polynomials in
the elementary ones, we will now discuss an algorithmic proof.

To make the proof transparent let us stress in our formulas also the number of variables

and denote by e
(k)
i the ith elementary symmetric function in the variables x1, . . . , xk. Since:

(

n−1
∑

i=0

e
(n−1)
i ti)(txn + 1) =

n
∑

i=0

e
(n)
i ti

we have:

e
(n)
i = e

(n−1)
i−1 xn + e

(n−1)
i or e

(n−1)
i = e

(n)
i − e

(n−1)
i−1 xn.

In particular, in the homomorphism π : Z[x1, . . . , xn] → Z[x1, . . . , xn−1] given by
evaluating xn in 0 we have that symmetric functions map to symmetric functions and

π(e
(n)
i ) = e

(n−1)
i , i < n, π(e(n)

n ) = 0.

1These formulas were found by Newton, hence the name Newton functions for the φk.
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Given a symmetric polynomial f(x1, . . . , xn) we evaluate it at xn = 0, if the resulting
polynomial f(x1, . . . , xn−1) is 0 then f is divisible by xn.

If so, by symmetry it is divisible by all of the variables and hence by the function en.
We perform the division and pass to another symmetric function of lower degree.

Otherwise by induction there exists a polynomial p in n−1 variables which, evaluated in
the n− 1 elementary symmetric functions of x1, . . . , xn−1, gives f(x1, . . . , xn−1, 0). Thus
f − p(e1, e2, . . . , en−1) is a symmetric function vanishing at xn = 0.

We are back to the previous step.

The uniqueness is implicit in the algorithm which can be used to express any symmetric
polynomial as a unique polynomial in the elementary symmetric functions.

Theorem. A symmetric polynomial is a polynomial, in a unique way, in the elementary
symmetric functions.

It is quite useful, in view of the previous lemma and theorem, to think in a stable way
to symmetric functions in larger and larger sets of variables, one the constructs a limit
ring, which one calls just the ring of symmetric functions Z[e1, . . . , ei, . . . ] and can
be thought as the polynomial ring in infinitely many variables ei where formally we give
degree (or weight) i to ei. The ring of symmetric funcions in n−variables is obtained by
setting ei = 0, ∀i > n. One often develops formal identities in this ring with the idea that,
in order to verify an identity whic is homogeneous of some degree m it is enough to do it
for symmetric functions in m−variables.

1.2 In the same way the reader may discuss the following fact.

Consider the n! monomials

xh1
1 . . . x

hn−1

n−1 , 0 ≤ hi ≤ n− i.

Theorem. The previous monomials are a basis of Z[x1, . . . , xn] over Z[e1, . . . , en].

Remark. The same theorem is clearly true if we replace the coefficient ring Z by any
commutative ring A. In particular we will use it when A is itself a polynomial ring.

2 Resultant, discriminant, Bezoutiante

2.1 In order to understand the importance of theorem 1.1 on elementary symmetric
functions and also the classical point of view let us develop a geometric picture.

Consider the space Cn and the space Pn := {tn +b1t
n−1 + . . .+bn} of monic polynomials

(which can be identified to Cn by the use of the coefficients).
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Consider next the map π : Cn → Pn given by:

π(α1, . . . , αn) :=

n
∏

i=1

(t− αi).

We thus obtain a polynomial tn−a1t
n−1+a2t

n−2+· · ·+(−1)nan = 0 with roots α1, . . . , αn

(and the coefficients ai are the elementary symmetric functions in the roots), any monic
polynomial is obtained in this way (fundamental theorem of Algebra).

Two points in Cn project to the same point in Pn if and only if they are in the same
orbit under the symmetric group, i.e. Pn parametrizes the Sn orbits.

Suppose we want to study a property of the roots which can be verified by evaluating
some symmetric polynomials in the roots, this will usually be the case for any condition
on the set of all roots. Then one can perform the computation without expliciting the
roots, since one has only to study the formal symmetric polynomial expression and, using
the previous or another algorithm express the value of a symmetric function of the roots
through the coefficients.

In other words a polynomial function f on Cn which is symmetric, factors through the
map π giving rise to an effectively computable2 polynomial function f on Pn such that
f = fπ.

A classical example is given by the discriminant.
The condition that the roots be distinct is clearly that

∏

i<j(αi −αj) 6= 0. The polyno-

mial V (x) :=
∏

i<j(xi − xj) is in fact not symmetric. It is the value of the Vandermonde
determinant, i.e. the determinant of the matrix:

(2.1.1) A :=















xn−1
1 xn−1

2 . . . xn−1
n

...
...

. . .
...

x2
1 x2

2 . . . x2
n

x1 x2 . . . xn

1 1 . . . 1















Proposition. V (x) is antisymmetric, i.e. permuting the variables it is multiplied by the
sign of the permutation.

Remark. The theory of the sign of permutations can be deduced by analyzing the Van-
dermonde. In fact since for a transposition τ it is clear that V (x)τ = −V (x) it follows
that V (x)σ = V (x), or − V (x) according to whether σ is a product of an even or an odd
number of permutations. The sign is then clearly a homomorphism.

We also see immediately that V 2 is a symmetric polynomial.

We can compute it in terms of the functions ψi as follows. Consider the matrixB := AAt,
clearly in the ij position of B we find the symmetric function ψ2n−(i+j) and its determinant

is V 2.

2i.e. computable without solving the equation
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The matrix B (or rather the one reordered with ψi+j−2 in the ij position) is classically
known as the Bezoutiante and it carries some further information on the roots. We shall
see for it a different determinant formula involving directly the elementary symmetric
functions.

We write V 2 as a polynomial D(e1, e2, . . . , en) in the elementary symmetric functions.

Definition. The polynomial D is called the discriminant.

Since this is an interesting example we will pursue it a bit further.

Let us assume that F is a field, f(t) a monic polynomial (of degree n) with coefficients
in F and let R := F [t]/(f(t)). R is an algebra over F of dimension n.

For any finite dimensional algebra A over a field F we can perform the following con-
struction.

Any element a of A induces a linear transformation La : x→ ax on A (and also a right
one). We define tr(a) := tr(La), the trace of the operator La.

We consider next the bilinear form (a, b) := tr(ab) this is the trace form of A. It is
symmetric and associative in the sense that (ab, c) = (a, bc).

We compute it first for R := F [t]/(tn) using the fact that t is nilpotent we see that
tr(tk) = 0 if k > 0 and so the trace form has rank 1 with kernel the ideal generated by t.

To compute it for the algebra R := F [t]/(f(t)) we pass to the algebraic closure F and
compute in F [t]/(f(t)).

We split the polynomial with respect to its distinct roots f(t) =
∏k

i=1(t − αi)
hi and

F [t]/(f(t)) = ⊕k
i=1F [t]/(t− αi)

hi .

Thus the trace of an element mod f(t) is the sum of its traces mod (t− αi)
hi .

Let us compute the trace of tk mod (t − αi)
hi we claim that it is hiα

k
i . In fact in

the basis 1, (t − αi), (t − αi)
2, . . . , (t − αi)

hi−1 (mod (t − αi)
hi) the matrix of t is upper

triangular with constant eigenvalue αi on the diagonal and so the claim follows.

Adding all the contributions we see that, in F [t]/(f(t)) the trace of multiplication by tk

is
∑

i hiα
k
i .

As a consequence we see that the matrix of the trace form, in the basis 1, t, . . . , tn−1 is
the Bezoutiante of the roots. Since for a given block F [t]/(t − αi)

hi the ideal generated
by (t− αi) is nilpotent of codimension 1, we see that it is exactly the radical of the block
and the kernel of its trace form. It follows that:

Proposition. The rank of the Bezoutiante equals the number of distinct roots.

Given a polynomial f(t) let f(t) denote the polynomial with the same roots as f(t)
but all distinct. It is the generator of the radical of the ideal generated by f(t). In
characteristic zero this polynomial is obtained dividing f(t) by the G.C.D. between f(t)
and its derivative.
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Let us consider now the algebra R := F [t]/(f(t)) its radical N and R := R/N . By the
previous analysis it is clear that R = F [t]/(f(t)).

Consider now the special case in which F = R is the field of real numbers. Then
we can divide the distinct roots into the real roots α1, α2, . . . , αk and the complex ones
β1, β1, β2, β2, . . . , βh, βh.

The algebra R is isomorphic to the direct sum of k copies of R and h copies of C, its
trace form is the orthogonal sum of the corresponding trace forms. On R the trace form
is just x2 but on C we have tr((x+ iy)2) = 2(x2 − y2). We deduce that:

Theorem. The number of real roots of f(t) equals the signature of its Bezoutiante.

There are simple variations on this theme, for instance if we consider the quadratic form
Q(x) := tr(tx2) we see that its matrix is again easily computed in terms of the ψk and its
signature equals the number of real positive minus the number of real negative roots. In
this way one can also determine the number of real roots in any interval.

These results are Sylvester’s variations on Sturm’s theorem. They can be found in the
paper in which he discusses the law of Inertia which now bears his name (cf. [Si]).

2.2 Let us go back to the roots, if x1, x2, . . . , xn; y1, y2, . . . , ym are two sets of
variables consider the polynomial

A(x, y) :=
n

∏

i=1

m
∏

j=1

(xi − yj).

This is clearly symmetric, separately in the variables x and y, if we evaluate it in numbers
it vanishes if and only if one of the values of the x’s coincides with a value of the y’s,
conversely any polynomial in these two sets of variables which has this property is a
multiple of A.

By the general theory A can be expressed as a polynomial R in elementary symmetric
functions.

Let us denote by a1, a2, . . . , an the elementary symmetric functions in the xi’s and
b1, . . . , bm the ones in the yj ’s. Thus A(x, y) = R(a1, . . . , an, b1, . . . , bm).

The polynomial R is called the resultant.

When we evaluate the variables x and y to be the roots of two monic polynomials
f(t), g(t) of degrees n,m respectively we see that the value of A can be computed evalu-
ating R in the coefficients (with some signs) of these polynomials. Thus the resultant is
the polynomial in their coefficients, vanishing when the two polynomials have a common
root.

There is a more general classical expression as determinant, and we drop the condition
that the polynomials be monic. The theory is the following.
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Let f(t) := a0t
n + a1t

n−1 + · · · + an g(t) := b0t
n + b1t

n−1 + · · · + bm and let us denote
by Ph the h+ 1 dimensional space of all polynomials of degree ≤ h.

Consider the linear transformation:

Tf,g : Pm−1 ⊕ Pn−1 → Pm+n−1 given by Tf,g(a, b) := fa+ gb.

This is a transformation between two n + m dimensional spaces and in the bases
(1, 0), (t, 0), . . . , (tm−1, 0), (0, 1), (0, t), . . . , (0, tn−1) and 1, t, t2, . . . , tn+m−1 it is quite easy
to write down its square matrix Rf,g:

(2.2.1)



































































an 0 0 . . . 0 bm 0 . . . 0 0

an−1 an 0 . . . 0 bm−1 bm . . .
. . . 0

an−2 an−1 an 0 . . . bm−2 bm−1 bm
. . .

...
...

...
...

. . .
...

...
. . .

...
. . .

...

a1 a2 a3
. . .

...
a0 a1 a2

0 a0 a1
. . .

...
...

...
...

. . .
...

...
. . .

...
. . .

...

0
... b0 b1 b2

. . .
...

0 0 . . . 0 b0 b1
. . .

...

0 0 0 0 b0
. . .

...
...

...
...

. . .
...

...
. . .

...
. . .

...
...

...
...

. . .
...

...
. . .

... b0
...

0 0 0 . . . a0 0 . . . . . . 0 b0



































































Proposition. If a0b0 6= 0, the rank of Tf,g equals m + n − d where d is the degree of
h := G.C.D(f, g)3 .

Proof. By Euclid’s algorithm the image of Tf,g consists of all polynomials of degree ≤
n+m− 1 and multiples of h, its kernel of pairs (sg′,−sf ′) where f = hf ′, g = hg′, hence
the claim.

As a corollary we have that the determinant R(f, g) of Rf,g vanishes exactly when the
two polynomials have a common root. This gives us a second definition of resultant.

Definition. The polynomial R(f, g) is called the resultant of the two polynomials f(t), g(t).

If we consider the coefficients of f and g as variables we can still think of Tf,g as a map
of vector spaces, except that the base field is the field of rational functions in the given
variables.

3G.C.D(f, g) is the greatest common divisor of f, g.
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Then we can solve the equation fa + gb = 1 by Cramer’s rule and we see that the
coefficients of the polynomials a, b are given by the cofactors of the first row of the matrix
Rf,g divided by the resultant, in particular we can write R = Af(t) + Bg(t) where A,B
are polynomials in t of degrees m− 1, n− 1 respectively and with coefficients polynomials
in the variables (a0, a1, . . . , an, b0, b1, . . . , bm).

This can also be understood as follows. In the matrix Rf,g we add to the first row
the second multiplied by t the third multiplied by t2 and so on, we see that the first
row becomes f(t), f(t)t, f(t)t2, . . . , f(t)tm−1, g(t), g(t)t, g(t)t2, . . . , g(t)tn−1. Under these
operations of course the determinant does not change and we see that developing it along
the first row we get the desired identity.

Exercise Consider the two polynomials as a0

∏n
i=1(t− xi), b0

∏m
j=1(t− yj) and thus

substitute in R to the variables ai the element (−1)ia0ei(x1, . . . , xn) and to bi the element
(−1)ib0ei(y1, . . . , ym). The polynomial we obtain is am

0 b
n
0A(x, y).

2.3 In the special case when we take g(t) = f ′(t), the derivative of f(t), we have
that the vanishing of the resultant is equivalent to the existence of multiple roots. We
have already seen that the vanishing of the discriminant implies the existence of multiple
roots, it is now easy to connect the two approaches.

The resultant R(f, f ′) is considered as a polynomial in the variables (a0, a1, . . . , an), if
we substitute in R(f, f ′) to the variables ai the element (−1)ia0ei(x1, . . . , xn) we have
a polynomial in the x with coefficients involving a0 which vanishes whenever two x’s
coincides.

Thus it is divisible by the discriminant of these variables. A degree computation shows
in fact that it is a constant (with respect to the x) multiple cD. The constant c can be
evaluated easily for instance specializing to the polynomial xn − 1, this polynomial has as

roots the nth roots e
2πik

n , 0 ≤ k < n of 1. The Newton functions

ψh :=
n−1
∑

i=0

e
2πihk

n =

{

0 if h 6 |n

n if h |n

hence the Bezoutiante is −(−n)n and the computation of the Resultant is nn so the
constant is (−1)n−1.

3 Schur functions

3.1 It is important to discuss along symmetric, also alternating functions, we assume
to work on integral polynomials.

Definition. A polynomial f in the variables (x1, x2, . . . , xn), is called an alternating func-
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tion if, for every permutation σ of these variables

fσ = f(xσ(1), xσ(2, . . . , xσ(n)) = εσf(x1, x2, . . . , xn),

εσ being the sign of the permutation.

We have seen the Vandermonde determinant as a basic alternating polynomial, V (x) :=
∏

i<j(xi − xj).

The main remark on alternating functions is the following.

Proposition. A polynomial f(x) is alternating if and only if it is of the form f(x) =
V (x)g(x) with g(x) a symmetric polynomial.

Proof. Substitute, in an alternating polynomial f to a variable xj a variable xi for i 6= j.
We get the same polynomial if we first exchange xi and xj in f . Since this changes the
sign it means that, under this substitution f becomes 0.

This means in turn, that f is divisible by xi − xj ; since i, j are arbitrary f is divisible
by V (x). Writing f = V (x)g it is clear that g is symmetric.

Let us be more formal, let A, S denote the sets of antisymmetric and symmetric

polynomials. We have seen that:

Proposition. The space A of antisymmetric polynomials is a free rank 1 module over the
ring S of symmetric polynomials generated by V (x) or A = V (x)S.

In particular any integral basis of A gives, dividing by V (x), an integral basis of S. In
this way we will presently obtain the Schur functions.

To understand the construction let us make a fairly general discussion. In the ring of
polynomials Z[x1, x2, . . . , xn] let us consider the basis given by the monomials (which are
permuted by Sn).

Recall that the orbits of monomials are indexed by non increasing sequences of in-
tegers. To m1 ≥ m2 ≥ m3 · · · ≥ mn ≥ 0 corresponds the orbit of the monomial
xm1

1 xm2
2 xm3

3 . . . xmn
n .

Let f be an antisymmetric polynomial and (ij) a transposition. Applying this transpo-
sition to f it changes sign while the transposition fixes all monomials in which xi, xj have
the same exponent.

It follows that all the monomials which have non 0 coefficient in f must have distinct
exponents. Given a sequence of exponents m1 > m2 > m3 > · · · > mn ≥ 0 the coefficients
of the monomial xm1

1 xm2
2 xm3

3 . . . xmn
n and of xm1

σ(1)x
m2

σ(2)x
m3

σ(3) . . . x
mn

σ(n) differ by the sign of σ.

It follows that:

Theorem. The functions:

Am1>m2>m3>···>mn≥0(x) :=
∑

σ∈Sn

εσx
m1

σ(1)x
m2

σ(2) . . . x
mn

σ(n),
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are an integral basis of the space of antisymmetric functions.

It is often useful, when computing with alternating functions, to use a simple de-
vice. Consider the subspace SM spanned by the set of standard monomials xk1

1 x
k2
2 . . . xkn

n

with k1 > k2 > k3 . . . > kn and the linear map L from the space of polynomials to
SM which is 0 on the non standard monomials and it is the identity on SM . Then
L(

∑

σ∈Sn
εσx

m1

σ(1)x
m2

σ(2) . . . xσ(n)) = xm1
1 xm2

2 . . . xmn
n thus L establishes a linear isomorphism

between the space of alternating polymonials and SM which maps the basis of the theorem
in the standard monomials.

3.2 It is convenient to use the following conventions. Consider the sequence

% := (n− 1, n− 2, . . . , 2, 1, 0),

Lemma. The map

λ = (p1, p2, p3, . . . , pn) −→ λ+ % = (p1 + n− 1, p2 + n− 2, p3 + n− 3, . . . , pn)

is a a bijiective correspondence between decreasing and strictly decreasing sequences.

We thus indicate by Aλ+% the corresponding antisymmetric function. We can express it

also as a determinant of the matrix Mλ having in the i, j position the element xpi+n−i
j .4

We next set Sλ(x) := Aλ+%/V (x) the Schur function associated to λ, when there is no
ambiguity we will drop the variables symbol and speak of Sλ.

We can identify λ to a partition with n−parts, of the integer
∑

pi and write λ `
∑

i pi.

We have thus that (with the notations of 1.1):

Theorem. The functions Sλ, with λ ` m and ht(λ) ≤ n are an integral basis of the part
of degree m of the ring of symmetric functions.

Notice that the Vandermonde determinant is the alternating function A% and S0 = 1.

Several interesting combinatorial facts are associated to these functions, we will see
some of them in the next section. The main significance of the Schur functions is in the
representation theory of the linear group as we will see later in Chapter 3.

If λ = (p1, p2, p3, . . . , pn) is a partition and a a positive integer let us denote by a the
partition (a, a, a, . . . , a) then from 6.1.1 follows that

(3.2.1) Aλ+%+a = (x1x2 . . . xn)aAλ+%, Sλ+a = (x1x2 . . . xn)aSλ.

We let n be the number of variables and want to understand, given a Schur function
Sλ(x1, . . . , xn) the form of Sλ(x1, . . . , xn−1, 0) as symmetric function in n− 1 variables.

Let λ := h1 ≥ h2 ≥ · · · ≥ hn ≥ 0, we have seen that, if hn > 0 then Sλ(x1, . . . , xn) =
∏n

i=1 xiSλ(x1, . . . , xn) where λ := h1 − 1 ≥ h2 − 1 ≥ · · · ≥ hn − 1.

4It is conventional to drop the numbers equal to 0 in a decreasing sequence.
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In this case, clearly Sλ(x1, . . . , xn−1, 0) = 0.

Assume now hn = 0 and denote by the same symbol λ the sequence h1 ≥ h2 ≥
· · · ≥ hn−1. Let us start from the Vandermonde determinant V (x1, . . . , xn−1, xn) =
∏

i<j≤n(xi − xj) and set xn = 0 getting

V (x1, . . . , xn−1, 0) =

n−1
∏

i=1

xi

∏

i<j≤n−1

(xi − xj) =

n−1
∏

i=1

xiV (x1, . . . , xn−1).

Now consider the alternating function Aλ+%(x1, . . . , xn−1, xn).

Set `i := hi + n− i so that `n = 0 and

Aλ+%(x1, . . . , xn−1, xn) =
∑

σ∈Sn

εσx
`σ(1)

1 . . . x
`σ(n)
n ,

setting xn = 0 we get the sum restricted only on the terms for which σ(n) = n or

Aλ+%(x1, . . . , xn−1, 0) =
∑

σ∈Sn−1

εσx
`σ(1)

1 . . . x
`σ(n−1)

n−1

now `i = hi + n− i = (hi + 1) + (n− 1) − i and so in (n− 1)− variables:

Aλ+%(x1, . . . , xn−1, 0) = Aλ+%+1(x1, . . . , xn−1) =
n−1
∏

i=1

xiAλ(x1, . . . , xn−1),

and so Sλ(x1, . . . , xn−1, 0) = Sλ(x1, . . . , xn−1). Thus we see that:

Proposition. Under the evaluation of xn to 0 the Schur functions Sλ vanish, if height(λ) =
n otherwise they map to the corresponding Schur functions in (n− 1)−variables.

One uses these remarks as follows. Consider a fixed degree n, for any m let Sn
m be the

space of symmetric functions of degree n in m variables.

From the theory of Schur functions the space Sn
m has as basis the functions Sλ(x1, . . . , xm)

where λ ` n has heigth ≤ m. Under the evaluation xm → 0 we have a map Sn
m → Sn

m−1.
We have proved that this map is an isomorphism as soon as m > n hence all identities
which we prove for symmetric functions in n variables of degree n are valid in any number
of variables, we have proved.

Theorem. The formal ring of symmetric functions in infinitely many variables has as
basis all Schur functions Sλ, restriction to symmetric functions in m−variables sets to 0
all Sλ with height > m.

When using partitions it is often more useful to describe a partition by expliciting the
number of parts with 1 element, the number of parts with 2 elements and so on. Thus one
writes a partition as 1a12a2 . . . iai . . . .

We want to prove now that for the elementary symmetric functions we have

(3.2.2) eh = S1h .
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According to our previous discussion we can set all the variables xi, i > h to 0. Then eh

reduces to
∏h

i=1 xi as well as S1h from 6.2.1.

3.3 Next we want to discuss the value of Sλ(1/x1, 1/x2, . . . , 1/xn). We see
that substituting xi with 1/xi in the matrix Mλ and multiplying the jth column by
xm1+n−1

j we obtain a matrix which equals, up to rearranging the rows, that of the partition

λ′ := m′
1,m

′
2, . . . ,m

′
n where mi +m′

n−i+1 = m1. Up to a sign thus:

(x1x2 . . . xn)m1+n−1Aλ+%(1/x1, . . . , 1/xn) = Aλ′+%.

For the Schur function we have to apply the procedure to both numerator and denominator
so that the signs cancel and we get Sλ(1/x1, 1/x2, . . . , 1/xn) = (x1x2 . . . xn)−m1Sλ′ .

If we use the diagram notation for partitions we easily visualize λ′ by inserting λ in a
rectangle of base m1 and then taking its complement.

4 Cauchy formulas

4.1 The formulas we want to discuss have important applications in representation
theory, for the moment we wish to present them as purely combinatorial identities.

(C1)
∏

i,j=1,n

1

1 − xiyj

=
∑

λ

Sλ(x)Sλ(y)

the right hand side is the sum over all partitions.

(C2)
∏

i≤j=1,n

1

1 − xixj

=
∑

λ∈Λec

Sλ(x),

if n is even

(C3)
∏

i<j=1,n

1

1 − xixj

=
∑

λ∈Λer

Sλ(x),

Here Λec, resp. Λer indicates the set of diagrams with rows (resp. columns) of even length.

(C4)

n, m
∏

i=1, j=1

(1 + xiyj) =
∑

λ

Sλ(x)Sλ̃(y).

where λ̃ denotes the dual partition (1.1) obtained exchanging rows and columns.

We prove only the first one. We offer two proofs:
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1. It can be deduced (in a way similar to the computation of the Vandermonde deter-
minant) considering the determinant of the n× n matrix:

A := (aij), with aij =
1

1 − xiyj

.

Claim

V (x)V (y)
∏

i,j=1,n(1 − xiyj)
= det(A).

Subtracting the first row to the ith one has a new matrix (bij) where:

b1j = a1j , and for i > 1, bij =
1

1 − xiyj

−
1

1 − x1yj

=
(xi − x1)yj

(1 − xiyj)(1 − x1yj)

thus from the ith row i > 1 one can extract from the determinant the factor xi − x1 and
from the jth columnn the factor 1

1−x1yj
.

Thus the given determinant is the product of
∏n

i=2
(xi−x1)
(1−x1yi)

with the determinant

(4.1.1)











1 1 1 . . . 1 1
y1

1−x2y1

y2

1−x2y2
. . . . . . yn

1−x2yn

...
...

...
. . .

...
...

y1

1−xny1

y2

1−xny2
. . . . . . yn

1−xnyn











subtracting the first column to the ith we get the terms yi−y1

(1−xjy1)(1−xjyi)
thus we end

extracting the product
∏n

i=2
(yi−y1)
(1−xiy1) and we are left with the determinant of the same

type of matrix but without the variables x1, y1, we can thus finish by induction.

Now we can develop the determinant by developing each element 1
1−xiyj

=
∑∞

k=0 x
k
i y

k
j

or in matrix form each row (resp. column) as a sum of infinitely many rows (or columns).

By multilinearity in the rows the determinant is a sum of determinants of matrices:

∞
∑

k1=0

. . .
∞
∑

kn=0

det(Ak1,k2,... ,kn
), Ak1,k2,... ,kn

:= ((xiyj)
ki).

Clearly det(Ak1,k2,... ,kn
) :=

∏

i x
ki

i det(y
ki

j ). This is zero if the ki are not distinct, otherwise
we reorder the sequence ki so to be decreasing at at the same time we must introduce a
sign, collecting all the terms in which the ki are a permutation of a given sequence λ+ ρ
we get the term Aλ+%(x)Aλ+%(y). Finally:

V (x)V (y)
∏

i,j=1,n(1 − xiyj)
=

∑

λ

Aλ+%(x)Aλ+%(y).

From this the required identity follows.
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2. Change the matrix to 1
xi−yj

using the fact that

V (x−1
1 , . . . , x−1

n ) = (−
∏

i

xi)
1−nV (x1, . . . , xn)

and develop the determinant as sum of fractions 1
Q

(xi−yσ(i))
. Write it as a rational function

f(x,y)
Q

i,j=1,n
(xi−yj) we see immediately that f(x, y) is alternating in both x, y of total degree

n2 − n, hence f(x, y) = cV (x)V (y) for some constant c, which will appear in the formula
C1. Comparing in degree 0 we see that C1 holds.

Let us remark that Cauchy formula holds also when m ≤ n so that
∏n

i=1

∏m
j=1

1
1−xiyj t

is obtained from
∏n

i=1

∏m
j=1

1
1−xiyj t

by setting yj = 0, ∀m < j ≤ n. By 6.2 we get:

n
∏

i=1

m
∏

j=1

1

1 − xiyjt
=

∑

λ`n, ht(λ)≤m

Sλ(x1, . . . , xn)Sλ(y1, . . . , ym).

5 Characters of the symmetric group

The character theory of the symmetric is developed in a combinatorial way due

to Frobenius.

5.1 The conjugacy classes of Sn are parametrized by partitions of n. We want to
parametrize also irreducible characters by partitions. Thus obtaining a character table
consisting, given two partitions λ, µ, to compute the value cλ(µ) of the character of an
element of the conjugacy class Cµ on an irreducible representation Mλ parametrized by
the partition λ.

The final result of this analysis is expressed in compact form by the theory of symmeric
functions.

Recall first that we denote ψk(x) =
∑n

i=1 x
k
i . For a partition µ ` n := k1, k2, . . . , kn

denote by:
ψµ(x) := ψk1

(x)ψk2
(x) . . . ψkn

(x).

Using the fact that the Schur functions are an integral basis of the symmetric functions
there exist (unique) integers cλ(µ) for which:

(5.1.1) ψµ(x) =
∑

λ

cλ(µ)Sλ(x).
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We interpret these numbers as class functions cλ on the symmetric group

cλ(Cµ) := cλ(µ)

and have.

Theorem Frobenius. cλ(µ) is the table of irreducible characters of Sn.

Step 1 First we shall prove that the class functions cλ are orthonormal.

Step 2 Next we shall express these functions as integral linear combinations of permu-
tation characters.

Step 3 Finally we shall be able to conclude our theorem.

Step 1 In order to follow Frobenius approach we go back to symmetric functions in n
variables x1, x2, . . . , xn. We shall freely use the Schur functions and the Cauchy formula
for symmetric functions:

∏

i,j=1,n

1

1 − xiyj

=
∑

λ

Sλ(x)Sλ(y)

proved in §4.1.
We change its right hand side as follows. Compute:

log(
n

∏

i,j=1

1

1 − xiyj

) =
n

∑

i,j=1

∞
∑

h=1

(xiyj)
h

h
=

(5.1.2)
∞
∑

h=1

n
∑

i,j=1

(xiyj)
h

h
=

∞
∑

h=1

ψh(x)ψh(y)

h
.

Taking the exponential we get the following expression:

(5.1.3) exp(
∞
∑

h=1

ψh(x)ψh(y)

h
) =

∞
∑

k=0

1

k!
(

∞
∑

h=1

ψh(x)ψh(y)

h
)k =

(5.1.4)

∞
∑

k=0

1

k!

∑

P∞
i=1 ki=k

(

k

k1 k2 . . .

)

ψ1(x)
k1ψ1(y)

k1

1

ψ2(x)
k2ψ2(y)

k2

2k2

ψ3(x)
k3ψ3(y)

k3

3k3
. . . .

Let us further manipulate this expression, remark that a way to present a partition is
to give the number of times that each number i appears.

If i appears ki times in a partition µ, the partition is indicated by:

(5.1.5) µ := 1k12k23k3 . . . iki . . . .

Let us indicate by

n(µ) = a(µ)b(µ) := k1!1
k1k2!2

k2k3!3
k3 . . . ki!i

ki . . .
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(5.1.6) a(µ) := k1!k2!k3! . . . ki! . . . , b(µ) := 1k12k23k3 . . . iki . . .

then 5.1.4 becomes
∑

µ

1

n(µ)
ψµ(x)ψµ(y).

5.2 We need to interpret now the number n(µ):

Proposition. If s ∈ Cµ, n(µ) is the order of the centralizer Gs of s and |Cµ|n(µ) = n!.

Proof. Let us write the permutation s as a product of a list of cycles ci. If g centralizes s
we have that the cycles gcig

−1 are a permutation of the given list of cycles.

It is clear that in this way we get all possible permutations of the cycles of equal length.

Thus we have a surjective homomorphism of Gs to a product of symmetric groups
∏

Ski
,

its kernel H is formed by permutations which fix each cycle.

A permutation of this type is just a product of permutations, each on the set of indeces
appearing in the corresponding cycle, and fixing it.

For a full cycle the centralizer is the cyclic group generated by the cycle, so H is a
product of cyclic groups of order the length of each cycle. The formula follows. �

Let us now substitute in the identity:

∑

µ`n

1

n(µ)
ψµ(x)ψµ(y) =

∑

λ`n

Sλ(x)Sλ(y)

the expression ψµ =
∑

λ cλ(µ)Sλ and get:

(5.2.1)
∑

µ`n

1

n(µ)
cλ1

(µ)cλ2
(µ) =

{

0 if λ1 6= λ2

1 if λ1 = λ2

.

We have thus that the class functions cλ are an orthonormal basis completing Step 1.

5.3 Step 2 We consider now some permutation characters (cf. 2.2). Take a
partition λ := h1, h2, . . . , hk of n. Consider then the subgroup Sλ := Sh1

×Sh2
× . . .×Shk

and the permutation representation on:

(5.3.1) Sn/Sh1
× Sh2

× . . .× Shk

we will indicate by βλ the corresponding character.

This character is computed with 2.3.2 χ(g) =
∑

i
|G(g)|
|H(gi)|

of Chapter 5 applied to the

case G/H = Sn/Sh1
× Sh2

× . . . × Shk
and for a permutation g relative to a partition

µ := 1p12p23p3 . . . ipi . . . npn .
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A conjugacy class in Sh1
×Sh2

× . . .×Shk
is given by k partitions µi ` hi of the numbers

h1, h2, . . . , hk; the conjugacy class of type µ intersected with Sh1
× Sh2

× . . .× Shk
gives

all possible k tuple of partitions µ1, µ2, . . . , µk of type

µh := 1p1h2p2h3p3h . . . ipih . . .

and:
k

∑

h=1

pih = pi.

In a more formal way we may define a sum of two partitions λ = 1p12p23p3 . . . ipi . . . , µ =
1q12q23q3 . . . iqi . . . as the partition:

λ+ µ := 1p1+q12p2+q23p3+q3 . . . ipi+qi . . .

and remark that, with the notations of 5.1.7 b(λ+ µ) = b(λ)b(µ).

We are thus decomposing µ =
∑k

i=1 µi and we have b(µ) =
∏

b(µi).

The cardinality mµ1,µ2,... ,µk
of the conjugacy class µ1, µ2, . . . , µk in Sh1

×Sh2
× . . .×Shk

is:

mµ1,µ2,... ,µk
=

k
∏

j=1

hj !

n(µj)
=

k
∏

j=1

hj !

a(µj)

1

b(µ)

Now
k

∏

j=1

a(µj) =

k
∏

h=1

(

n
∏

i=1

pih!)

So we get:

mµ1,µ2,... ,µk
=

1

n(µ)

k
∏

j=1

hj !
n

∏

i=1

(

pi

pi1pi2 . . . pik

)

.

Finally for the number βλ(µ) we have:

βλ(µ) =
n(µ)

∏k
i=1 hi!

∑

µ=
P

k
i=1 µi, µi`hi

mµ1,µ2,... ,µk
=

∑

µ=
P

k
i=1 µi, µi`hi

n
∏

i=1

(

pi

pi1pi2 . . . pik

)

.

This sum is manifestly the coefficient of xh1
1 xh2

2 . . . xhk

k in the symmetric function ψµ(x).

In fact when we expand

ψµ(x) = ψ1(x)
p1ψ2(x)

p2 . . . ψi(x)
pi . . .

for each factor ψk(x) =
∑n

i=1 x
k
i one selects the index of the variable chosen and constructs

a corrresponding product monomial.

For each such monomial denote by pij the number of choices of the term xi
j in the pi

factors ψi(x), we have
∏

i

(

pi

pi1pi2...pik

)

such choices and they contribute to the monomial

xh1
1 xh2

2 . . . xhk

k if and only if
∑

i ipij = hj .
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Thus if Σλ denotes the sum of all monomials in the orbit of xh1
1 xh2

2 . . . xhk

k we get the
formula:

(5.3.2) ψµ(x) =
∑

λ

βλ(µ)Σλ(x).

5.4 We wish to expand now the basis Σλ(x) in terms of the basis Sλ(x) and
conversely:

(5.4.1) Σλ(x) =
∑

µ

pλ,µSµ(x), Sλ(x) =
∑

µ

kλ,µΣµ(x)

In order to explicit some information about the matrices:

(pλ,µ), (kλ,µ)

recall that the partitions are totally ordered by lexicographic ordering.

We also order the monomials by the lexicographic ordering of the sequence of exponents
h1, h2, . . . , hn of the variables x1, x2, . . . , xn.

We remark that the ordering of monomials has the following immediate property:
If M1,M2, N are 3 monomials and M1 < M2 then M1N < M2N .
For any polynomial p(x) we can thus select the leading monomial l(p) and for two

polynomials p(x), q(x) we have:
l(pq) = l(p)l(q).

For a partition µ ` n := h1 ≥ h2 ≥ . . . ≥ hn the leading monomial of Σµ is

xµ := xh1
1 xh2

2 . . . xhn

n .

Similarly the leading monomial of the alternating function Aµ+%(x) is:

xh1+n−1
1 xh2+n−2

2 . . . xhn
n = xµ+%.

We compute now the leading monomial of the Schur function Sµ, using all the definitions
and notations of §6.1, since

xµ+% = l(Aµ+%(x)) = l(Sµ(x)V (x)) = l(Sµ(x))x%

we deduce that:
l(Sµ(x)) = xµ.

This computation has the following immediate consequence:

Proposition. The matrices P := (pλ,µ), Q := (kλ,µ) are upper triangular with 1 on the
diagonal.

Proof. A symmetric polynomial with leading coefficient xµ is clearly equal to Σµ plus a
linear combination of the Σλ, λ < µ this proves the claim for the matrix Q; the matrix P
is the inverse of Q and the claim follows. �

We can now conclude:
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Theorem. i) βλ = cλ +
∑

φ<λ kφ,λcφ, kφ,λ ∈ N.

cλ =
∑

µ≥λ pµλbµ.

ii) The functions cλ(µ) are a list of the irreducible characters of the symmetric group.

iii) (Frobenius Theorem) χλ = cλ.

Proof. From the various definitions we get:

(5.4.2) cλ =
∑

φ

pφ,λbφ, βλ =
∑

φ

kφ,λcφ,

therefore the functions cλ are virtual characters. Since they are orthonormal they are ±
the irreducible characters.

From the recursive formulas it follows that βλ = cλ +
∑

φ<λ kφ,λcφ, mλ,φ ∈ Z. Since βλ

is a character it is a positive linear combination of the irreducible characters, it follows
that each cλ is an irreducible character and that the coefficients kφ,λ ∈ N represent
the multiplicities of the decomposition of the permutation representation into irreducible
components.5

�

Remark The basic formula ψµ(x) =
∑

λ cλ(µ)Sλ(x) can be multiplied by the Vander-
monde determinant getting

(5.4.3) ψµ(x)V (x) =
∑

λ

cλ(µ)Aλ+%(x)

now we may apply the leading monomial theory and deduce that cλ(µ) is the coefficient
in ψµ(x)V (x) belonging to the leading monomial xλ+ρ of Aλ+%.

This furnishes a possible algorithm, we will discuss later some features of this formula.

5.5 There is a nice interpretation of the theorem of Frobenius which I want to
describe.

Definition. The linear isomorphism between characters of Sn and symmetric functions
of degree n which assigns to χλ the Schur function Sλ is called the Frobenius character.

It is denoted by χ→ F (χ).

By Frobenius theorem the Frobenius character can be computed by the formula (cf.
5.1.2):

F (χ) =
1

n!

∑

σ∈Sn

χ(σ)φµ(σ)(x) =
∑

µ`n

χ(µ)

n(µ)
φµ(x)

Recall that n(µ) is the order of the centralizer of a permutation with cycle structure µ.
This shows the following important multiplicative behaviour of the Frobenius character.

5The numbers kφ,λ are called Kostka numbers. As we shall see they count some combinatorial objects

called semistandard tableaux.
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Theorem. Given two representations V,W of Sm, Sn respectively we have:

(5.5.1) F (Ind
Sn+m

Sn×Sm
(V ⊗W )) = F (V )F (W ).

Proof. Let us denote by χ the character of Ind
Sm+n

Sm×Sn
(V ⊗W ). Recall the discussion of

induced characters in Chap 5, and formula 2.3.1 χ(g) =
∑

i
|G(g)|
|H(gi)|

χV (gi), where |G(g)|

is the order of the centralizer of g in G the Oi are the conjugacy classes in H in the

conjugacy class of g in G. In our case for Ind
Sm+n

Sm×Sn
(V ⊗W ) we deduce that χ(σ) = 0

unless σ is conjugate to an element (a, b) of Sn × Sm. In term of partitions the partitions
ν ` n+m which contribute to the characters are the ones of type λ⊕ µ. In the language
of permutations formula 2.3.1 becomes:

χ(ν) =
∑

ν=λ+µ

n(λ+ µ)

n(λ)n(µ)
χV (λ)χW (µ)

since φλ⊕µ = φλφµ we obtain for F (χ):

∑

ν`m+n

χ(ν)φν

n(ν)
=

∑

ν

φν

n(ν)

∑

ν=λ+µ

n(λ+ µ)

n(λ)n(µ)
χV (λ)χW (µ) =

∑

λ`m,µ`n

χV (λ)χW (µ)

n(λ)n(µ)
φλφµ

�

5.6 We discuss here a complement to the representation theory of Sn.

It will be necessary to work formally with symmetric functions in infinitely many vari-
ables, a formalism which has been justified in 1.1.

With this in mind we think of the identities 5.1.1, 5.3.4, 5.4.1 etc. as identities in
infinitely many variables.

First of all a convention. If we are given a representation of a group on a graded vector
space U := {Ui}

∞
i=0 (i.e. a representation on each Ui) its character is usually written as a

power series with coefficients in the character ring in a variable q:6

(5.6.1) χU (t) :=
∑

i

χiq
i.

Where χi is the character of the representation Ui.

Definition. The expression 5.6.1 is called a graded character.

Graded characters have some formal similarities with characters. Given two graded
representations U = {Ui}i, V = {Vi}i we have their direct sum, and their tensor product

(U ⊕ V )i := Ui ⊕ Vi, (U ⊗ V )i := ⊕i
h=0Uh ⊗ Vi−h.

6It is now quite usual to use q as variable since it often appears coming from computations on finite

fields where q = pr or as quantum deformation parameter



5 Characters of the symmetric group 23

For the graded characters we have clearly:

(5.6.2) χU⊕V (q) = χU (q) + χV (q), χU⊗V (q) = χU (q)χV (q).

Let us consider a simple example.7

Lemma Molien’s formula. Given a linear operator A on a vector space U its action on
the symmetric algebra S(U) has as graded character:

(5.6.3)
∞
∑

i=0

tr(Si(A))qi =
1

det(1 − qA)

Its action on the exterior algebra ∧U has as graded character:

(5.6.4)
dim U
∑

i=0

tr(∧i(A))qi = det(1 + qA)

Proof. Since for every symmetric power Sk(U) the character of the operator induced by
A is a polynomial in A it is enough to prove the formula, by continuity and invariance,
when A is diagonal.

Take a basis of eigenvectors ui, i = 1, . . . , n with eigenvalue λi.

Then S[U ] = S[u1] ⊗ S[u2] ⊗ . . .⊗ S[un] and S[ui] =
∑∞

h=0 Fu
h
i .

The graded character of S[ui] is
∑∞

h=0 λ
h
i q

h = 1
1−λiq

hence:

χS[U ](q) =
n

∏

i=1

χS[ui](q) =
1

∏n
i=1(1 − λiq)

=
1

det(1 − qA)
.

Similarty ∧U = ∧[u1] ⊗ ∧[u2] ⊗ . . .⊗ ∧[un] and ∧[ui] = F ⊕ Fui hence

χ∧[U ](q) =

n
∏

i=1

χ∧[ui](q) =

n
∏

i=1

(1 + λiq) = det(1 + qA).

�

We apply the previous discussion to Sn acting on the space Cn permuting the coordinates
and the representation that it induces on the polynomial ring C[x1, x2, . . . , xn].

We denote by
∑∞

i=0 χiq
i the corresponding graded character.

If σ is a permutation with cycle decomposition of lengths µ(σ) = µ := m1,m2, . . .mk

the standard basis of Cn decomposes into k−cycles each of length mi. On the subspace
relative to a cycle of length m, σ acts with eigenvalues the m-roots of 1 and

det(1 − qσ) =
∏

i

m
∏

j=1

(1 − e
j2π

√
−1

m q) =
∏

i

(1 − qm)

7strictly speaking we are not treating now a group, but the set of all matrices under multiplication,

which is only a semigroup, for this set tensor product of representation makes sense but not duality.
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Thus the graded character of σ acting on the polynomial ring is

1

det(1 − qσ)
=

∏

i

∞
∑

j=0

qjmi =
∏

i

ψmi
(1, q, q2, . . . , qk, . . . ) =

ψµ(1, q, q2, . . . , qk, . . . ) =
∑

λ`n

χλ(σ)Sλ(1, q, q2, . . . , qk, . . . )

To summarize

Theorem. The graded character of Sn acting on the polynomial ring is
∑

λ`n

χλSλ(1, q, q2, . . . , qk, . . . )

We have a corollary of this formula. If λ = h1 ≥ h2 · · · ≥ hn, the term of lowest degree
in q in Sλ(1, q, q2, . . . , qk, . . . ) is clearly given by the leading term xh1

1 xh2
2 . . . xhn

n computed
in 1, q, q2, . . . , qn and this gives qh1+2h2+3h3+···+nhn . We deduce that the representation
Mλ of Sn appears for the first time in degree h1 +2h2 +3h3 + · · ·+nhn and in this degree
it appears with multiplicity 1. This particular submodule of C[x1, x2, . . . , xn] is called the
Specht module and it plays an important role.8

Now we want to discuss another related representation.

Recall first that C[x1, x2, . . . , xn] is a free module over the ring of symmetric functions
C[σ1, σ2, . . . , σn] of rank n!. It follows that, for every choice of the numbers a := a1, . . . , an

the ring Ra := C[x1, x2, . . . , xn]/ < σi − ai > constructed from C[x1, x2, . . . , xn] modulo
the ideal generated by the elements σi − ai, is of dimension n! and a representation of Sn.

We claim that it is always the regular representation.

First we prove it in the case in which the polynomial tn−a1t
n−1+a2t

n−2−· · ·+(−1)nan

has distinct roots α1, . . . , αn, this means that the ring C[x1, x2, . . . , xn]/ < σi − ai > is
the coordinate ring of the set of n! points ασ(1), . . . , ασ(n), σ ∈ Sn and this is clearly the
regular representation.

The condition for a polynomial to have distinct roots is open in the coefficients and
given by the non vanishing of the discriminant.

It is easily seen that the character of Ra is continuous in a and, since the characters of
a finite group are a discrete set this implies that the character is constant.

It is of particular interest (combinatorial and geometric) to analyze the special case
a = 0 and the ring R := C[x1, x2, . . . , xn]/ < σi > which is a graded algebra affording the
regular representation.

Thus the graded character χR(q) of R is a graded form of the regular representation.

To compute it notice that as a graded representation we have an isomorphism

C[x1, x2, . . . , xn] = R⊗ C[σ1, σ2, . . . , σn]

8it appears in the Springer representation for instance, cf. .
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and thus an identity of graded characters.

The ring C[σ1, σ2, . . . , σn] has the trivial representation, by definition, and generators
in degree 1, 2, . . . , n so its graded character is just

∏n
i=1(1 − qi)−1 and finally we deduce:

Theorem.

χR(q) =
∑

λ`n

χλSλ(1, q, q2, . . . , qk, . . . )
n

∏

i=1

(1 − qi)

Notice then that the series Sλ(1, q, q2, . . . , qk, . . . )
∏n

i=1(1−q
i) represent the multiplicities

of χλ in the various degrees of R and thus are polynomials with positive coefficients with
sum the dimension of χλ.

Exercise Prove that the Specht module has non zero image in the quotient ring
R := C[x1, x2, . . . , xn]/ < σi >.

The ring R := Z[x1, x2, . . . , xn]/ < σi > has an interesting geometric interpretation as
the cohomology algebra of the flag variety. This can be understood as the space of all
decompositions Cn = V1 ⊥ V2 ⊥ · · · ⊥ Vn into orthogonal 1-dimensional subspaces. The
action of the symmetric group is iduced by the topological action permuting the summands
of the decomposition.

6 The hook formula

6.1 We want to deduce now a formula, due to Frobenius, for the dimension d(λ) of
the irreducible representation Mλ of the symmetric group.

From 5.4.3 applied to the partition 1n, corresponding to the conjugacy class of the
identity, we obtain:

(6.1.1) (
n

∑

i=1

xi)
nV (x) =

∑

λ

d(λ)Aλ+%(x)

Write the development of the Vandermonde determinant as
∑

σ∈Sn
εσ

∏n
i=1 x

σ(n−i+1)−1
i .

Letting λ+ ρ = `1 > `2 > · · · > `n the number d(λ) is the coefficient of
∏

i x
`i

i in

(
n

∑

i=1

xi)
n

∑

σ∈Sn

εσ

n
∏

i=1

x
σ(n−i+1)−1
i .

Thus a term εσ
(

n
k1 k2 ...kn

)
∏n

i=1 x
σ(n−i+1)−1+ki

i contributes to
∏

i x
`i

i if and only if ki =

`i − σ(n− i+ 1) + 1. We deduce

d(λ) =
∑

σ∈Sn|∀i
`i−σ(n−i+1)+1≥0

εσ
n!

∏n
i=1(`i − σ(n− i+ 1) + 1)!
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We change the term

n!
n

∏

i=1

1

(`i − σ(n− i+ 1) + 1)!
=

n!
∏n

i=1 `i!

n
∏

i=1

∏

0≤k≤
σ(n−i+1)−2

(`i − k)

and remark that this formula makes sense, and it is 0, if σ does not satisfy the restriction
`i − σ(n− i+ 1) + 1 ≥ 0.

Thus

d(λ) =
n!

∏n
i=1 `i!

d(λ), d(λ) =
∑

σ∈Sn

εσ

n
∏

i=1

∏

0≤k≤
σ(n−i+1)−2

(`i − k)

d(λ) is the value of the determinant of a matrix with
∏

0≤k≤j−2(`i − k) in the n− i+ 1, j
position.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 `n `n(`n − 1) . . .
∏

0≤k≤n−2(`n − k)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
1 `i `i(`i − 1) . . .

∏

0≤k≤n−2(`i − k)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
1 `1 `1(`1 − 1) . . .

∏

0≤k≤n−2(`1 − k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

this determinant, by elementary operations on the columns, reduces to the Vandermonde
determinant in the `i with value

∏

i<j(`i − `j). Thus we obtain the formula of Frobenius:

(6.1.2) d(λ) = n!

n
∏

i=1

∏

i<j(`i − `j)

`i!

6.2 We want to give a combinatorial interpretation of 6.1.2. Notice that in
Q

i<j
(`i−`j)

`i!

the i − 1 factors of the numerator cancel the corresponding factors in the denominator
leaving `i − i+ 1 factors. In all

∑

i `i −
∑n

i=1(i− 1) = n are left.

These factors can be interpreted has the hook lengths of the boxes of the corresponding
diagram.

More precisely given a box x of a French diagram its hook is the set of elements of the
diagram which are either on top or to the right of x, including x. E.g. we mark the hooks
of 1, 2; 2, 1; 2, 2 in 4,3,1,1

.

.

. � .

. � � �

�

�

� � �

. . . .

.

.

. � �

. . . .

The total number of boxes in the hook of x is the hook length of x, denoted by hx.
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Now let us show that the factors in the factorial `i! which are not cancelled are the
hooks of the boxes in the ith row.

In fact let hi = `i + i − n be the length of the ith row, given k > i let us consider the
hk−1−hk numbers strictly between `i−`k−1 = hi−hk−1+k−i−1 and `i−`k = hi−hk+k−i.

hk−1 − hk is the number of cases in the ith row for which the hoook ends vertically on
the k− 1 row, and it is easily seen, since the vertical leg of each such hook has length k− i
and the horizontal arm length goes from hi −hk to hi − hk−1 + 1 that the lengths of these
hooks vary between k− i+ hi − hk − 1 and k− i+hi −hk−1 and are these given numbers.

Frobenius formula becomes thus the hook formula, denote by B(λ) the set of boxes of a
diagram of shape λ:

(6.2.1) d(λ) =
n!

∏

x∈B(λ)

hx

.

6.3 We wish to describe now a fairly simple recursive algorithm, due to Murnhagam,
to compute the numbers cλ. It is based on the knowledge of the multiplication of ψkSλ in
the ring of symmetric functions.

We assume the number n of variables to be more than k + |λ|, i.e. to be in a stable
range for the formula.

Let hi denote the rows of λ, we may as well compute ψkSλV (x) = ψk(x)Aλ+%(x):

(6.3.1) ψk(x)Aλ+%(x) = (
n

∑

i=1

xk
i )(

∑

s∈Sn

εsx
h1+n−1
s1 xh1+n−2

s2 . . . xhn

sn ).

Indicate by ki = hi+n−i. We inspect the monomials appearing in the alternating function
which is at the right of 6.3.1.

Each term is a monomial with exponents obtained from the sequence ki by adding to
one of them say kj the number k.

If the resulting sequence has two numbers equal it cannot contribute a term to an
alternating sum and so it must be dropped, otherwise reorder it getting a sequence:

k1 > k2 > . . . ki > kj + k > ki+1 > . . . kj−1 > kj+1 > . . . > kn.

Then we see that the partition λ′ : h′i associated to this sequence is:

h′t = ht, if t ≤ i or t > j, h′t = ht−1 + 1 if i+ 2 ≤ t ≤ j, h′i+1 = hj + k + j − i− 1.

The coefficient of Sλ′ in ψk(x)Sλ(x) is (−1)j−i by reordering the rows.

There is a simple way of visualizing the various partitions λ′ which arise in this way.

Notice that we have modified a certain number of consecutive rows, adding a total of k
new boxes. Each row except the bottom row, has been replaced by the row immediately
below it plus one extra box.
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This property appears saying that the new diagram λ′ is thus any diagram which contains
the diagram λ and such that their difference is connected, made of k boxes and it is like a
”slinky”9 i.e. it is part of the rim of the diagram λ′ (which are the points on its boundary
or the points i, j for which there is no point h, k with i < h, j < k lying in the diagram).

So one has to think of a slinky made of k boxes, sliding in all possible ways down the
diagram.

The sign to attribute to such a configuration si +1 if the number of rows occupied is
odd, −1 otherwise.

For instance we can visualize ψ3S327 as:

+

◦
◦
◦
.
. .
. . .

−
◦ ◦
. ◦
. .
. . .

−
. ◦ ◦
. . ◦
. . .

−
.
. . ◦ ◦
. . . ◦

+
.
. .
. . . ◦ ◦ ◦

Formally one can define a k−slinky as a walk in the plane N2 made of k−steps, and each
step is either one step down or one step right. The sign of the slinky is −1 if it occupies
an even number of rows, +1 otherwise.

Next one defines a striped tableau of type µ := k1, k2, . . . , kt to be a tableau filled,
for each i = 1, . . . , t with exactly ki entries of the number i subject to fill a ki−slinky.
Moreover we assume that the set of boxes filled with the numbers up to i, for each i is still
a diagram. E.g. a 3,4,2,5,6,3,4,1 striped diagram:

8
4
4 4 4 5
3 3 4 5
1 2 2 5 5 7 7 7 7
1 1 2 2 5 5 6 6 6

to such a striped tableau we associate as sign the product of the signs of all its slinkies.
In our case it is the sign pattern −− + + − + ++ for a total − sign.

Murnagham’s rule can be formulated as:

cλ(µ) equals the number of striped tableaux of type µ and shape λ each counted with
its sign.

9this was explained to me by A. Garsia.
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Notice that, when µ = 1n the slinky is only one box and the condition is that the
diagram is filled with all the distinct numbers 1, . . . , n and the filling is increasing from
left to rigth and from the bottom to the top. This is the definition of a standard tableau.
Its sign is always 1 and so d(λ) equals the number of standard tableaux of shape λ.

6.4 We want to draw another important consequence of the previous multiplication
formula between Newton functions and Schur functions.

Consider a module Mλ for Sn and consider Sn−1 ⊂ Sn, we want to analyze Mλ as a
representation of the subgroup Sn−1. For this we perform a character computation.

We introduce first a simple notation, given two partitions λ ` m, µ ` n we say that
λ ⊂ µ if we have an inclusion of the corresponding Ferrer’s diagrams or equivalently if
each row of λ is less or equal of the corresponding row of µ.

If n = m + 1 we will also say that λ, µ are adjacent, in this case clearly µ is obtained
from λ removing a box lying in a corner.

With these remarks we notice a special case of 8.1:

(6.4.1) ψ1Sλ =
∑

µ`|λ|+1,λ⊂µ

Sµ.

Consider now an element of Sn−1 to which is associated a partition ν; the same element
as permutation in Sn has associated partition ν1 so computing characters we have:

∑

λ`n

cλ(ν1)Sλ = ψν1 = ψ1ψν =
∑

τ∈`(n−1)

cτ (ν)ψ1Sτ

(6.4.2) =
∑

τ∈`(n−1)

cτ (ν)
∑

µ∈`n, τ⊂µ

Sµ.

In other words:

(6.4.3) cλ(ν1) =
∑

µ∈`(n−1), µ⊂λ

cµ(ν),

This identity between characters becomes in module notations:

Theorem Branching rule for the symmetric group. When restricting from Sn to
Sn−1 we have:

(6.4.4) Mλ = ⊕µ∈`(n−1), µ⊂λMµ.

A remarkable feature of this decomposition is that each irreducible Sn−1 module ap-
pearing in Mλ has multiplicity 1, which implies in particular that the decomposition 8.2.3
is unique.

A very convenient way to record a partition µ obtained from λ by removing a box is
given marking this box with the number n. We can repeat now the branching to Sn−2
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and get:

(6.4.5) Mλ =
⊕

µ2`=n−2, µ1`=n−1,µ2⊂µ1⊂λ

Mµ2
.

Again we mark a pair µ2 ∈` (n− 2), µ1 ` (n− 1), µ2 ⊂ µ1 ⊂ λ by marking the first box
removed to get µ1 with n and the second box with n− 1.

From 4261, branching once:

. . . 8

. .

.

.

+

. . . .

. 8

.

.

+

. . . .

. .

.
8

Banching twice:

. . 7 8

. .

.

.
+

. . . 8

. 7

.

.
+

. . . 8

. .

.
7

+

. . . 7

. 8

.

.

+

. . . .

. 8

.
7

+

. . . 7

. .

.
8

+

. . . .

. 7

.
8

+

. . . .

. .
7
8

In general we give the following definitions:

Given µ ⊂ λ two diagrams, the complement of µ in λ is called a skew diagram indicated
by λ/µ. A standard skew tabluau of shape λ/µ consists of filling the boxes of λ/µ with
distinct numbers such that each row and each column is strictly increasing.

Example of a skew tableau of shape 6527/326:

. . . 1 2 4

. . 2 3 4

. 2
6 7

Notice that we have placed some dots in the position of the partition 327 which has been
removed.

If µ = ∅ we speak of a standard tableau. We can easily convince ourselves that, if
λ `= n, µ `= n− k and µ ⊂ λ there is a 1-1 correspondence between:

1) Sequences µ = µk ⊂ µk−1 ⊂ µk−2 . . . ⊂ µ1 ⊂ λ with µi ` n− i.

2) Standard skew diagrams of shape λ/µ filled with the numbers

n− k + 1, n− k + 2, . . . , n− 1, n.
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The correspondence is established by associating to a standard skew tableau T the
sequence of diagrams µi where µi is obtained from λ by removing the boxes occupied by
the numbers n, n− 1, . . . , n− i+ 1.

When we apply the branch rule several times, passing from Sn to Sn−k we obtain a
decomposition of Mλ into a sum of modules indexed by all possible skew standard tableaux
of shape λ/µ filled with the numbers n− k + 1, n− k + 2, . . . , n− 1, n.

In particular, for a given shape µ ` n − k the multiplicity of Mµ in Mλ equals the
number of such tableaux.

In particular we may go all the way down to S1 and obtain a canonical decomposition of
Mλ into 1-dimensional spaces indexed by all the standard tableaux of shape λ. We recover
in a more precise way what we discussed in the previous paragraph.

Proposition. The dimension of Mλ equals the number of standard tableaux of shape λ.

It is of some interest to discuss the previous decomposition in the following way.
For every k let Sk be the symmetric group on k elements contained in Sn, so that

Q[Sk] ⊂ Q[Sn] as subalgebra.

Let Zk be the center of Q[Sk]. The algebras Zk ⊂ Q[Sn] generate a commutative
subalgebra C. In fact for every k we have that the center of Q[Sk] has a basis of idempotents
uλ indexed by the partitions of k.

On any irreducible representation this subalgebra, by the analysis made has a basis
of common eigenvectors given by the decomposition into 1 dimensional spaces previously
described.

Exercise Prove that the common eigenvalues of the uλ are distinct and so this de-
composition is again unique.

Remark. The decomposition just obtained is almost equivalent to selecting a basis of Mλ

indexed by standard diagrams. Fixing an invariant scalar product in Mλ we immediately
see by induction that the decomposition is orthogonal (because non isomorphic representa-
tions are necessarily orthogonal). If we work over R we can select thus a vector of norm 1
in each summand. This leaves still some sign ambiguity which can be resolved by suitable
conventions. The selection of a standard basis is in fact a rather fascinating topic, it can
be done in several quite unequivalent ways suggested by very different considerations, we
will see some in the next chapters.

A possible goal is to exhibit not only an explicit basis but also explicit matrices for the
permutations of Sn or at least for a set of generating permutations (usually one chooses
the Coxeter generators (i i+ 1), i = 1, . . . , n− 1).

We will discuss this question when we will deal in a more systematic way with standard
tableaux.


