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1 Preliminaries
Let R be a commutative ring and 1, ..., %, a set of indeterminants. Let @ = (a1, ..., a,) be a vector of

non-negative integer coefficients. The set of all o form a monoid under addition which is isomorphic to
the monoid of all monomials % under multiplication:

92 = 2°tP  with 2% =z§...2%m.
The corresponding algebra is the ring of polynomials, denoted Rz, ..., zy], consisting of all polyno-

mials in n variables with coeflicients in R.
We write |a| = degz® = oy + - -+ + . An element of R[z1,...,z,)] of the form

@i, mn) = ) can®
la|=d
is called a homogeneous polynomial of degree d. With set of all such polynomials denoted by
R[z1,...,2,)% Rlz1,...,2,) is a graded ring:

Rlo,...,ea] = @ Rlor,..., wa*
d>0



There is a natural degree-preserving S, action on polynomials, where elements of the symmetric
group act by permuting the variables. That is, given P(x) € R[z1,...,2,] and 0 € Sy:

oP(z1,22,...,%n) = P(Zo,,Tos,- -3 T0, ) -
For example, 0 = (132) => o (2} + 22123 + 22) = 27 + 22172 + 23

A polynomial is called symmetric if it is invariant under the action of S,,. The set of symmetric
polynomials of degree d in n-variables is denoted A¢ and we set,

An=EPAL.
d
A, is a subring of R[z1, ..., 2], called the ring of symmetric polynomials. Examples include:

21 + 2212223 + T2 + T3 € A3

3
T1T2X3 + T1T2%4 + TaX3T4 + T123%4 € Aj

2 Monomial symmetric functions

The most obvious symmetric polynomials are constructed by symmetrizing the monomial term z*, for a
partition A = (A1,...,A,) of weakly decreasing non-negative integers.

The monomial symmetric functions: mj

my = Z 2’ where 2f =22l ... 4fn
B:B*=A

over all distinct 3 where 8* is the partition rearrangement of 3.
For example, with A = (2,1,1) and n = 4:
(27 2) ]‘7 0) (2’ 27 0’ 1) (17 27 25 0) (1’ 27 07 2) (2’ 1’ 27 0) (2’ 17 OJ 2) (0’ 2’ 27 1) (0’ 27 ]‘J 2) (0’ ]‘7 27 2)

2,2 2,2 2,2 2.2 2, .2 2, .2 2.2 2, 2 2,.2
mo1,1 = TIT5X3 + TIT5T4 + T1T5X3 + T1X5Ty + T]T2X3 + TIXT2Ty + TRT3%4 + T2X3Ty + TaT3Xy
Furthermore, the m) are clearly independent and if the homogeneous polynomial
f=2 can®
|a|=d

is symmetric, then the ¢, must remain constant as a ranges over the S,, orbit. Thus, the set of all m
with || = d spans AZ. Note if £(\) > n, we don’t have enough variables and m = 0. To avoid this issue,
we instead work in the vector space spanned by all the m) called the ring of symmetric functions:

A= R[m,\] .

A is closed under product, and is a graded ring. If A? is the space spanned by all my of degree d,

A:@Ad.

>0
Theorem 1. {m) : |\| = d} is a basis of A°

Corollary 2. The dimension of A? is the number of partitions of d.



2.1 Multiplying Monomials

The study of the product of certain monomial symmetric functions will later help us understand other
bases for A. More precisely, we are interested in determining the possible terms in the right hand side of

k
Me My = z c5yemy where 1% =(1,...,1).
[v|=|Al+k
Note that since the product of symmetric functions is symmetric,
c‘;\lk: the coefficient of m, in mym;r = the coefficient of ¥ in mymq»

Since the monomial terms in my are z® where « rearranges to A, ¢}, is the number of ways to fill rows
of v with at most one row of A and of (1,...,1). For example, filling shapes with (2,1) and (1,1) gives

e bR ek Ll L

mi,1M2,1 = 2ma 2,1 + m32 +2m3 1,1 +3ma1,1,1

sty

It turns out that the only shapes with at least one filling of A and 1* are those obtained by adding a
vertical k-strip to the diagram of A.
a)

H:‘ + a vertical 2-strip = {EEU’ B:‘, EE,

To convince yourself of this fact, note first that since v is obtained from the parts of A and 1*, each row
of v must be A; or A\; + 1 for some 4. Thus, the length of the longest row will be at most A\; + 1 and
at least A; implying vy contains A;. Similarly, the length of the second longest row will be A + 1 or Az
implying v contains Ag, etc.

2.2 Dominance order

We put a partial order <1 on the set of all partitions (and consequently on the set of monomial symmetric
functions m, < my when g < A) called dominance order by declaring that

ADp <= A+ A2+ +py forall g

Many bases are triangularly related with respect to [>. Intuitively, A is greater than p in dominance order
if the Ferrers diagram of X is wider than .

Remark 3. A< p <= N>y

We can use dominance order to refine our result on the product of monomials:

j— 4 — v
MMy = E kM = Mygge+ E 1k My (1)
v=MA+vertical k-strip v < A+1k

where A + 1% = M+1, A+ 1, g1, .- )

3 Elementary symmetric functions

The elementary symmetric functions are ey = ey, ey, - -- e, where

er(T1,...,2n) = E X Tiy---x;,, and eg=1.
1<i1 <2< < <N

For example, ey = 1 + 3 + -+ and es = £122 + 123 + - - -. Clearly mq» = eg. Note the degree(er) = k
and degree(ey = ey, ---€ey,) = |A|. Further, when k& > n, e, = 0.



Letting A = 1%t and mx, = ey, in our result on multiplying monomials Eq. (1), implies
€y Mk = m1k1+1k2 + Z Cy My
v<1*141k2
Repeating this process implies

€k Chp_1 """ CkoMikr = TNik1 ...y 1kn + 2 Cy My
<1kl 4ooig1kn

Then noting p = (k1,ka,- -+ ,ky) implies ' = 1%t + ... + 1% we have

ey =my + Z c,m, where ¢, €N (2)
vp'

The unitriangularity of this expansion of the elementary symmetric function in terms of the basis of
monomial symmetric functions implies

Theorem 4. {e,} forms a basis for A.

Since the set {e)} consists of all monomials ej*e3? --- where a; € N°°, and any element of A can be

expressed as a linear combination of ey, every element of A is uniquely expressible as a polynomial in the
e, and the e, are algebraically independent.

Theorem 5. A = Qley,es,...]

4 Homogeneous symmetric functions: h)

Definition: Let hg = 1 and hy = hy, hy, - - - hy, where

hk(ﬂfl,.--,ﬂfn) = E mx = 2 Liy Ty == Ty,

A=k 1<i1<ip < <ip<n

Note that h; = e;. Sometimes hy is called the complete symmetric function since it is the sum over all
monomials: hy =Y z; and hy = Y 27 + Y 7w = 2% + 25 + T2 + -+

The homogeneous functions are not triagulary related to the monomials. We shall thus appeal to the
use of generating functions to show that the homogeneous symmetric functions provide a basis for A.

4.1 Generating Functions

Define
E(t)=> et H({t)=> hyt*

k>0 k>0

Theorem 6.

B = [[A+zt) HE) = [[—

A " 1-— .Z'it
i>1 i>1
Proof.
H(l +zit) = 1+te) L +txs)--- =1+ thi + thfﬂjaf]‘ +---
i>1 i>1 i<j
The identity for H(t) follows similarly, starting with the geometric series expansion. O

Theorem 7. {hy : A d} is a basis for A°.



Proof. Since the number elements h) is the number of partitions of d, it suffices to show that they generate
the e,,. Further, since both hy and ey are multiplicative we shall simply show that ey = f(h1,...,h) for
some polynomial f. Our identies reveal that H(t) = —*—, or H(t)E(—t) = 1. Substituting h; and e; in

~ E(-1)
the summations gives

() (S =

and by comparing coefficients of t” in both sides we see that

o (—D'her=0  n#0 (3)
k+l=n
Thus, e, = h1ep—1 — hoep—2 + -+ - £ hy,_1€1 which is a polynomial in the A’s by induction on n. O

5 Power symmetric functions: p)
pe=) af and py=py Py,
i

pp=x1+x0+--=e =h pr=o] + Ty + - =my
Theorem 8. {p) : A\ d} is a basis of A?
Proof. Let py = Zu caumy. If we can show that cy, = 0 for all g > A and ¢y # 0 then the transition

matrix is invertible and then py must be a basis. If &' 4% . .. 2~ appears in py = (' + 23" +--- ) (@} +
:1:5‘2 +---)---, then each y; is a sum of A;’s. Since adding together parts of a partition makes it become
larger in dominance order, my must be the smallest term that occurs. O
5.1 Generating Function:
Studying the generating function for the power sums reveals:
Proposition 9.
def t"
P(t — =
0 _ D opn— = WmH@)
n>1
Proof. Using the Taylor expansion of In*—,
1 1 (z:t)™ t"
n||]— = In— = = — >y z7
D i e R 2) LR DD O
i>1 i>1 i>1 n>1 n>1 i>1
O

Proposition 10. Let z) =[], i"r!

1 (—1)A =€)

hn = ng and e, = ZTP,\
AFn AFn
Proof. Tt suffices to show
1
H(t) = =" —ptl
(t) Z hnt Z Z)‘p)\t
n>0 A
Using the proposition,
k
" 1 " 1 k pit\ "t (pat?\ "
H(t) = ex — | = — — | = - e
0 = (Tl -Tu(Trt) - T owl. () (3
n>1 k>0 n>1 k>0
- r1+ro+---=k
1 pi'py - 1
— Z grit2rate — Z —pxtl’\‘
ol .- .-
I riirg! 17r1pT2 y 2\

where A = (---, 3,27 1), O



6 Schur functions

6.1 Skew Schur functions

Semi-standard skew tableaux are defined on any skew shape will the condition that the fillings are
weakly increasing in rows and strictly increasing in columns. The evaluation(content) of any such
tableau T is (mq,ma,...) where m; is the number of time ¢ occurs in T'.

The skew Schur function is defined
VIS Z 2=,
TeT(M 1)
where T(A/p) is the set of all semi-standard skew tableaux of shape A/pu.

The first job is to prove these functions are symmetric. As such, let 7; denote the simple transposition

of letters ¢ and ¢ + 1. Since 7; € S, where 7;(a1,...,q;, Qiy1,...) = (Q1,..., 011,04, ..), it suffices to
show that there is an involution o; on 7 (\/u) that permutes letters in the tableau so that
ev(0i(T)) = 7i(ev(T)) . (4)

6.2 Symmetric group action

Any two entries ¢ and 7+ 1 of a tableau T are married if they occur in the same column. The conditions
on rows and columns of skew tableaux imply that if ¢ is married, then its spouse 7 4+ 1 occurs in the cell
directly above it. And, if any two entries 4 on the same row are both married, then all entries occuring
between these cells are part of a married couple.

k41 k41
i i |

Furthermore, since columns are strictly increasing, any unmarried entries ¢ or ¢ + 1 in a row must lie to
the right of all married 4, and similarly any unmarried entries 7 or ¢ + 1 in a row must lie to the left of all
married ¢ 4+ 1. Thus, the set of all unmarried ¢ and i + 1 in any row lie in a contiguous sequence such any
cell above these contains on letters strictly larger than ¢ + 1 and those below this sequence have letters
strictly smaller than 7. Thus, o; is defined to act on a tableaux by replacing every such sequence of » > 0
unmarried ¢’s and s > 0 unmarried 7 + 1’s with s ¢’s followed by r ¢ + 1’s. Since the number of married
i’s and i + 1’s is the same, this involution meets the condition (4).

6.3 Schur functions
An important special case of skew Schur functions is the Schur function, sy = s /5. More precisely,
sy = Z mev(T) 7
TeT(N)

where T'()) is the set of all semi-standard tableaux of shape A = A/0.
In three variables, we consider tableaux with fillings on the set {1,2,3} and

7(2,1) =B B B BL B BL B B
’

_>
(2,1,0) (2,0,1) (1,2,0) (1,0,2) (0,2,1) (0,1,2) (1,1,1) (1,1,1)
ev
= $82,1(%1,%2,23) = TIxo + 2323 + 2125 4+ 2172 + B33 + Toh + 212023 + T1 2223 = ma1 +2ma 1
In the case that A = (k) or (1*), the Schur functions reduce to the kth complete or elementary
symmetric function. That is,

Siv = e = E T where g7 = 212 ...

TeT(1*)



Since the set 7(1*) contains only vertical k-strips, the multiplicity of any entry in 7" must be at most 1.
Thus, any term z7 in the sum must be a monomial with variables to the first power only. On the other

hand,
S = hk = Z .'ET
TeT(k)
where we sum over all horizontal k-strips with entries from {1,...,n}. Since a horizontal k-strip may
contain any k subset of n, i.e. anything from k 1's to {1,2,...,k}, we see a term z! is a monomial in

variables to any power.
Since the action o; on tableaux implies the Schur functions are symmetric, we can expand any Schur
function in terms of the monomial basis. For any partition A,

S\ = E K,\Hm“
BE|A|

where the Kostka number K, is the number of tableau of shape A and evaluation p.
Note that the coefficient of g = 1™ will simply be the number of standard tableaux of shape A since
evaluation (1,...,1) implies each entry occurs only once.

Theorem 11. {s5} is an integral basis for A

Proof. It suffices to show Ky, = 0 for all p > A and Ky = 1. If K, is non-zero then there must exist a
tableau of shape A with p1 ones, ps twos, .... Assume g > A. This implies Ay +---+Xi—1 = g1+ -+ i1
and \; < p; for some i. The column strict condition implies the first row must have all u; ones, the
second row the ps twos, .... In row ¢ of size \;, since u; > A;, the p; 4’s will not all fit. However, a
leftover i cannot go above this row without violating the increasing column condition and all rows below
have already been filled. Therefore, for a A shaped tableau to exist with evaluation p, g < A. Moreover,
our argument shows that if A\ = p, our only option is to fill each row A; with p; j's. Thus Ky, =1. O

6.4 The Pieri Rule

Recall we showed that the formal sum of tableaux

7 Littlewood-Richardson coefficients

More generally is the question of the Schur function expansion of a product of two Schur functions.

7.1 The bi-alternant formula
The definition for Schur functions was originally given by a ratio determinants called alternants:
ag = det(z’) = Z sgn(o) z°° .
gES,

Note that for any o € S,, we have a,3 = sgn(o)ag. Letting p= (n—1,n—2,...,0), the Schur functions
were then defined by the “bi-alternant” formula:

Ax+p
ap

3\ =

As the ratio of determinants, the functions are clearly symmetric. However, the proof that §, = s, is
equivalent to the functions defined by tableux follows from an interesting identity.

Our point of departure is to consider subtableaux of T' € T(A/u). let T>; denote the tableau formed
by the columns j,j + 1,... of T. Similarly defined are 7% ;,T;, and T<;. For any partition A, T is
A-yamanouchi if A 4 ev(T;) is a partition.



Proposition 12.
Oxtp Spfv = Z Ax+ev(T)+p (5)

TET (n/v)
T=X—yamanouchi
Note that there is only one tableau of shape u (a partition) that is (-yamanouchi, the tableau of
content p. Thus, when A\ = v = (), this identity reduces to a,s, = a,4, implying

Corollary 13. For any partition p,
Sp =Sy

Proof. The symmetric group action on 7 (u/v) implies that the number of tableaux of evaluation e equals
the number with evaluation oe for any o € S,,. Thus o(\ + p) + ev(T) and (A + p + ev(T')) occur the
same number of times as T ranges over T (u1/v). Therefore

xtp Sp/v = Z Z sgn(o)a M g = Z Z sgn(o)a? A Heter(T) — Z Axtev(T)+p

0€S, TET (u/v) 0€Sy TET (1/v) TeT (u/v)

We thus are left to prove that the alternants die when T is not A-yamanouchi. The idea is as follows:
suppose A\; = Aj+1 and T has no i’s and exactly one i + 1. T is not Ad-yamanouchi since A + ev(T)
has Ait1 + evip1(T) = Ai + evi(T) + 1 — illegal. In this case, the corresponding alternant ax4.ey(1)+, is
zero since pir1 = p; — 1 and A\iy1 + evir1 (T) + pir1 = Ai + ev;(T) + p; imply that two columns in the
determinant are equal.

In the general case, we shall prove that there is a unique pairing of all tableaux that are not A-
yamanouchi such that the corresponding alternants cancel out. To this end, suppose T is not A-yamanouci.
Then X + ev(T>;) is not a partition for some j, we choose the largest such j. Let k denote the first row
that is larger then its successor. This given,

Ak + e'l}k(sz) < Agt1 + €Vgy1 (TZJ) and Ap + e'l}k(T>j) > Agt1 + evpp1 (T>J') .

Since columns of T are strictly increasing, there is at most one k and at most one k + 1 in any column.
Thus, the inequality on the right is forced to be an equality and the jth column of T' contains k£ + 1 but
no k:

Akt1 +evp1(T) = A + evg(T) + 1.

The entry (in column j+1) southwest of the k+1 in column j is strictly smaller than k implying all entries
to the west of this are also smaller than k. Thus the tableau T' obtained by acting with the symmetric
group on T'; is such T>; = T>;, and is therefore not A-yamanouchi. Further mpev(T<;) = ev(T¢;)

A

while A\gy1 + evg1 (T) = A + evp(T) + 1, implying 7 (A + ev(T) + p) = A + ev(T) + p. Therefore,
Axtev(T)+p = ~Orjey(T)4p 38 claimed. 0

7.2 Littlewood-Richardson coefficients

Now, dividing the identity (5) by a, and using the bi-alternant formula gives

SASu/v = E Satev(T) -
TeT (1/v)
T=X—yamanouchi

When X = ), the yamanouchi tableaux describe the Schur function expansion of a skew Schur function.

Sufv = Z Sev(T) »

TET (1/v)

T=yamanouchi

and taking v = ) gives the formula for the Schur function expansion of a product of two Schur functions:

SA8py = § Sxtev(T) -

TET (1)

T=X—yamanouchi

Note that the Pieri formulas are the special case when y = r or 17.



7.3 RSK-Correspondence and the Cauchy identity

We have seen that there is a bijection between standard tableaux and permutations. The RS-correspondence
can be generalized to pinpoint a precise relation between pairs of tableaux and generalized permuta-
tions. Such a permutation is a two-line array of positive integers whose columns are in lexicographic
order with the top entry taking precedence:

w — (ul u2 - um>
m Vo - Um
Lexicographic order ! implies u1 < ug < --- <y, and w1 < vp if up_1 = ug .
The Robinson-Schensted-Knuth correspondence takes a generalized permutation 7 to a pair of tableaux

by the following algorithm:
/112223
YT 41121

0—3=mg

@<+ 4 ==
G 1= [
o 1 =

B[ ¢ 2 =

=
i 1

Note that when the top rowis (1,...,n) and the bottom row is a permutation of these letters, a two-rowed
array is a permutation in two line notation.

As with the RS-correspondence, we refer to the resulting tableaux as the insertion and recording
tableau respectively.

1
1[1]

3
1]2]

= [ofe]
=[ofeo]

Theorem 14. The RSK-correspondence is a bijection between two-rowed arrays in lexicographic order
and pairs of same-shaped tableauz.

Proof. Let P and ) denote the insertion and recording tableau respectively. The insertion algorithm
ensures that P is a tableau. Now @ has weakly increasing rows since the cells are added to the periphery
at each step and entries are taken from the top of the two-rowed array — a non-decreasing sequence.
When two entries of the top row of this array are equal, the corresponding entries in the bottom row are
non-decreasing by lexicographic order. Thus, the insertion process of these consecutive entries z > 2’
gives rise to cells that do not lie in the same column by the row bumping lemma and therefore the columns
of () are increasing.

On the other hand, given a corner and a tableau we have the deletion algorithm that is the precise
inverse of Schensted insertion. Choosing corners from largest to smallest, where the rightmost of repeated
entries is the largest, we can construct a two-rowed array with lexicographic ordering. |

INote: the ordering is lexicographic as an ordering on pairs

u u'\ . ’ . ’ '
v < o if u<u orif u=v and v<w



Theorem 15. Cauchy Identity

1
H— =) sx@s® (6)
o (L—mayy) 4
Proof. The coefficient of z®y” in the right hand side of () is KxoKxg, or the number of possible
pairs of A-shaped tableaux (P, Q) such that the evaluation of P is @ and ev(Q) = 8. On the other hand,

the left hand side can be expanded using a product of geometric series,

1 y
Moy = I3 g

1,7 4,j ai, ;>0

> (@)™ > (way)™? | - (8)

a1,1>0 a1,22>0

3 @)= | | YD (@aye)™ | - 9)

a2,1>0 a2,2>0

By our recent bijection, we have proved the coefficients of z*y? in both sides of the identity are equivalent.
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