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Abstract. A development of the symmetric functions using the plethystic notation.



CHAPTER 1

The Symmetric Group

1.1. Representations of permutations

(1) two-line notation
(2) one-line notation
(3) cycle notation
(4) generators and relations (Coxeter-Moore relations)
(5) set of points
(6) compact diagrams

(1) inverse
(2) cycle structure
(3) conjugacy classes and zλ

(4) length of a permutation
(5) longest permutation
(6) descent set
(7) ascent set
(8) major/comajor index
(9) charge

(10) Eulerian
(11) Euler-Mahonian
(12) determinants

1.2. Classes of permutations

(1) even/odd
(2) involutions
(3) 321-avoiding
(4) more pattern avoiding/ counting pattern occurences
(5) Grassmannian
(6) rotationally invariant
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CHAPTER 2

Partitions

Start with n unlabeled objects and partition them (break them into subsets) into non-empty
subsets. Since the objects are indistinguishable from each other, a partition is specified
by the sizes of the non-empty subsets and we can list these sizes in weakly decreasing
order. An object of this type is called a partition of n and we will represent this as a
sequence λ = (λ1, λ2, . . . , λk) with λi representing the number of objects in the ith subset
and λ1 ≥ λ2 ≥ · · · ≥ λk > 0 where k is the number of non-empty subsets of the partition.
We denote ‘λ is a partition of n’ by λ ` n. k is known as the length of the partition and we
will denote it by `(λ) := k. By defintion, we have λ1 +λ2 + · · ·+λ`(λ) = n and we will adopt
the convention that for any i > `(λ), λi = 0 so that

∑
i≥1 λi = n.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

For each partition we will associate a subset of the points in the first quadrant of the cartesian
lattice, D(λ) = {(i, j) : 0 ≤ i < λj+1, j ≥ 0}. The cardinality of this set is |D(λ)| = n and
we will represent D(λ) by drawing a diagram in the coordinate plane with a square for each
(i, j) ∈ D(λ) with the bottom left hand corner of the square at the coordinate (i, j). A set
of cells S corresponds to a partition if and only if (i, j) ∈ S implies that (i′, j′) ∈ S for all
0 ≤ i′ ≤ i and 0 ≤ j′ ≤ j.

Example 1. Let λ = (6, 5, 3, 3, 2, 2, 1) which is a partition of 22 and D(λ) is represented by
the following diagram

.

Let ni(λ) be the number of j ≤ `(λ) such that λj ≥ i and set λ′ = (n1(λ), n2(λ), . . . , nλ1(λ)).
Since ni(λ) ≥ ni+1(λ), λ′ is also a partition and we refer to it as the conjugate partition to
λ.

Exercise 1. Show that (i, j) ∈ D(λ) if and only if (j, i) ∈ D(λ′) and conclude the diagram
associated to D(λ′) is exactly the diagram for D(λ) flipped about the line x = y.

Example 2. As in the previous example λ = (6, 5, 3, 3, 2, 2, 1), then we can easily calculate
each of the ni(λ) and determine λ′ = (7, 6, 4, 2, 2, 1). D(λ′) is represented by the diagram

.

5



6 2. PARTITIONS

From this point forward we will identify λ and D(λ) in abuse of notation. This will appear
in our formulas as expressions like λ ⊆ µ (or the language λ is contained in µ) to mean
D(λ) ⊆ D(µ) or s ∈ λ in place of s ∈ D(λ). We shall also try to develop notation which is
consistent with this identification, for instance the size of the partition λ will be |λ| which
represents |D(λ)|.

The union of two partitions λ ∪ µ is another abuse of notation which will represent the
partition whose diagram contains D(λ) ∪ D(µ). Intuitively λ ∪ µ is the smallest par-
tition which contains both the partition λ and the partition µ. An equivalent defini-
tion will be the weakly increasing sequence (max(λ1, µ1),max(λ2, µ2), . . . ,max(λm, µm))
with m = max(`(λ), `(µ)). Similarly λ ∩ µ will be the partition which is contained in
both the partition λ and the partition µ (that is, D(λ ∩ µ) = D(λ) ∩ D(µ)) so that
λ ∩ µ = (min(λ1, µ1),min(λ2, µ2), . . . ,min(λm, µm)).

We will sometime need to consider the partition λ ] µ which will be the sequence

(λ1, λ2, . . . , λ`(λ), µ1, µ2, . . . , µ`(µ))

rearranged so that the entries are in decreasing order. The complementary operation to
] will be the λ 	 µ where if there is a subset S = {s1 < s2 < . . . < s`(λ)} such that
(λs1 , λs2 , . . . , λs`(λ)

) = µ then λ 	 µ is the ordered sequence of parts (λi : i /∈ S). These

operations are complementary in the sense that λ ] µ = ν if and only if λ = ν 	 µ (and by
symmetry µ = ν 	 λ). We will have that |λ ] µ| = |λ|+ |µ| and `(λ ] µ) = `(λ) + `(µ).

Example 3. Let λ = (5, 5, 4, 2, 2, 1) and µ = (5, 2, 2) then λ	µ = (5, 4, 1) and λ = µ](λ	µ).
In pictures this is represented as

	 =

and

= ] .

Exercise 2. Prove: ∣∣∣∣∣⋃
µ`n

µ

∣∣∣∣∣ =
n∑

k=1

d(k)

where d(k) is the number of divisors of the number k. For example, we have

are the first nine partitions
⋃

µ`n µ and
∑n

k=1 d(k) takes on the values 1, 3, 5, 8, 10, 14, . . ..

Exercise 3. Show that (λ ] µ)′ = (λ′1 + µ′1, λ
′
2 + µ′2, . . . , λ

′
r + µ′r) with r = max(`(λ), `(µ)).

Let mi(λ) = ni(λ)− ni−1(λ) (with the convention that n0(λ) = 0) so that mi(λ) represents
the number of parts of size λ which are exactly equal to i. Another way of representing
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the partition λ will be by specifying the number of parts of each size i (that is we indicate
the values of mi(λ) for each i). This will be done with the notation λ = (kmk(λ), (k −
1)mk−1(λ), . . . , 2m2(λ), 1m1(λ)) for the value k = λ1.

There are several statistics which are associated to a given partition. If λ is a partition
then we define zλ := 1m1(λ)m1(λ)!2m2(λ)m2(λ)!3m3(λ)m3(λ)! · · · . This statistic is of interest
because |λ|!/zλ is the number of permutations of |λ| that have cycle type λ.

We also will denote n(λ) =
∑

i≥1(i − 1)λi which is something of a measure of how tall a
partition is since a single row partition will have n((k)) = 0 and a single columned partition
will have n((1k)) =

(
k
2

)
. This statistic often appears naturally when considering weighted

sums of partitions. For instance, the generating function for the number of partitions of size
n is

∏
i≥1

1
1−xi and to look for a q-analog of this expression we might consider the generating

function

(2.1)
∏
i≥1

1

1− qxi
=
∑
n≥0

∑
λ`n

qn(λ)x|λ|.

If µ ⊆ λ, then the symbol λ/µ will represent the collection of cells D(λ)−D(µ) (where the
operation − means the difference of sets). λ/µ is called a skew partition. Unless otherwise
specified when a skew partition λ/µ is indicated in a formula, it is automatically assumed
that µ ⊆ λ.

If λ/µ has at most one cell per column then we will say that it is a horizontal strip and indicate
this by the notation λ/µ ∈ H. This condition can also be expressed by the inequalities
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · · .

If λ/µ has at most one cell per column then it will be called a vertical strip (and indicated
by λ/µ ∈ V). λ/µ ∈ V if and only if λi ≥ µi ≥ λi − 1 for all i ≥ 1. Furthermore if
λ/µ ∈ H (respectively λ/µ ∈ V) and |λ/µ| = k then we will use the notation λ/µ ∈ Hk

(resp. λ/µ ∈ Vk).

Example 4. Let λ = (6, 4, 4, 2, 1) and µ = (4, 4, 3, 2) are represented by the following
diagrams

.

Then the skew diagram λ/µ is a horizontal strip and it is represented by the cells which are
colored in the diagram below

λ′ = (5, 4, 3, 3, 1, 1) and µ′ = (4, 4, 3, 2) and λ′/µ′ is a vertical strip and the diagram consists
of the cells which are colored in the diagram

.
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There are several ways of ordering the set of partitions. The first is to consider one partition
µ is smaller than another λ if D(µ) ⊆ D(λ). We will denote this as an abuse of notation by
µ ⊆ λ. Note that µ ⊆ λ if and only if λi ≤ µi for all i. This is a partial order on the set of
partitions in that it possible that both µ * λ and λ * µ.

Example 5. We list the partitions which are size less than or equal to 6 and place a line
between two partitions if the smaller is less than the larger in containment order. This
partial order defines a lattice structure on the set of partitions.

Exercise 4. Prove that |{µ : µ ⊆ λ}| = |{i : mi(λ) > 0}| = |{µ : µ ⊇ λ}| − 1

Another way of ordering the partitions is to compare the entries lexicographically, that is
if λ, µ are partitions then λ <lex µ if either λ1 < µ1 or λ1 = µ1 and (λ2, λ3, . . . , λ`(λ)) <lex

(µ2, µ3, . . . , µ`(µ)). This is a total order on partitions but it is possible that |λ| > |µ| and
λ <lex µ. Although this is a perfectly natural order on the set of partitions it does not seem
to be the one that arises most naturally in the algebra structures that we will study. This
and similar orders (such as degree lex or reverse lex) are ones that we might use for studying
ideals in a polynomial ring. For the time being this structure is not as important as the
third order which we will define.

The last order we will consider is also a partial order on partitions which arises naturally
from the algebra structure that we will be looking at. This order will be denoted by < and
we will say that λ ≤ µ if and only if

∑i
j=1 λj ≤

∑i
j=1 µj for all i ≥ 1. This partial order is

a total order on partitions of size strictly less than 6. At n = 6 both the pair (4, 1, 1) and
(3, 3) and the pair (3, 1, 1, 1) and (2, 2, 2) are not comparable with respect to this order.
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Example 6. Below we show the poset of partitions of size 3, 4, 5, 6 and 7. Notice that for
partitions of 3, 4 and 5 this is a linear order but for the partitions of size 6 and 7 it is not
since for example (2, 2, 2) and (3, 1, 1, 1) are not comparable in this order.

An intuitive definition of the statement µ ≤ λ is that the diagram for µ is narrower and
taller than λ. We also clearly have for µ ≤ λ then µ ≤lex λ. The converse of this statement
is not true.

Exercise 5. Prove that λ ≤ µ if an only if µ′ ≤ λ′.

For any n, let p(n) represent the number of partitions of n. 1
1−qk =

∑
r≥0 q

rk is a generating

function for the partitions which only contain parts of size k (that is, there is a rectangular
partition at of size n consisting of parts of size only k if and only if n = rk for some integer
r). Since in a partition the parts may be chosen independently, the generating function for
the sequence p(n) is the product of the generating functions 1

1−qi for all i, that is

(2.2)
∑
n≥0

qnp(n) =
∏
i≥1

1

1− qi
.

We can use this generating function formula to give the first few values of p(n).∑
n≥0

qnp(n) = 1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12 + · · ·

Despite the fact that we can use the generating function to calculate the number of partitions,
it does not really seem to be a very satisfying formula because in order to use it we potentially
need to consider expanding the product of n terms in order to calculate the value of p(n).

A remarkable fact was noticed by Leonhard Euler in 17** that we will exploit to find a
recurrence on the number of partitions of n. He calculated the first several terms of the
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product
∏

i≥1(1 − qi) and noticed that the coefficient was always equal to ±1 or 0. In fact
he was quite easily able to guess a formula for this denominator and several years later was
able to prove it. We will take advantage of its existence to derive a method of calculating
the number of partitions of size n.

Proposition 2.1. (Euler’s pentagonal number theorem)

(2.3)
∏
i≥1

1− qi = 1 +
∑
m≥1

(−1)m
(
q

m(3m−1)
2 + q

m(3m+1)
2

)

There is a clever proof of this proposition that comes from one of the first American mathe-
maticians F. Franklin [?]. The proof uses a technique which is fairly ubiquitous in algebraic
combinatorics, to show that terms in a sum cancel associate a combinatorial object to each
term in the sum and then show that they cancel by producing a map which sends an element
with positive weight to a term with negative weight.

There are several other accounts of this proof: [?], [?], [?], [?].

We will need to talk about partitions as a combinatorial object. λ is a partition if it is a
sequence λ = (λ1, λ2, . . . , λ`(λ)) with λ1 ≥ λ2 ≥ . . . λ`(λ) where we use the notation `(λ) to
represent the number of parts of λ. The symbol |λ| will represent the size of the partition
so that |λ| = λ1 + λ2 + · · ·+ λ`(λ). λ is a strict partition if in addition λ1 > λ2 > · · ·λ`(λ).

There is a way of graphically representing a partition with rows of boxes. A partition
λ = (λ1, λ2, . . . , λ`(λ)) is represented by a row of λ1 boxes below a row of λ2 boxes below
a row of λ3 boxes etc. Each of these rows of cells will be left justified. For example the
partition (4, 4, 3, 1, 1) is represented by the following diagram:

Example 7. We note that the left hand side of this equation is the generating function for
all strict partitions (partitions where all parts are distinct) weighted with (−1)`(λ)q|λ|. That
is,

(2.4)
∏
i≥1

1− qi =
∑

λ strict

(−1)`(λ)q|λ|

This follows by observing that to determine the coefficient of qn by expansion of the product
on the left we have a contribution of (−1)kqλ1+λ2+···+λk for every sequence (λ1, λ2, . . . , λk)
such that λi > λi+1 for 1 ≤ i < k. Below we expand the terms of this generating function
through degree 8. For example, a term of the form (−q4)(−q2) is represented by the picture

and we record the weight of +q6 just below the picture.

·
1 −q −q2 +q3 −q3 +q4 −q4 +q5 +q5 −q5 −q6 +q6
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+q6 −q6 −q7 +q7 +q7 +q7 −q7 −q8

· · ·
−q8 +q8 +q8 +q8 −q8 + · · ·

Now we notice that all of the terms cancel except for the ones stated in the theorem, that is
we have ∏

i≥1

1− qi = 1− q − q2 + q5 + q7 + · · ·

In fact, we will show that one way of looking at this expression is to observe terms which
survive are those that correspond to the following pictures:

·∏
i≥1 1− qi = 1 −q −q2 +q5 +q7 −q12 −q15

· · ·
+q22 +q26 −q35 −q40 · · ·

From the image in this example one might think that the theorem would be better named the
trapazoidal number theorem. There is a reason that the numbers m(3m− 1)/2 are referred
to as pentagonal numbers and if m → −m then the pentagonal number is transformed to
→ −m(−3m−1)/2 = m(3m+1)/2. Observe the picture below how a sequence of pentagons
have exactly m(3m− 1)/2 points in them (and this continues for m > 4).

Proof. To show that this proposition holds we show that there is an involution φ on
the strict partitions λ of n such that φ(λ) is also a partition of n and the length of φ(λ)
will have length either one smaller or one larger than that of λ. This means that if the
weight of a strict partition is (−1)`(λ)q|λ| then the weight of φ(λ) is −(−1)`(λ)q|λ| and so this
term corresponding to φ(λ) will cancel with the term corresponding to λ. This involution
will fail to ‘work’ for the partitions of the form (2m − 1, 2m − 2, . . . ,m) which are of size

2m2− (m+1)m
2

= m(3m−1)
2

and (2m, 2m−1, . . . ,m+1) which are of size 2m2− (m−1)m
2

= m(3m+1)
2

.
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For a strict partition λ we will let r equal to the smallest part of λ (r = λ`(λ)) and let s equal
the number of parts which are consecutive at the beginning of the partition. In other words
s is the largest integer such that (λ1, λ2, . . . , λs) = (λ1, λ1 − 1, . . . , λ1 − s+ 1).

If s 6= `(λ) and r > s then we will let φ(λ) equal the partition (λ1 − 1, λ2 − 1, . . . , λs −
1, λs+1, . . . , λ`(λ), s). That is, if the diagram for the partition looks something like the fol-
lowing where there is an × in each of the cells corresponding to r and a dot in the cells
corresponding to s

××××
· · ·

then φ(λ) will be the partition with the diagonal of s cells filled with a dot moved to the top
row of the partition.

· · ·××××

φ(λ) is still a strict partition and it has the property that the longest string of consecutive
parts at the beginning of the partition is greater than or equal to s.

If s 6= `(λ) and r ≤ s then we will let φ(λ) equal to the partition (λ1 + 1, λ2 + 1, . . . , λr +
1, λr+1, . . . , λ`(λ)). For example, if our diagram is similar to the one below with the cells
marked with an × representing the row of size r and those marked with the · represent the
cells which correspond to the s consecutive parts at the beginning of the partition.

×××
· · · ·

The partition corresponding to φ(λ) is then represented by the following picture.

· ·×·×·×

Notice that it is also possible that s = `(λ) and we consider this case separately because we
need that r is at least 2 more cells than s does before we can move the s cells to the top row.
In this case if r > s + 1 then we will remove the s cells along the diagonal and turn them
into the shortest row so that φ(λ) = (λ1 − 1, λ2 − 1, . . . , λs − 1, s). For example we have the
picture on the left will be transformed to the one on the right.

×××××•· ·
· · ·×××××

λ φ(λ)

If s = `(λ) and r < s then it is still possible to move the shortest row of λ to the first r
rows. We will set φ(λ) = (λ1 + 1, λ2 + 1, . . . , λr + 1, λr, . . . , λ`(λ)−1), this corresponds to the
case when we have a partition of the form of the one below.
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××•· · · · ·
· · ·×·×·×

λ φ(λ)

If we describe what is happening to the diagram the map φ does one of two things, either it
removes the smallest row of r = λ`(λ) cells of the partition and places one cell more in each
of the first r rows (in the case that r < s or r = s and s < `(λ)) or it removes one cell from
each of the first s rows and adds a row of size s to the top of the diagram (in the case that
r > s+ 1 or r = s+ 1 and s < `(λ)).

Observe that if the weight of λ is (−1)`(λ) then since φ(λ) has the same number of cells and
either one more or one less row than λ then the weight of φ(λ) is the negative of the weight
of λ.

Also observe for each of the 4 cases we have considered, φ(φ(λ)) is just λ. This implies we
can say that in the expansion of the expression

∑
λ strict(−1)`(λ)q|λ|, the term corresponding

to the partition λ will cancel with the term corresponding to the partition φ(λ) because the
then φ(λ) will also cancel with φ(φ(λ)) = λ.

There are two cases that we have not considered. These terms do not cancel. One is that
r = s and s = `(λ) and so we have a partition of the form (2m−1, 2m−2, . . . ,m) and the other
is that r = s+1 and s = `(λ) and this is a partition of the form (2m, 2m−1, . . . ,m+1). �

We encourage the reader to take a pencil and draw an arrow between the diagrams of the
strict partitions given in the example above to show that the involution works as expected.

What this implies is that we can derive a recurrence which will allow us to calculate the
number of partitions of n. Notice if we multiply the formula of Euler and the generating
function for the number of partitions together we get 1.

(2.5) 1 =
∏
i≥1

1

1− qi

∏
i≥1

(1− qi) =

(∑
n≥0

p(n)qn

)(
1 +

∑
m≥1

(−1)m
(
q

m(3m−1)
2 + q

m(3m+1)
2

))

Now take the coefficient of qn in both sides of this equation. For n > 0 we see that

(2.6) 0 = p(n) +
∑
m≥1

(−1)m (p (n−m(3m− 1)/2) + p (n−m(3m+ 1)/2))

where we are assuming here that p(k) = 0 if k is a negative number. By isolating p(n) by
itself we have the following recurrence.

Corollary 2.2. p(n) = 0 for n < 0, p(0) = 1 and for n > 0 we have

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15) + · · ·
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Example 8.

p(1) = p(0) = 1

p(2) = p(1) + p(0) = 2

p(3) = p(2) + p(1) = 3

p(4) = p(3) + p(2) = 5

p(5) = p(4) + p(3)− p(0) = 7

p(6) = p(5) + p(4)− p(1) = 11

p(7) = p(6) + p(5)− p(2)− p(0) = 15

p(8) = p(7) + p(6)− p(3)− p(1) = 22

p(9) = p(8) + p(7)− p(4)− p(2) = 30

p(10) = p(9) + p(8)− p(5)− p(3) = 42

p(11) = p(10) + p(9)− p(6)− p(4) = 56

p(12) = p(11) + p(10)− p(7)− p(5) + p(0) = 77

and this agrees with the generating function formula which we computed in an earlier exam-
ple. This formulation is easier for implementing in an algorithm than the generating function
formula.

It will be useful to consider the generating function for all partitions which fit inside of an
n × k rectangle. This generating function Cq(n, k) =

∑
λ⊆(nk) q

|λ| must be finite and hence
is a polynomial in q.

Every partition which fits inside of this n× k rectangle will have the property that either λ
has a part of size n or it does not. If λ has a part of size n then λ− (n) is a partition which
fits inside of an n × (k − 1) rectangle. In terms of the generating functions, this translates
to the following recursion:

(2.7) Cq(n, k) =
∑

λ⊆(nk)
λ1=n

q|λ| +
∑

λ⊆(nk)
λ1 6=n

q|λ| = qnCq(n, k − 1) + Cq(n− 1, k).

Since the generating function for the partitions which fit inside of an n × k rectangle is
the same as the generating function which fit inside of a k × n rectangle, it follows that
Cq(n, k) = Cq(k, n) and hence using equation (2.7) we also have

(2.8) Cq(n, k) = qkCq(n− 1, k) + Cq(n, k − 1).

Now set [n]q = 1−qn

1−q
=
∑n

i=1 q
i−1 and [n]q! = [n]q[n− 1]q · · · [1]q = 1

(1−q)n

∏n
i=1(1− qi), and

(2.9)

[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

∏n
i=1(1− qi)∏k

i=1(1− qi)
∏n−k

j=1 (1− qj)
.

The symbol
[
n
k

]
q
is called the q-binomial coefficient or Gaussian polynomial. It is not obvious

from this definition that
[
n
k

]
q

is even an integer, in fact it seems to be no more than a

rational function in q, but like the binomial coefficient the denominator always cancels with
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the numerator. This fact is not transparent until we make the following identification with
the generating functions Cq(n, k) which are clearly polynomials in q. What is clear however
is that if q = 1, then

[
n
k

]
1

=
(

n
k

)
because we can easily check [n]1 = n and [n]1! = n!. The

following statement makes it clear however that
[
n
k

]
q

is a polynomial in q with non-negative

integer coefficients.

Exercise 6. (credit D. Stanton) If n and k are relatively prime then

1

[n]q

[
n

k

]
q

is a polynomial in q with positive integer coefficients. Is there a set of combinatorial objects
for which this is a generating function?

Proposition 2.3. For n, k ≥ 0,

Cq(n, k) =

[
n+ k

k

]
q

Proof. We will establish that the q-binomial coefficients satisfy the same recurrence as
the polynomials Cq(n, k) and that they agree for the obvious bases cases and hence are the
equal. For n, k ≥ 0,[

n+ k

k

]
q

=

∏n+k
i=1 (1− qi)∏k

i=1(1− qi)
∏n

j=1(1− qj)

=
(1− qn + qn − qn+k)

∏n+k−1
i=1 (1− qi)∏k

i=1(1− qi)
∏n

j=1(1− qj)

=

∏n+k−1
i=1 (1− qi)∏k

i=1(1− qi)
∏n−1

j=1 (1− qj)
+ qn

∏n+k−1
i=1 (1− qi)∏k−1

i=1 (1− qi)
∏n

j=1(1− qj)

=

[
n+ k − 1

k

]
q

+ qn

[
n+ k − 1

k − 1

]
q

Now since the generating function Cq(n, k) also satisfies Cq(n, k) = Cq(n−1, k)+qnCq(n, k−
1) and Cq(n, 0) = Cq(0, k) =

[
n
0

]
q

=
[
k
k

]
q

= 1 then we have that Cq(n, k) =
[
n+k

k

]
q

for all

n, k ≥ 0. �

Example 9. Calculate the polynomial[
5

2

]
q

=
(1− q)(1− q2)(1− q3)(1− q4)(1− q5)

(1− q)(1− q2)(1− q)(1− q2)(1− q3)

= (1 + q2)(1 + q + q2 + q3 + q4)

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

This polynomial is counting the number of partitions which fit inside of a 2 × 3 rectangle.
We draw the 2× 3 rectangle below 10 times and fill it with each of the partitions which fit
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in this rectangle.

2.0.1. Grassmannian permutations and partitions. Recall that a permutation σ ∈
Symn is called Grassmannian if it has at exactly one descent. If the descent is a position k
then the sequence σ1, σ2, . . . , σk is an increasing sequence of integers. In fact, this sequence
completely determines the permutation since σk+1, σk+2, . . . , σn is also an increasing sequence
and consists of the remaining integers. If {σ1, σ2, . . . , σk} = {1, 2, . . . k} then there cannot
be a descent at position k because the next smallest value that can appear is k + 1. If the
first k values are not just the values 1 through k and they are in increasing order and the
last n− k values are in increasing order then σ is a Grassmannian permutation.

So every subset of size k of the integers {1, 2, . . . , n} except for the set {1, 2, . . . , k} deter-
mines a Grassmannian permutation with a descent at position k therefore there are

(
n
k

)
− 1

Grassmannian permutations in Symn with a descent at position k and

(2.10)
n−1∑
k=1

((
n

k

)
− 1

)
=

(
n∑

k=0

(
n

k

))
− n = 2n−1 − n

Grassmannian permutations in Symn with a descent anywhere.

To every σ in Symn we can associate an n×n subset of cells with a mark in the (i, σi) cell for
each 1 ≤ i ≤ n (the bottom left hand corner of this diagram will have the coordinate (1, 1)).
For example, consider the Grassmannian permutation 146792358 which will be associated
to the diagram

•
•

•
•

•
•

•
•

•

Now for every point in this grid, place an × in every cell that lies directly north or directly
east of a •.

××××•××××
×××× ×××•
×××•×××××
××•××××××
×× ××•×
×•×××××××
× ×•××
× •×××•××××××××

Notice that the cells which do not have either a • or a × appear as empty rows and these
will be decreasing in size. If the permutation is Grassmannian then the sequence of rows
which are not filled can be viewed in a natural way as a partition. If the descent in the
permutation is at position k then this partition will have width less than or equal to k and
height less than or equal to n− k since the rows σ1, σ2, . . . , σk will all be filled.
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2.1. Tableaux

A tableau in the most general sense we will consider will be a function from a subset S of
points in Z× Z to a set of labels M . If S = D(λ) (or D(λ/µ)) then λ (respectively λ/µ) is
referred to as the shape of the tableau T . λ(T ) will sometimes be used to denote the domain
of the tableau T and in particular when the domain of this function is a partition D(λ) or
D(λ/µ) it will represent λ or λ/µ.

A tableau can then be represented with a diagram where λ(T ) is drawn as the subset of cells
on the Z × Z grid just as we drew the diagram for a partition in the previous section, and
then the value of Ts is recorded in the cell s ∈ λ(T ).

Example 10. Let T be a tableau with λ(T ) equal to D(λ) where λ = (2, 1). In addition,
say that T(0,0) = 1, T(1,0) = 3 and T(0,1) = 2. The diagram for tableau T will be

2
1 3 .

Tableaux are a convenient means of recording information about partitions and it will be
important for us to examine certain classes of tableaux. For the moment we will concentrate
on tableaux with λ(T ) is the diagram for a partition or a skew-partition with labels of the
tableaux (the range of the tableaux) limited to positive integers.

We will define the content of a tableau to be the sequence which records the number of cells la-
beled with each value i. Let ni(T ) = #{s : Ts = i} and define µ(T ) = (n1(T ), n2(T ), n3(T ) . . .).
As long as T is a finite tableau (we will never consider the infinite case) the sequence µ(T )
will have all but a finite number of entries non-zero and largest label which appears in the
tableau T will be denoted `(µ(T )).

We will call a tableau column strict if T(i,j) ≤ T(i+1,j) for all pairs (i, j), (i + 1, j) ∈ λ(T )
(the entries are weakly increasing in the rows of the partition) and T(i,j) < T(i,j+1) whenever
(i, j), (i, j + 1) ∈ λ(T ) (the entries are strictly increasing in the columns of the partition).

A column strict tableau can be seen as a sequence of partitions, if we restrict our attention
to the set of cells {s : Ts ≤ k} (we shall denote T restricted to this domain by T

∣∣
1...k

) then

the shape will always be a partition. Since T
∣∣
1...k−1

and T
∣∣
1...k

have the shape of partitions
and there can be at most one cell labeled by a k in each column from our restrictions on the
labeling of cells, then λ(T

∣∣
1...k

)/λ(T
∣∣
1...k−1

) ∈ H.

Stated in another way, a column strict tableau T can be thought of as a sequence of partitions.
Set λ(k) := λ(T

∣∣
1...k

), then

(2.11) λ(1) ⊆ λ(2) ⊆ · · · ⊆ λ(n) ⊆ λ(T )

with the property that λ(k)/λ(k−1) ∈ H.
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Example 11. Let

T =

4 5 7
2 3 3 4
1 1 1 1 2 2 4 5 7 7 .

The content of the tableau T is µ(T ) = (4, 3, 2, 3, 2, 0, 3). Notice that the tableau T satisfies
the condition of being column strict. One can think of T as an object which conveniently
records a sequence of partitions and the condition of being column strict records the fact
that each partition differs from the next by a horizontal strip.

· ⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆ = λ(T )

Reading word of T . Content of T . ni(T ) number of occurrences of the

2.1.1. Crystal Operators. If the number of cells labeled i + 1 is greater than the
number of cells labeled with an i then an operation that we would like to be able to perform
is to change one of the labels of i+ 1 to an i in such a way that the operation is reversible.
We will define these operations as crystal operators because they appear in crystal basis
theory although they are also useful in the theory of symmetric functions.

Fix an integer i and let w = R(T ) be the reading word of the tableau T . Consider the
sequence of symbols ‘)’ and ‘(’ formed by reading w from left to right and recording a close
parenthesis ‘)’ for each i that occurs in w and an open parenthesis for each i+ 1 that occurs
in w.

We will let εi(T ) be the number of open parentheses that are not matched with a close
parenthesis that lies to the right and let φi(T ) be the number of close parentheses that do
not match with an open parenthesis to the left.

Restated in another way, φi(T ) = max{ni(w1...k)− ni+1(w1...k) : 1 ≤ k ≤ `(w)} and εi(T ) =
max{ni+1(wk...`(w))− ni(wk...`(w)) : 1 ≤ k ≤ `(w)} where ni(w) is the number of occurrences
of i in the word w = w1w2 · · ·w`(w) and wa...b is the subword of w equal to wawa+1 · · ·wb.

Example 12.

T =

5 6 6
3 4 5 7 7 8
2 2 3 4 4 5 5 9
1 1 1 1 2 2 4 8
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For this tableaux R(T ) = w = 5663457782234455911112248. We list below the value of i
and the sequence of parentheses that is relevant to the calculation of φi(T ) and εi(T ).

i = 1 (())))(( φ1(T ) = 2 ε1(T ) = 2

i = 2 ())()) φ2(T ) = 2 ε1(T ) = 0

i = 3 )()((( φ3(T ) = 1 ε1(T ) = 3

i = 4 ()()(() φ4(T ) = 0 ε1(T ) = 1

i = 5 )(())) φ5(T ) = 2 ε1(T ) = 0

i = 6 ))(( φ6(T ) = 2 ε1(T ) = 2

i = 7 ))(( φ7(T ) = 2 ε1(T ) = 2

i = 8 )() φ8(T ) = 1 ε1(T ) = 0

We will define the crystal operator fi to act on tableaux such that φi(T ) > 0 (and if φi(T ) ≤ 0
then fiT will be undefined or as it is sometimes stated, fiT = 0). Let s ∈ λ(T ) be the cell
such that Ts = i and s corresponds to the rightmost close parenthesis ‘)’ which is unmatched
in the parenthesis sequence. fiT is the tableau such that (fiT )s = i+ 1 and (fiT )c = Tc for
c ∈ λ(T ) and c 6= s.

The crystal operator ei is the inverse of this operation. It is defined on tableau such that
εi(T ) > 0. If s ∈ λ(T ) is the cell of T such that Ts = i+1 and it corresponds to the leftmost
open parenthesis ‘(’ which is unmatched in the parenthesis sequence then (eiT )s = i and eiT
has all of the other entries exactly the same as in T (that is, (eiT )c = Tc for c ∈ λ(T ) and
c 6= s).

Example 13. Let

T =

3 4 5
2 3 3 4
1 1 1 3

then we have

f1T =

3 4 5
2 3 3 4
1 1 2 3 e2T =

3 4 5
2 2 3 4
1 1 1 3

f3T =

3 4 5
2 3 4 4
1 1 1 3 e4T =

3 4 4
2 3 3 4
1 1 1 3

f4T =

3 4 5
2 3 3 5
1 1 1 3

while each of f2T , e1T and e3T are undefined.

From these definitions we observe the following properties of these operators:

Proposition 2.4. If φi(T ) > 0 then φi(fiT ) = φi(T ) − 1 and εi(fiT ) = εi(T ) + 1, and in
addition

(2.12) eifiT = T.
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Similarly, if εi(T ) > 0 then φi(eiT ) = φi(T ) + 1 and εi(eiT ) = εi(T )− 1, and in addition

(2.13) fieiT = T.

Proof. Notice that the operation fi has the effect of changing the corresponding paren-
thesis sequence of T by changing an unmatched close parenthesis to an unmatched open
parenthesis so that φi(fiT ) will be one smaller than φ(T ) and εi(fiT ) will be one larger than
φ(T ). In fact, since the rightmost unmatched close parenthesis is changed to the leftmost
unmatched open parenthesis, ei will will have the inverse effect when it acts on fiT .

Similar statements about the operator ei justify the second part of this proposition. �

The crystal operators can be used to define a symmetric group action on the content of

tableaux. Let siT = f
φi(T )−ε(T )
i T where we have set f−k

i T = ek
i T for k > 0.

The operators si are the generators for a symmetric group action on the content of the
tableau T , since if µ(T ) = (a1, a2, . . . , an) then µ(siT ) = (a1, a2, . . . , ai+1, ai, . . . , an). We
must justify however that the operators si which satisfy the Coxeter relations and therefore
define a symmetric group action.

Proposition 2.5. For 1 ≤ i ≤ max{Ts : s ∈ λ(T )},
s2

iT = T,

sisjT = sjsiT for |i− j| > 1

sisi+1siT = si+1sisi+1T

Proof. From the previous proposition we see that φi(siT ) = φi(f
φi(T )−εi(T )
i T ) = φi(T )−

(φi(T )− εi(T )) = εi(T ) and similarly, ε(siT ) = εi(T ) + φi(T )− εi(T ) = φi(T ). Therefore to
compute

s2
iT = si(siT ) = f

φi(siT )−εi(siT )
i siT

= f
εi(T )−φi(T )
i f

φi(T )−εi(T )
i T = T

There are two cases to show why the last expression is T . If φi(T ) − εi(T ) > 0, then

f
εi(T )−φi(T )
i f

φi(T )−εi(T )
i T = e

φi(T )−εi(T )
i f

φi(T )−εi(T )
i T = T . If we have φi(T ) − εi(T ) < 0, then

f
εi(T )−φi(T )
i f

φi(T )−εi(T )
i T = f

φi(T )−εi(T )
i e

φi(T )−εi(T )
i T = T .

Now assume that |i− j| > 1. The action of si on T changes some of the labels with i to i+1
(or the reverse). Since the entries labeled with an i and i + 1 are the same in both T and
sjT , si has the same effect on both of these tableaux. Similarly, the entries of j and j + 1
are the same in both T and siT and so sj has the effect on both these tableaux. For this
reason sisjT = sjsiT . �

A column strict tableau T will be called standard if it is a bijection from the the set λ(T ) to
the labels {1, 2, . . . , |λ(T )|}.
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Theorem 2.6. The number of standard tableaux of shape λ with λ ` n is equal to

(2.14)
n!∏

s∈λ hλ(s)

where hλ(s) is hook length of the cell s in the partition λ (that is, hλ(i, j) = λi−i+1+λ′j−j).





CHAPTER 3

The algebra structure of the ring of symmetric functions

Consider the polynomial ring in the variables pi for i ≥ 1, Λ = Q[p1, p2, p3, . . .]. We will
define the degree of a variable pk to be k and so the degree of a monomial pk1pk2 · · · pk`

is
simply k1 + k2 + · · ·+ k`. Λ is the ring of symmetric functions.

This is a very abstract way to begin, but at the end of this chapter we will draw a connection
between this algebra and the space of class functions of the symmetric group. From this
perspective Λ can be seen as an infinite dimensional graded vector space where the symmetric
functions of degree m are a finite dimensional subspace.

The elements pi are refered to as the power generators and since we are considering them as
the variables in a commutative polynomial ring the space is spanned by the monomials in
these variables. To specify a basis of this space we may assume that the variables are listed
in weakly decreasing order. That is, if we denote Λm by the symmetric functions of degree
m, then the set {pλ : λ ` m} forms a basis for Λm where pλ := pλ1pλ2 · · · pλ`(λ)

. The set⊕
m≥0{pλ}λ`m is called the power basis. Note that the degree of a monomial pλ is given by

|λ|.

Λ has a natural ‘un-multiplication’ operation called a coproduct. In the sense if the product
represents a way of putting elements in the algebra together, the coproduct represents ways
of pulling elements apart. This can be a very interesting operation, especially when the
multiplication and comultiplication interact.

Formally, we define the multiplication function on this algebra µ : Λ⊗ Λ −→ Λ as

(3.1) µ(pλ ⊗ pµ) = pλpµ = pλ1 · · · p`(λ)pµ1 · · · pµ`(µ)
= pλ]µ.

The comultiplication will be denoted as ∆ : Λ −→ Λ⊗Λ is given by ∆(pk) = 1⊗ pk + pk ⊗ 1
(this is the property that the power generators are primitive in this algebra). We impose
that it is a ring homomorphism, that is for f, g ∈ Λ, ∆(fg) = ∆(f)∆(g) and and c, d ∈ Q,
∆(cf + dg) = c∆(f) + d∆(g). Hence for an arbitrary basis element we have

Proposition 3.1.

(3.2) ∆(pλ) =
∑

µ]ν=λ

λ1∏
i=1

(
mi(λ)

mi(µ)

)
pµ ⊗ pν =

∑
µ]ν=λ

zλ

zµzν

pµ ⊗ pν

23
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By rearranging the coefficients of (3.2) we can see a natural basis to consider is pλ/zλ because
it arises naturally in this formula in the sense that

(3.3) ∆

(
pλ

zλ

)
=
∑

µ]ν=λ

pµ

zµ

⊗ pν

zν

.

Proof. First we note that the coefficients in the two formulations of equation (3.2) are
equal since

zλ

zµzν

=

λ1∏
i=1

imi(λ)mi(λ)!

imi(µ)mi(µ)!imi(ν)mi(ν)!
=

λ1∏
i=1

mi(λ)!

mi(µ)!mi(ν)!
=

λ1∏
i=1

(
mi(λ)

mi(µ)

)
.

We show this proposition by induction on the number of parts of λ. We have a base case
since the formula clearly works if λ has only one part by definition.

Let λ be a partition of n and denote λ = (λ2, λ3, . . . , λ`(λ)). It follows that

(3.4) ∆(pλ) = ∆(pλ1)∆(pλ) = (pλ1 ⊗ 1 + 1⊗ pλ1)

 ∑
µ]ν=λ

λ2∏
i=1

(
mi(λ)

mi(µ)

)
pµ ⊗ pν

 .

If λ1 6= λ2 there is nothing to prove since
(

mi(λ)
mi(µ)

)
=
(

mi(λ)
mi(µ)

)
for all 1 ≤ i ≤ λ2 and the

expansion of the right hand side is exactly as stated in the proposition since
(mλ1

(λ)

mλ1
(µ)

)
= 1.

If λ1 = λ2 then mλ1(λ) = mλ1(λ)− 1 and mi(λ) = mi(λ) for 1 ≤ i < λ1, hence we see

∆(pλ1)∆(pλ) = (pλ1 ⊗ 1 + 1⊗ pλ1)

mλ1
(λ)∑

j=0

∑
µ]ν=λ

mλ1
(µ)=j

(
mλ1(λ)− 1

j

) ∏
1≤i<λ1

(
mi(λ)

mi(µ)

)
pµ ⊗ pν


=

mλ1
(λ)∑

j=0

∑
µ]ν=λ

mλ1
(µ)=j

((
mλ1(λ)− 1

j

)
+

(
mλ1(λ)− 1

j − 1

)) ∏
1≤i<λ1

(
mi(λ)

mi(µ)

)
pµ ⊗ pν

=
∑

µ]ν=λ

(
mλ1(λ)

mλ1(µ)

) ∏
1≤i<λ1

(
mi(λ)

mi(µ)

)
pµ ⊗ pν .

And so it follows by induction that this formula holds for all partitions λ. �

The pk have the property that ∆(pk) = pk ⊗ 1 + 1 ⊗ pk and hence are called the primitive
elements of this algebra. We remark that there is a map S called the antipode with the
property

(3.5) µ ◦ (id⊗ S) ◦∆(f) = 0

for all f ∈ Λ such that f has 0 constant term. We set S(pλ) = (−1)`(λ)pλ and extend this
map linearly and it is easy to check that µ ◦ (id⊗ S)⊗∆(pk) = µ(pk ⊗ 1− 1⊗ pk) = 0 and
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similarly for pλ. This implies that µ ◦ (id⊗ S) ◦∆(f) is equal to the constant term of f for
all f ∈ Λ.

Therefore, so far our algebra of symmetric functions is very simple, but we should develop
some intuitive ideas on how to picture what this algebra is. Now if f ∈ Λ, then f is some
polynomial in variables pi. Since we are using partitions to index our basis we often just
write pλ when we talk about the basis elements when we consider Λ as a vector space over
Q. The indexing set of partitions can be represented by their Young diagrams so when we
take the product of pλ and pµ, µ(pλ ⊗ pµ) represents shuffling the Young digrams together.

Example 14. Consider for instance λ = (6, 3, 1) and µ = (5, 2, 2). This can be represented
by the picture

This diagram is simply representing the equation p(6,3,1)p(5,2,2) = p(6,5,3,2,2,1).

We should also develop a combinatorial picture of what happens when ∆ acts on a term pλ.
Because the pk are primitive elements, there will be 2`(λ) terms in the expansion of ∆(pλ).

Example 15. We compute the action of ∆ on p(5,2,2) and do this by computing the number
of ways of coloring the rows of the partition (5, 2, 2) using two colors so that the whole row
has the same color. This is represented by the following picture.

The blue rows will be in the left tensor and red will be in the right tensor (although the
colors are symmetric) so we have determined

∆

(
p

)
=p ⊗ 1 + 2p ⊗ p

+ p ⊗ p + 2p ⊗ p

+ p ⊗ p + 1⊗ p .

Here we are splitting the partition up into pieces such that their union is the original partition
in all possible ways. Notice that the sum of the coefficients in this expression is 8 = 2`(5,2,2).
This picture will help us gain some intuition as we develop this algebra more completely.

Remark 1. The reader is encouraged to try to develop some sort of a picture each time
a formula appears in this presentation since the formulas are difficult to appreciate unless
some meaning is assigned to the symbols we are working with.
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There are generally considered to be 6 ‘standard’ bases of the symmetric functions since
these bases are fundamental in the development of tools to describe the calculus of symmetric
functions. After the power symmetric basis we will introduce the homogeneous basis and the
elementary basis as these are defined as products of generators. We will save the definition
of the Schur basis and the monomial basis for a later section. 1

For n > 0, we set

(3.6) hn =
∑
λ`n

pλ/zλ,

these are the homogeneous generators. We also define

(3.7) en =
∑
λ`n

(−1)|λ|−`(λ)pλ/zλ

which are the elementary generators. For a partition λ we set hλ := hλ1hλ2 · · ·h`(λ) and

eλ := eλ1eλ2 · · · e`(λ). Clearly we have the triangularity relations that hλ = pλ/
∏`(λ)

i=1 λi+
terms containing pµ with µ smaller than λ in lexicographic order (and a similar relation
with eλ). This implies that {hλ}λ and {eλ}λ are bases for the symmetric functions and that
Λ = Q[h1, h2, h3, . . .] = Q[e1, e2, e3, . . .]. Also set as a convention p0 = h0 = e0 = 1 and
p−n = h−n = e−n = 0 for n > 0, so that formulas which require us to refer to these elements
make sense.

There are several ways of picturing what the elements hn and en represent. In some sense,
n!hn is the generating function of all permutations of the symmetric group Symn with weight
1 for each element which we can see in the following formula.

(3.8) n!hn =
∑

σ∈Symn

pλ(σ) =
∑
λ`n

.
n!

zλ

pλ.

At the same time n!en is a signed generating function with weight equal to (−1)n−`(λ) if the
permutation has cycle type λ.

(3.9) n!en =
∑

σ∈Symn

ε(σ)pλ(σ).

We will see when we introduce the Schur functions that these formulas are a special case of
one where the elements of Λ are generating functions for the irreducible characters of the
symmetric group and hn is representing the trivial character and en is representing the sign
character.

1There is another basis which is typically called the forgotten basis which completes the analogy, ‘the
homogeneous basis is to the monomial basis as the elementary basis is to the (um, I forget) basis.’ There are
few direct formulas for the forgotten basis except for those which are analogous to those for the monomial
basis and hence remains somewhat underdeveloped in our account.
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Set P (t) =
∑

r≥1 prt
r/r as a generating function for the power generators and set H(t) =

exp(P (t)). Notice by the following calculation we have

H(t) = exp

(∑
r≥1

prt
r/r

)
=
∏
r≥1

exp(prt
r/r)

=
∏
r≥1

∑
n≥0

pn
r

rnn!
tnr(3.10)

=
∑
k≥0

∑
λ`k

pλ

zλ

tk =
∑
k≥0

hkt
k.

Similarly we may easily show that E(t) = exp(−P (t)) =
∑

n≥0(−1)nent
n. Simply by defini-

tion of these generating functions we have the relation

(3.11) H(t)E(t) = exp(P (t))exp(−P (t)) = 1

We can also consider the product of these generating functions explicitly and take the coef-
ficient of tn. On the right hand side the coefficient is 0 as long as n > 0 and the coefficient
on the left hand side shows that

(3.12)
n∑

k=0

(−1)khn−kek = 0.

Define the ring homomorphism on Λ that sends ω(pk) = (−1)k−1pk. Clearly, ω is an invo-
lution and is related to the antipode map on Λ by ω(pλ) = (−1)|λ|S(pλ). By going back to
formulas (3.6) and (3.7) for hk and ek in terms of pλ we see that ω relates the {hλ}λ and
{eλ}λ bases by ω(hλ) = eλ.

By exploiting the generating functions P (t), H(t) and E(t) further we can extract other
algebraic relations between the elements of this ring. For instance, notice that P (t) =
log(H(t)) and hence P ′(t) = H ′(t)/H(t). Therefore by taking the coefficient of tn−1 in
P ′(t)H(t) = H ′(t) we see that

(3.13) nhn =
n∑

k=1

hn−kpk.

By an application of ω on each side of this equation we also see that

(3.14) nen =
n∑

k=1

(−1)k−1en−kpk

Equations (3.12), (3.13) and (3.14) give us a simple recursive method to express any of the
algebraic generators of this space in terms of any other because the term containing hn, en or
pn can be isolated to provide algebraic relations. These recursive definitions will be exactly
the method that we use when we develop computer functions in Maple to change between
bases.

Example 16. If we wish to expand h3 in the elementary basis we note that h3 = h2e1 −
h1e2 + e3, h2 = h1e1 − e2 and h1 = e1. Combining these we find that h3 = e31 − 2e2e1 + e3.
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We may also use these equations derive simple results using calculations by induction. For
instance, (3.13) may be used to derive by induction by induction the following action of the
coproduct ∆, acting on the symmetric function hk.

Proposition 3.2.

(3.15) ∆(hn) =
n∑

k=0

hk ⊗ hn−k

Proof. Assume by induction that we know that equation (3.15) is true for all k < n.
Then we know that

∆(nhn) =
n∑

r=1

∆(prhn−r)

=
n∑

r=1

(
(pr ⊗ 1)

n−r∑
k=0

hn−r−k ⊗ hk + (1⊗ pr)
n−r∑
k=0

hk ⊗ hn−r−k

)

=
n∑

r=1

(
n−r∑
k=0

prhn−r−k ⊗ hk +
n−r∑
k=0

hk ⊗ prhn−r−k

)

=
n−1∑
k=0

n−k∑
r=1

prhn−r−k ⊗ hk +
n−1∑
k=0

n−k∑
r=1

hk ⊗ prhn−r−k

=
n−1∑
k=0

(n− k)hn−k ⊗ hk +
n−1∑
k=0

hk ⊗ ((n− k)hn−k)

= nhn ⊗ 1 + n
n−1∑
k=1

hk ⊗ hn−k + 1⊗ nhn

= n
n∑

k=0

hk ⊗ hn−k

�

This last result gives us an interesting combinatorial way of looking at the action of ∆ on
the functions hλ. On a single hn, ∆ acts by summing over all possible ways of breaking up
a block of size n into two pieces whose sum is n. Therefore when ∆ acts on an hλ, we can
use this idea to come up with a combinatorial interpretation for the coefficient of hµ ⊗ hν in
∆(hλ).

Think of the rows of µ as red blocks with labels 1, 2, . . . , `(µ) whose horizontal lengths are
µ1, µ2, . . . , µ`(µ) and the rows of ν are represented by blue blocks with horizontal lengths
ν1, ν2, . . . , ν`(ν). When ∆ acts on hλ it splits each of the rows of λ into two parts (with

some of the parts possibly empty) and so we can interpret the coefficient ∆(hλ)
∣∣∣
hµ⊗hν

as the

number of ways of taking at most one red block and at most one blue block placing it next
to each other to get rows of size λ1, λ2, . . . , λ`(λ).
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Example 17. We wish to compute ∆(h(4,3,3))
∣∣∣
h(2,2,1)⊗h(2,2,1)

, then we break up the rows of

the partition (4, 3, 3), each one into a red part and a blue part (possibly empty) such that
red pieces sorted are a partition (2, 2, 1) and the blue pieces sorted are a partition (2, 2, 1).
The can be done in exactly two ways,

Equation (3.14) can also be used to derive the following determinantal formula for pn in
terms of ek.

(3.16) pn =

∣∣∣∣∣∣∣∣∣∣

nen en−1 en−2 · · · e1
(n− 1)en−1 en−2 en−3 · · · 1
(n− 2)en−2 en−3 en−4 · · · 0

...
... · · · ...

...
e1 1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
This follows directly from equation (3.14) by expanding the determinant about the first
row of the equation. It follows that the determinant satisifes the same recurrence as the pk

elements do in equation (3.14). Similarly, we also have

(3.17) (−1)n−1pn =

∣∣∣∣∣∣∣∣∣∣

nhn hn−1 hn−2 · · · h1

(n− 1)hn−1 hn−2 hn−3 · · · 1
(n− 2)hn−2 hn−3 hn−4 · · · 0

...
...

... · · · ...
h1 1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
which follows most easily by an application of the involution ω or by observing the same
recurrence with equation (3.13).

There is another product defined on symmetric functions known as the ‘Kronecker’ or ‘inner
tensor’ product. We will denote this product by ∗. It is defined on the power sum basis by

(3.18)
pλ

zλ

∗ pµ

zµ

= δλµ
pλ

zλ

.

This product is associative and preserves the degree of the symmetric function, that is it
maps Λn⊗Λn → Λn. We also know that the product is commutative f ∗g = g∗f since clearly
this holds on the power basis. We will go into more detail of this product as we introduce
more of the bases of the symmetric functions. The Kronecker product very naturally arises in
the algebra of class functions and we will show that it is also nicely encoded in our notation.

There is an assocated coproduct with ∗ that defines a bialgebra structure on the symmetric
functions. Define the corresponding coproduct as ∆′ : Λ → Λ ⊗ Λ will be defined on the
power basis

(3.19) ∆′(pλ) = pλ ⊗ pλ.
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Proposition 3.3. The vector space Λ endowed with the product µ(f⊗g) = fg and coproduct
∆′ forms a bialgebra.

Proof. ∆′(pµpλ) = (pµpλ) ⊗ (pµpλ). Similarly we have that ∆′(pµ)∆′(pλ) = (pµ ⊗
pµ)(pλ ⊗ pλ) = (pµpλ)⊗ (pµpλ) = ∆′(pµpλ). Therefore we have shown that ∆′ is an algebra
homomorphism with respect to the product. �

Note: With the map ε′(pk) = 1 (and more generally ε′(pλ) = 1) is a counit and satisfies
µ ◦ (id ⊗ ε′) ◦ ∆′ = id, however this product/coproduct pair fails to have an antipode and
hence is not a Hopf algebra (see exercise 12).

∆′ is not an algebra homomorphism with respect to the Kronecker product since ∆′(pµ∗pλ) =
δλµzλpλ ⊗ pλ while ∆′(pµ) ∗∆′(pλ) = δλµz

2
λpλ ⊗ pλ and hence it is not a bialgebra.

In addition to the Hopf algebra and bialgebra structures on Λ, one should also think of Λ as
a vector space over Q and so it is convenient to define a scalar product on this to serve as a
tool for computation. Define

(3.20)

〈
pλ,

pµ

zµ

〉
= δλµ

where we use the notation δxy = 0 if x 6= y and δxx = 1. The remarkable property of this
scalar product is that it interacts nicely with the products and coproducts on this space.

Proposition 3.4. The scalar product is positive definite. In addition, it satisfies the fol-
lowing useful properties.

(3.21) 〈f, g〉 = 〈g, f〉

If we set 〈f1 ⊗ f2, g1 ⊗ g2〉⊗ = 〈f1, g1〉 〈f2, g2〉, then the coproduct ∆ is dual to multiplication,

(3.22) 〈f ⊗ g,∆(h)〉⊗ = 〈fg, h〉 .

The coproduct ∆′ is dual to the product ∗,

(3.23) 〈f ⊗ g,∆′(h)〉⊗ = 〈f ∗ g, h〉 .

The involution ω and antipode S are self-dual,

(3.24) 〈ω(f), ω(g)〉 = 〈S(f), S(g)〉 = 〈f, g〉 .

Moreover,

(3.25) 〈f, g〉 = ε′(f ∗ g)

and

(3.26) 〈f ∗ g, h〉 = 〈g, f ∗ h〉

Proof. It suffices to verify these identities for a basis and then the result must extend
by linearity, and for this we choose the basis {pλ}λ. Note that the fact that the scalar
product is symmetric follows since 〈pλ, pµ〉 = 〈pµ, pλ〉 = δλµzλ. We show equation (3.22) by
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expanding the left hand side using equation (3.2) and comparing it to the right hand side of
the equation.

〈pλ ⊗ pµ,∆(pν)〉⊗ =
∑

γ

∏
i≥1

(
mi(ν)

mi(γ)

)
〈pλ, pγ〉

〈
pµ, pν\γ

〉
(3.27)

= δν,λ]µ

∏
i≥1

(
mi(ν)

mi(λ)

)
zλzµ(3.28)

On the right hand side of this equation we have

(3.29) 〈pλpµ, pν〉 = δν,λ]µzν

and by referring back to the definition of zν it is easy to see that (3.28) and (3.29) are equal.

Similarly we may verify (3.23),

〈pλ ⊗ pµ,∆(pν)〉⊗ = 〈pλ, pν〉 〈pµ, pν〉 = δλµδµνz
2
ν(3.30)

= 〈zµδλµpµ, pν〉 = 〈pλ ∗ pµ, pν〉

〈ω(pλ), ω(pµ)〉 = (−1)|λ|+|µ|−`(λ)−`(µ) 〈pλ, pµ〉 =(3.31)

〈S(pλ), S(pµ)〉 = (−1)`(λ)+`(µ) 〈pλ, pµ〉 = δλµzλ = 〈pλ, pµ〉(3.32)

Equation (3.25) follows because we have set pλ ∗ pµ = δλµzλpλ and hence ε′(pλ ∗ pµ) =
δλµzλε

′(pλ) = δλµzλ = 〈pλ, pµ〉. This implies our last identity as well since the product ∗ is
associative and symmetric and

(3.33) 〈f ∗ g, h〉 = ε′(f ∗ (g ∗ h)) = ε′(g ∗ (f ∗ h)) = 〈g, f ∗ h〉
�

Now for any symmetric function homomorphism we can ask what the operation which is
dual with respect to the scalar product. That is, for φ ∈ Hom(Λ,Λ) we ask what is the
operator φ∗ with the property

(3.34) 〈φ(f), g〉 = 〈f, φ∗(g)〉
Notice that we have already shown that many of the operators which we have considered so
far (e.g. S, ω, the action Kronecker product by a symmetric function f ∗ ·) are self dual. In
the last proposition we also showed that the coproduct ∆ is dual to the product operation
m and the coproduct ∆′ is dual to the Kronecker product.

This leads to a useful computational tool, the operation which is dual to multiplication of a
symmetric function f , which we will denote by f⊥. That is, f⊥ is defined as the operator
with the property

〈f · g, h〉 =
〈
g, f⊥h

〉
.

Since multiplication by f is an operation which raises the degree of a symmetric function by
the degree of f , f⊥ is an operator which lowers the degree of a symmetric function by the
degree of f .
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We show the following useful properties of this operation.

Proposition 3.5.

(3.35) f⊥(g) =
∑

λ

〈fpλ, g〉 pλ/zλ

p⊥k = k ∂
∂pk

and, in particular,

(3.36) p⊥k (pλ) = kmk(λ)pλ	(k)

where pλ	(k) is zero if λ does not have a part of size k. If ∆(f) =
∑

i ai ⊗ bi, then

(3.37) f⊥(gh) =
∑

i

a⊥i (g)b⊥i (h)

Proof. The first equation follows because the coefficient of pλ in f ∈ Λ is given by
〈pλ/zλ, f〉, therefore the expansion of f in the pλ basis is simply f =

∑
λ 〈pλ/zλ, f〉 pλ. In

the case that we expand f⊥(g) in the power basis, we have that

(3.38) f⊥g =
∑

λ

〈
pλ/zλ, f

⊥(g)
〉
pλ =

∑
λ

〈fpλ, g〉 pλ/zλ.

The coefficient of pµ in p⊥k pλ is given by
〈
p⊥k pλ, pµ/zµ

〉
= 〈pλ, pkpµ/zµ〉 which is equal to 0

unless µ] (k) = λ. If µ = λ	 (k), then the scalar product evaluates to zλ/zµ = kmk(λ) and
otherwise the result is 0. It follows that p⊥k = k ∂

∂pk
since the action of these operators is the

same on the monomial pλ.

The fact that p⊥k (fg) = p⊥k (f)g + fp⊥k (g) follows from the product rule for derivatives since
we can interpret p⊥k as a differential operator. Since ∆(pk) = pk ⊗ 1 + 1⊗ pk we have shown
that equation (3.37) holds for any pk. We know that ∆(pλ) = ∆(pλ1)∆(pλ2) · · ·∆(pλk

) while
p⊥λ = p⊥λ1

p⊥λ2
· · · p⊥λk

, therefore (3.37) must hold for any pλ. It follows by extending this result
linearly that it also holds for any symmetric function f . �

Proposition 3.6. For k ≥ 0, the action of the operators p⊥k , e⊥k and h⊥k for k ≥ 0 on the
symmetric functions pn, en and hn is given by the following table.

(3.39)

hn en pn

h⊥k hn−k (δk0 + δk1)en−k δkn + δk0pn

e⊥k (δk0 + δk1)hn−k en−k (−1)k−1δkn + δk0pn

p⊥k hn−k (−1)k−1en−k nδnk + δk0pn

Proof. e⊥k (en), e⊥k (hn), e⊥k (pn) and p⊥k (en) can all be calculated from the action of the
operator h⊥k or p⊥k since we have that ω(f⊥g) = (ω(f))⊥(ω(g)).

p⊥k (pλ

zλ
) is

pλ	(k)

zλ	(k)
if λ contains a part of size k and 0 if λ does not contain a part of size k.

Therefore if p⊥k acts on hn =
∑

λ`n pλ/zλ the result will be hn−k =
∑

λ`n−k pλ/zλ. This
justifies the last line of the table.
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If k = 0 then h⊥k = 1, but otherwise h⊥k (pn) = 0 unless k = n since only then will there be a
partition which contains a part of size n so that

∑
λ`k p

⊥
λ (pn)/zλ is non-zero.

We will prove h⊥k hn using induction and formula (3.13).

(3.40) h⊥k (hn) =
1

k

k∑
i=1

h⊥k−ip
⊥
i (hn) =

1

k

k∑
i=1

h⊥k−i(hn−i)

since we have already calculated that p⊥i (hn) = hn−i. If we assume by induction that
h⊥k−i(hn−i) = hn−k for 1 ≤ i ≤ k, then it follows that h⊥k (hn) = hn−k.

We can prove in a similar manner the formula for h⊥k (en). We handle the k = 0 and k = 1
cases separately for there we already know h⊥0 (en) = en and h⊥1 (en) = p⊥1 (en) = en−1.

For k > 1, if we assume that h⊥k−i(en) is known for all i > 0 and all n then we calculate that

(3.41) h⊥k (en) =
1

k

k∑
i=1

h⊥k−ip
⊥
i (en) =

1

k

k∑
i=1

h⊥k−i(−1)i−1en−i

Only two terms of this equation will survive, i = k − 1 and i = k. Therefore,

(3.42) h⊥k (en) =
1

k
((−1)ken−k + (−1)k−1en−k) = 0

�

We can take this one step further to calculate explicitly the action of h⊥k , e⊥k and p⊥k on hλ, eλ,
and pλ. It is sufficient to give an expression for the expressions p⊥k (hλ), p

⊥
k (pλ), h

⊥
k (hλ), h

⊥
k (eλ),

and h⊥k (pλ) since the others can be found by applying ω to both sides of the equation. We will

need to use the relation that h⊥k (fg) =
∑k

i=0 h
⊥
i (f)h⊥k−i(g) and p⊥k (fg) = p⊥k (f)g + fp⊥k (g).

The real difficulty in this problem is in finding a nice way of elegantly expressing these
quantities.

Proposition 3.7.

(3.43) p⊥k (hλ) =

`(λ)∑
i=1

hλ	(λi)](λi−k)

(3.44) p⊥k (pλ) = mk(λ)kpλ	(k)

(3.45) h⊥k (hλ) =
∑
|α|=k

`(λ)∏
i=1

hλi−αi

where the sum over all sequences α such that 0 ≤ αi ≤ λi.

(3.46) h⊥k (eλ) =
∑
|α|=k

`(λ)∏
i=1

eλi−αi



34 3. THE ALGEBRA STRUCTURE OF THE RING OF SYMMETRIC FUNCTIONS

where the sum over all sequences α such that 0 ≤ αi ≤ 1.

(3.47) h⊥k (pλ) =
∑

S⊂{1,2,...,`(λ)}

∏
i/∈S

pλi

where the sum is over all subsets S of {1, 2, . . . , `(λ)} such that
∑

i∈S λi = k.

Proof. Most of these expressions follow from the previous proposition and the action
of h⊥k and p⊥k on a product. Notice that

(3.48) p⊥k (hλ) =

`(λ)∑
i=1

p⊥k (hλi
)hλ	(λi) =

`(λ)∑
i=1

h(λi−k)hλ	(λi)

which is the same as equation (3.43).

Also we have

p⊥k (pλ) =

`(λ)∑
i=1

p⊥k (pλi
)pλ	(λi)

=

`(λ)∑
i=1

δλi,kkp(λi−k)pλ	(λi)(3.49)

and because there is exactly one non-zero term for each part of size k in λ so this is equal
to the expression in equation (3.44).

Similarly to compute h⊥k (hλ), we compute

(3.50) h⊥k (hλ) =
k∑

i=0

h⊥i (hλ1)h
⊥
k−i(hλ	(λ1))

We can assume by induction on the length of λ that we know the formula for h⊥k−i(hλ	(λ1))
is given by equation (3.45) (the base case is known because `(λ) = 1 is given in the previous
proposition). We have then that equation (3.50) is equal to

(3.51) =
k∑

i=0

hλ1−i

 ∑
|α̃|=k−i

`(λ)∏
i=2

hλi−α̃i


and this is equivalent to equation (3.45) since if i > λ1 then hλ1−i = 0 so the size of the first
part of α is restricted by both k and the size of λ1.
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Similarly, we can show again by assuming (3.46) is true for all partitions of length less than
`(λ) by induction, then

h⊥k (eλ) =
k∑

i=0

h⊥i (eλ1)
∑

|α̃|=k−i

`(λ)∏
i=2

eλi−α̃i

= eλ1

∑
|α̃|=k

`(λ)∏
i=2

eλi−α̃i
+ eλ1−1

∑
|α̃|=k−1

`(λ)∏
i=2

eλi−α̃i
.(3.52)

This equation is then equivalent to (3.46) for an equation indexed by a partition equal to
the length of the partition λ.

Now to calculate h⊥k (pλ) we again assume by induction that (3.47) holds for partitions of
length less than `(λ).

(3.53) h⊥k (pλ) = pλ1h
⊥
k (pλ	(λ1)) + h⊥k−λ1

(pλ	(λ1))

which follows from the action of h⊥k on pn given in the previous proposition. In this equation,
if k−λ1 < 0 then the second term in this sum is equal to 0. Using the inductive assumption,
(3.53) is equal to

(3.54) = pλ1

∑
S⊂{2,...,`(λ)}

∏
i/∈S
i6=1

pλi
+

∑
T⊂{2,...,`(λ)}

∏
i/∈T
i6=1

pλi

where the the first sum is over all subsets S such that
∑

i/∈S
i6=1

λi = k and the second sum

is over subsets T such that
∑

i/∈T
i6=1

λi = k − λ1. This is equivalent to equation (3.47) for a

partition of length equal to `(λ). �

There is a third operation of multiplication which we have not yet mentioned which is a
type of composition of symmetric functions. We define pn[pm] = pnm and then extend this
definition in a natural manner. That is we set,

(3.55) pn[pλ] =

`(λ)∏
i=1

pnλi
.

For c, d ∈ Q and f, g ∈ Λ this operation is linear by

(3.56) pn[cf + dg] = c pn[f ] + d pn[g].

In particular we have, pn[
∑

λ cλpλ] =
∑

λ cλ
∏`(λ)

i=1 pnλi
. Then for f ∈ Λ and for a partition λ

we define

(3.57) pλ[f ] =

`(λ)∏
i=1

pλi
[f ].

Finally for f =
∑

λ cλpλ and g ∈ Λ, we define

(3.58) f [g] =
∑

λ

cλpλ[g].
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This definition implies that for c, d ∈ Q and f, g, h ∈ Λ, (c f + d g)[h] = c f [h] + d g[h] but
in general f [c g + d h] 6= c f [g] + d f [h] (note this will hold if f = pn).

3.1. The class functions of the symmetric group

We have defined the algebra of ‘symmetric functions’ without much a hint as why we have
chosen this as the name of the algebra since the elements of Λ are neither symmetric nor
functions. One motivation for studying this algebra is that it is isomorphic to the space of
class functions of the symmetric group.

Let us consider Φn the linear vector space over Q of the class functions of the symmetric
group Symn. We know that Φn is a vector space spanned by the elements Cλ where λ is a
partition of n and

(3.59) Cλ(π) =

{
1 if π has cycle type λ
0 otherwise

.

We also know that Φn is spanned by the set of irreducible characters of Symn.

We will define the Frobenius map between the space of class functions Φn and the space of
symmetric functions of degree n. That is we define F : Φn → Λn by the action on the basis
Cλ as

(3.60) F(Cλ) =
pλ

zλ

.

This map is clearly an isomorphism since the sets {Cλ}λ`n and {pλ/zλ}λ`n are both bases of
Φn and Λn respectively.

Let χtrivn represent the trivial character on the symmetric group Symn. This means that
χtrivn =

∑
λ`nCλ and therefore we have

F(χtrivn) =
∑
λ`n

F(Cλ) =
∑
λ`n

pλ

zλ

= hn.

As well we may denote the sign character on Symn by χsgnn . Since the sign of a permutation
with cycle type λ is (−1)|λ|−`(λ) we have that χsgnn =

∑
λ`n(−1)|λ|−`(λ)Cλ and therefore

F(χsgnn) =
∑
λ`n

(−1)|λ|−`(λ)F(Cλ) =
∑
λ`n

(−1)|λ|−`(λ)pλ

zλ

= en.

The homogeneous and elementary generators are natural elements to consider in this context
since the trivial and sign characters are the two one dimensional characters of Symn.

The definition of the scalar product on the symmetric functions may have seemed somewhat
arbitary when we introduced it for symmetric fucntions but it is actually motivated by the
scalar product of class functions and the connection by the following proposition.
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Proposition 3.8. If χ, ψ ∈ Φn, then

(3.61) 〈F(χ),F(ψ)〉 = 〈χ, ψ〉
where on the left the scalar product is over symmetric functions with 〈pλ, pµ〉 = δλµzλ and on
the right it is the scalar product on the class functions defined as 〈χ, ψ〉 = 1

n!

∑
σ∈Symn

χ(σ)ψ(σ−1).

Proof. Because the map F is linear and the both the scalar products are bilinear it
suffices to show that this result holds for a basis. That is, we need only show that

(3.62) 〈F(Cλ),F(Cµ)〉 = 〈Cλ, Cµ〉
since then we know that for χ =

∑
λ`n cλCλ and ψ =

∑
µ`n dµCµ and

〈F(χ),F(ψ)〉 =
∑

λ,µ`n

cλdµ 〈F(Cλ),F(Cµ)〉 =
∑

λ,µ`n

cλdµ 〈Cλ, Cµ〉 = 〈χ, ψ〉 .

Now since F(Cλ) = pλ/zλ it is easy to establish (3.62) for a fixed λ and µ.

〈F(Cλ),F(Cµ)〉 = 〈pλ/zλ, pµ/zµ〉 = δλµ/zλ,

while at the same time

〈Cλ, Cµ〉 =
1

n!

∑
σ∈Symn

Cλ(σ)Cµ(σ−1) = δλµ/zλ.

�

Remember that the irreducible characters of the symmetric group are an orthonormal basis
of class functions. The images of the irreducible characters will be the fundamental basis for
the symmetric functions and we will introduce this basis in a later chapter.

The space of symmetric functions Λ is an algebra since it is a vector space endowed with a
multiplication operation which takes elements in Λn×Λm and sends them to Λn+m. The set
of class functions is endowed with a similar multiplication operation. We set Φ =

⊕
n≥0 Φn.

Recall that for χ ∈ Φn and ψ ∈ Φm, we have χ ⊗ ψ is a class function of Symm × Symn

defined by χ ⊗ ψ(π, σ) = χ(π)ψ(σ). To make this a character of Symn+m we consider the

induced character χ ⊗ ψ ↑Symn+m

Symn×Symm
∈ Φn+m. This is our analogous operation in the space

of class functions to the operation of multiplication in the symmetric functions. In fact, this
operation is more than just analogous, it satisfies the following property:

Proposition 3.9. For χ ∈ Φn and ψ ∈ Φm,

(3.63) F(χ⊗ ψ ↑Symn+m

Symn×Symm
) = F(χ)F(ψ)

Proof. The operation of inducing two class functions is linear in both the first and in
the second position as we have for χ =

∑
λ`n cλCλ and ψ =

∑
µ`m dµCµ then

(3.64) χ⊗ ψ ↑Symn+m

Symn×Symm
=
∑
λ`n

∑
µ`m

cλdµCλ ⊗ Cµ ↑
Symn+m

Symn×Symm
.
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Therefore we need only show that F(Cλ ⊗ Cµ ↑
Symn+m

Symn×Symm
) = F(Cλ)F(Cµ). To do this we

will expand F(Cλ ⊗ Cµ ↑
Symn+m

Symn×Symm
) in the basis {pν}ν`n+m.〈

Cλ ⊗ Cµ ↑
Symn+m

Symn×Symm
, Cν

〉
=
〈
Cλ ⊗ Cµ, Cν ↓

Symn+m

Symn×Symm

〉
=

1

n!m!

∑
σ∈Symn,τ∈Symm

Cλ(σ)Cµ(τ)Cν ↓
Symn+m

Symn×Symm
(σ, τ).

Every term in this last sum is equal to 0 unless λ ] µ = ν and only then when σ is of cycle

type λ and τ is of cycle type µ. Therefore the right hand side is equal to
δλ]µ,ν

zλzµ
and hence〈

F(Cλ ⊗ Cµ ↑
Symn+m

Symn×Symm
),F(Cν)

〉
=
δλ]µ,ν

zλzµ

and hence

F(Cλ ⊗ Cµ ↑
Symn+m

Symn×Symm
) =

pλ]µ

zλzµ

=
pλ

zλ

pµ

zµ

= F(Cλ)F(Cµ).

�

This last proposition gives us an interpretation for hλ and eλ since we have already noted that
the image of the trivial and sign characters in the Frobenius map are hn and en respectively.
Define Symλ to be the subgroup of Symn isomorphic to Symλ1

×Symλ2
× · · · ×Symλ`(λ)

in

the natural manner. Denote the trivial and sign characters on this subgroup as χtrivλ and
χsgnλ so that for all π ∈ Symλ, χ

trivλ(π) = 1 and χsgnλ(π) = sgn(π) and more precisely

χtrivλ = χtrivλ1 ⊗χtrivλ2 ⊗· · ·⊗χtrivλ`(λ) and similarly χsgnλ = χsgnλ1 ⊗χsgnλ2 ⊗· · ·⊗χsgnλ`(λ) .
From the previous proposition we have

hλ = F(χtrivλ ↑Symn
Symλ

)

and

eλ = F(χsgnλ ↑Symn
Symλ

).

We defined a second type of multiplication on symmetric functions which we called the inner
or Kronecker product of symmetric functions. The definition this operation ∗ is given by
pλ

zλ
∗ pµ

zµ
= δλµ

pλ

zλ
. It arises naturally in the following sense.

Proposition 3.10. For χ, ψ ∈ Phin and we define χ · ψ as the class function χ · ψ(g) :=
χ(g)ψ(g). This is the inner tensor product of characters. We have

(3.65) F(χ · ψ) = F(χ) ∗ F(ψ).

Proof. Again it suffices to verify this identity on a basis for the class functions because
it will hold for any linear combination of the class functions as well. This is easy to verify
for the class functions Cλ, since

Cλ · Cµ(π) =

{
0 if λ 6= µ
1 if λ = µ and Cλ(π) = 1

= δλµCλ(π)
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This means that Cλ · Cµ = δλµCλ and so we have

F(Cλ · Cµ) = δλµF(Cλ)

= δλµ
pλ

zλ

=
pλ

zλ

∗ pµ

zµ

= δλµF(Cλ) ∗ F(Cµ)

�

***** interpretation of ω here?

The coproduct operation also has an interpretation in the algebra of class functions, however
we first need to extend our definition of the Frobenius map to the algebra of class functions
on Symk × Symn−k. Recall that we have for class functions χ ∈ Φk and ψ ∈ Φn−k that the
function χ ⊗ ψ defined to be χ ⊗ ψ(π, σ) := χ(π)ψ(σ) for π ∈ Symk and σ ∈ Symn−k and
χ ⊗ ψ is a class function of Symk × Symn−k. This is called the the outer tensor product

of class functions. Note that for any basis of class functions of G, {C(i)}, and of the class
functions of H, {D(i)}, then {C(i) ⊗D(j)} is basis for the class functions of G×H.

To extend the definition of the Frobenius map to include class functions of Symk × Symn−k

which has as a basis {Cλ ⊗ Cµ} λ`k
µ`n−k

we set

(3.66) F(Cλ ⊗ Cµ) :=
pλ

zλ

⊗ pµ

zµ

= F(Cλ)⊗F(Cµ)

and this definition is extended linearly. This implies that we have more generally, for χ ∈ Φn

and ψ ∈ Φm,

(3.67) F(χ⊗ ψ) = F(χ)⊗F(ψ).

Using this extension of notation we have the following interpretation of the coproduct oper-
ation on symmetric functions.

Proposition 3.11.

(3.68) ∆(F(χ)) =
n∑

k=0

F(χ ↓Symn
Symk×Symn−k

)

Proof. It suffices to show that this result again holds on a basis and the natural basis
to consider is again Cλ for λ ` n. We have that

Cλ ↓Symn
Symk×Symn−k

(π, σ) =

 1 if Cµ(π) = 1 and Cν(σ) = 0 for
µ ` k, ν ` n− k with µ ] ν = λ

0 otherwise

In other words we see that

Cλ ↓Symn
Symk×Symn−k

=
∑
µ`k

ν`n−k

δµ]ν,λCµ ⊗ Cν
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This implies that

F(Cλ ↓Symn
Symk×Symn−k

) =
∑
µ`k

ν`n−k

δµ]ν,λ
1

zµzν

pµ ⊗ pν .

As well we have

∆(zλF(Cλ)) = ∆(pλ) =
n∑

k=0

∑
µ`k

ν`n−k

δµ]ν,λ
zλ

zµzν

pµ ⊗ pν

=
n∑

k=0

zλF(Cλ ↓Symn
Symk×Symn−k

),

and therefore the proposition holds for all class functions. �

3.2. Exercises

(1) (a) Expand p(2,2) in the elementary and homogeneous bases.
(b) Expand e(2,2) in the power basis.
(c) Expand h(2,2) in the homogeneous basis.

(2) Calculate the following scalar products
(a)

〈
h(2,2,1), p(3,2)

〉
(b)

〈
h(3,2), p(3,2)

〉
(c)

〈
h(3,2), p(2,2,1)

〉
(d)

〈
h(3,2), h(4,1)

〉
(e)

〈
h(3,2), h(3,1,1)

〉
(f)
〈
h(3,2), h(2,2,1)

〉
(3) Calculate the following inner products using the formulas given in this section.

Assume that |λ| = n.
(a) 〈hn, pλ〉
(b) 〈en, pλ〉
(c) 〈pn, hλ〉
(d) 〈p1n , hλ〉
(e) 〈pλ, hλ〉
(f) 〈hn, hn〉
(g) 〈en, hn〉
(h) 〈hn, hλ〉
(i) 〈en, hλ〉

(4) Show that ∆ ◦ ω = (ω ⊗ ω) ◦∆ by showing that it holds true on the power basis.
Use this to show that ∆(en) =

∑n
k=0 ek ⊗ en−k.

(5) Show that (1⊗ ω) ◦∆′ = (ω ⊗ 1) ◦∆′ = ∆′ ◦ ω.
(6) Show the following determinental formulas for hn.
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(a)

hm =

∣∣∣∣∣∣∣∣∣∣

p1 −1 0 · · · 0
p2

2
p1

2
−1 · · · 0

...
...

... · · · ...
pm−1

m−1
pm−2

m−1
· · · p1

m−1
−1

pm

m
pm−1

m
pm−2

m
· · · p1

m

∣∣∣∣∣∣∣∣∣∣
(b)

hn =

∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 · · · en

1 e1 e2 · · · en−1

0 1 e1 · · · en−2
...

...
... · · · ...

0 0 · · · 1 e1

∣∣∣∣∣∣∣∣∣∣
State and prove the corresponding determinental formulas for en in terms of pn and
hn.

(7) Show that ∆(H(t)) = H(t) ⊗ H(t) and ∆(E(t)) = E(t) ⊗ E(t) and ∆(P (t)) =
P (t)⊗ 1 + 1⊗ P (t).

(8) Show that p⊥k = k ∂
∂pk

(9) Use the fact that E(t)H(t) = 1 to develop a formula for hn in terms of the elementary
basis.

(10) Use the relationship P (t) = log(1 +
∑

n≥1 hnt
n) to derive a formula for pn in terms

of the homogeneous basis.
(11) Use the previous result to expand pλ in the homogeneous basis.
(12) Prove that Λ endowed with the bialgebra with product µ and coproduct ∆′ does

not have a corresponding antipode and hence is not a Hopf algebra.
(13) Prove that for any f ∈ Λn, hn ∗ f = f and en ∗ f = ωf .
(14) Prove that if g ∈ Λn has the property that for all f ∈ Λn, g ∗ (g ∗ f)) = f then

〈g, pλ〉 = ±1 for all λ partitions of n.
(15) Show that Z[p1, p2, p3, . . .] ⊆ Z[e1, e2, e3, . . .] and that the converse of this statment

(i.e. that Z[e1, e2, e3, . . .] ⊆ Z[p1, p2, p3, . . .]) is not true.
(16) Show that Z[h1, h2, . . . , hk] = Z[e1, e2, . . . , ek].
(17) (a) Show that the linear span of the symmetric functions {f + ω(f) : f ∈ Λ} forms

a subalgebra of the symmetric functions under the standard product.
(b) Show that this algebra is not a bialgbra with the coproduct ∆.
(c) Show that a linear basis for this space is given by the set {pλ : |λ|−`(λ)mod 2 =

0}
(d) Show that the space is closed under the Kronecker product of equation (3.18)

and the coproduct ∆′ of equation (3.19).
(18) Show that Q[p1, p3, p5, . . .] is a Hopf subalgebra of the symmetric functions and that

it is also closed under the Kronecker product and coproduct ∆′. This subalgebra is
sometimes known as the Q-function algebra.
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3.3. Solutions to exercises

(1) (a)

p2
2 =

(
−2 e2 + e1

2
)2

= e1
4 − 4 e2 e1

2 + 4 e2
2

=
(
−2h2 + h2

2
)2

= h1
4 − 4h2 h1

2 + 4h2
2

(b)

e22 = 1/4
(
−p2 + p1

2
)2

= 1/4 p1
4 − 1/2 p2 p1

2 + 1/4 p2
2

(c)

h2
2 =

(
−e2 + e1

2
)2

= e1
4 − 2 e2 e1

2 + e2
2

(2) By direct calculation

h(3,2) = 1/12 p1
5 + 1/3 p2 p1

3 + 1/6 p3 p1
2 + 1/4 p2

2p1 + 1/6 p3 p2

h(2,2,1) = 1/4 p1
5 + 1/2 p2p1

3 + 1/4 p2
2p1

h(4,1) = 1/24 p1
5 + 1/4 p2p1

3 + 1/3 p3p1
2 + 1/8 p2

2p1 + 1/4 p4p1

h(3,1,1) = 1/6 p1
5 + 1/2 p2p1

3 + 1/3 p3p1
2

(a)
〈
h(2,2,1), p(3,2)

〉
= 0

(b)
〈
h(3,2), p(3,2)

〉
= 1

(c)
〈
h(3,2), p(2,2,1)

〉
= 2

(d)
〈
h(3,2), h(4,1)

〉
= 3

(e)
〈
h(3,2), h(3,1,1)

〉
= 4

(f)
〈
h(3,2), h(2,2,1)

〉
= 5

(3) (a)
〈∑

µ`n pµ/zµ, pλ

〉
= 1

(b)
〈∑

µ`n(−1)|µ|−`(µ)pµ/zµ, pλ

〉
= (−1)|λ|−`(λ)

(c) 〈pn, hλ〉 = δλ,(n)

(d) 〈p1n , hλ〉 = z1n/
∏`(λ)

i=1 z1λi =
(

n
λ1,λ2,...,λ`(λ)

)
(e) 〈pλ, hλ〉 =

∏
imi(λ)!

(f) 〈hn, hn〉 =
〈∑

µ`n pµ/zµ,
∑

λ`n pλ/zλ

〉
=
∑

λ`n 1/zλ which is equal to 1 since

n!/zλ = the number of permuations with cycle type λ and
∑

λ`n n!/zλ = n!.
(g) 〈en, hn〉 =

∑
λ`n(−1)|λ|−`(λ)/zλ = 0 if n > 1 and is equal to 1 if n = 1. This fol-

lows since
∑

λ`n(−1)|λ|−`(λ)n!/zλ = the number of permutations of even length
− the number of permutations of odd length. The numbers of these subsets of
these permutations must be equal because composition with a permutation of
length 1 is an involution which interchanges these sets.

(h) 〈hn, hλ〉
(4) For any partition k > 0, ∆◦ω(pk) = (−1)k−1∆(pk) = (ω⊗ω)◦∆(pk). Since ω and ∆

are both ring homomorphisms, this formula holds on any f ∈ Λ. Using this identity,
∆(en) = ∆◦ω(hn) = (ω⊗ω)◦∆(hn) = (ω⊗ω)(

∑n
k=0 hk⊗hn−k) =

∑n
k=0 ek⊗ en−k.

(5) Again we need only show that this property holds on a basis to conclude that it holds
for all symmetric functions ∆′ ◦ω(pλ) = ∆′((−1)|λ|−`(λ)pλ) = (−1)|λ|−`(λ)(pλ⊗ pλ) =
(ω⊗ 1)(pλ ⊗ pλ) = (ω⊗ 1) ◦∆′(pλ) Similarly we have ∆′ ◦ ω(pλ) = (1⊗ ω) ◦∆′(pλ).
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(6) Let Mn = [ai,j] be the n × n matrix with ai,j = pn−i−j+2 if n − i − j + 2 > 0

and ai,j = i − 1 if n − i − j + 2 = 0 and ai,j = 0 otherwise. Show (−1)n

n!
detMn

satisfies the relation of equation (3.13) by expanding the determinant about the

first row. Notice that the (1, k) minor M
(1,k)
n (the minor formed by deleting the 1st

row and kth column of Mn) has determinant equal to (−1)n−1(n− 1)! if k = 1 and

(−1)n−k(n− 1)kdetMk−1 for 2 ≤ k ≤ n. Therefore, n (−1)n

n!
Mn = pnpn

(7)

H(t)⊗H(t) =

(∑
r≥0

hrt
r

)
⊗

(∑
m≥0

hmt
m

)

=
∑
n≥0

tn
n∑

k=0

hn−k ⊗ hk

=
∑
n≥0

tn∆(hn) = ∆(H(t))

Apply the result of problem 4 to show as well that ∆(E(t)) = E(t)⊗ E(t).

∆(P (t)) =
∑
r≥1

∆(
pr

r
)tr =

∑
r≥1

(pr

r
⊗ 1 + 1⊗ pr

r

)
tr

= P (t)⊗ 1 + 1⊗ P (t)

(8) p⊥k (pλ) = mk(λ)kpλ	(k) from equation (3.44). Notice that ∂
∂pk

(pλ) = mk(λ)pλ	(k), so

p⊥k (pλ) = k ∂
∂pk

(pλ) and p⊥k (f) = k ∂
∂pk

(f).

(9)

H(t) = 1 +
∑
`≥1

(−1)`

(∑
k≥1

ek(−t)k

)`

Now the coefficient of tn on both sides of this equation will be hn on the left, and
on the right a term appears for every partition with length ` and a coefficient equal
to −1 raised to the size of the partition times a multinomial coefficient.

hn =
∑
λ`n

(−1)n−`(λ)

(
`(λ)

m1(λ) m2(λ) · · ·

)
eλ

=
∑
λ`n

(−1)n−`(λ) `(λ)!∏
i≥1mi(λ)!

eλ

(10)

P (t) =
∑
`≥1

(−1)`−1

`

(∑
m≥1

hmt
m

)`

The coefficient of tn on the left hand side of this equation is pn

n
and on the right

hand side for each partition there is a term with a multinomial coefficient which
depends on the length and a factor of (−1)`−1 over the length of the partition.

pn = n
∑
λ`n

(−1)`(λ)−1 (`(λ)− 1)!∏
i≥1mi(λ)!

hλ
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(11) With the formula from the previous problem it is a matter of finding a good way of
expressing the product pλ. The coefficient of hµ in pλ will be positive if `(µ)− `(λ)
even and negative otherwise. The coefficient of hλ in pµ is

(−1)`(λ)−`(µ)
∑

ν(1)]ν(2)]···]ν(`(µ))=λ

`(µ)∏
i=1

µi(`(ν
(i))− 1)!∏

j≥1mj(ν(i))!

where the sum is over all sequences of partitions with ν(i) ` λi.
(12) In order for the bialgebra structure to have a Hopf algebra structure it must hold

that m ◦ (id⊗ S ′) ◦∆′ = u ◦ ε′ where m(f ⊗ g) = f ∗ g. Act by this expression on
p1 and we must have that

p1S
′(p1) = 1

This cannot happen unless S ′(p1) = 1/p1 which is not in our algebra.

(13) For λ ` n we clearly have that hn ∗ pλ =
(∑

µ`n
pµ

zµ

)
∗ pλ = pλ and en ∗ pλ =(∑

µ`n(−1)n−`(µ) pµ

zµ

)
∗ pλ = (−1)n−`(λ)pλ = ω(pλ). Therefore by linearity it holds

that hn ∗ f = f and en ∗ f = ω(f).
(14) Note that g =

∑
µ cµpµ. Therefore, g ∗ pλ = zλcλpλ and g ∗ (g ∗ pλ) = z2

λc
2
λpλ = pλ,

and so we know that z2
λc

2
λ = 1 or zλcλ = ±1. We also have 〈g, pλ〉 = cλzλ = ±1.

(15) Since each pk ∈ Z[e1, e2, e3, . . .] from equation (3.16) or problem number 10, we
know that pλ ∈ Z[e1, e2, e3, . . .]. It follows that each f =

∑
λ cλpλ with each cλ ∈ Z,

then f ∈ Z[e1, e2, e3, . . .]. Many counterexamples to the converse exists (e.g. e2 =
p2/2 + p2

1/2).
(16) From equation (3.12) or problem number 6b or 9 we know that hk ∈ Z[e1, e2, . . . , ek]

and with an application of ω on these equations we know equally that ek ∈ Z[h1, h2, . . . , hk].
(17) (a) {f + ω(f) : f ∈ Λ} are the set of functions which are invariant under the

involution ω. That property is clearly invariant under products since ω is a
ring homomorphism.

(b) This is not invariant under the coproduct ∆, since for instance ∆(e(2,2) +h(2,2))
in the degree (2, 2) tensor is not invariant under ω.

(c) Note that pλ +ω(pλ) = 2pλ if |λ|+ `(λ) is even and it is equal to 0 if |λ|+ `(λ)
is odd. Since pλ is a linear basis of Λ, {pλ : |λ| − `(λ) mod 2} is a linear basis
for {f + ω(f) : f ∈ Λ}.

(d) If λ has |λ| − `(λ) even, then pλ ∗ pµ = 0 or is a multiple of pλ and hence the
basis elements are closed. ∆ also sends the basis elements pλ to pλ ⊗ pλ.

(18) The fact that this ring is a Hopf subalgebra and closed under the Kronecker product
and coproduct is true for any subalgebra generated by a subcollection of the the
pk and this need only be checked by verifying these operations are closed on the pλ

basis where the parts of λ are taken from the pk which generate the subalgebra.



CHAPTER 4

Symmetric polynomials

Our presentation of the ring of symmetric functions has so far been non-standard and re-
visionist in the sense that the motivation for defining the ring Λ was historically to study
the ring of polynomials which are invariant under the permutation of the variables. In this
chapter we consider the relationship between Λ and this ring.

In this section we wish to consider polynomials f(x1, x2, . . . , xn) ∈ Q[x1, x2, . . . , xn] such that
f(xσ1 , xσ2 , · · · , xσn) = f(x1, x2, . . . , xn) for all σ ∈ Symn. These polynomials form a ring
since clearly they are closed under multiplication and contain the element 1 as a unit.

We will denote this ring

ΛXn = {f ∈ Q[x1, x2, . . . , xn] : f(x1, x2, . . . , xn) =(4.1)

f(xσ1 , xσ2 , . . . , xσn) for all σ ∈ Symn}

Now there is a relationship between Λ and ΛXn by setting pk[Xn] :=
∑n

k=1 x
k
i and define a

map Λ −→ ΛXn by the linear homomorphism

(4.2) pλ 7→ pλ1 [Xn]pλ1 [Xn] · · · pλ`(λ)
[Xn]

with the natural extension to linear combinations of the pλ.

In a more general setting we will take the elements Λ to be a set of functors on polynomials
pk[xi] = xk

i and pk[cE + dF ] = cpk[E] + dpk[F ] for E,F ∈ Q[x1, x2, . . . , xn] and coefficients
c, d ∈ Q then pλ[E] := pλ1 [E]pλ2 [E] · · · pλ`(λ)

[E]. This means that f ∈ Λ will also be a

function from Q[x1, x2, . . . , xn] to itself with the additional property that if E ∈ ΛXn ⊆
Q[x1, x2, . . . , xn] then f [E] ∈ ΛXn since if σE = E for a σ ∈ Symn then we will also have
σpk[E] = pk[σE] = pk[E] (similarly, pλ[E] and f [E] will be invariant under σ).

Example 18. As a sample computation we determine p2[X3], e2[X3] and h2[X3].

p2[x1 + x2 + x3] = x2
1 + x2

2 + x2
3

e2[x1 + x2 + x3] = p(1,1)[x1 + x2 + x3]/2− p(2)[x1 + x2 + x3]/2

= (x1 + x2 + x3)
2/2− (x2

1 + x2
2 + x2

3)/2 = x1x2 + x1x3 + x2x3

h2[x1 + x2 + x3] = p(1,1)[x1 + x2 + x3]/2 + p(2)[x1 + x2 + x3]/2

= (x1 + x2 + x3)
2/2 + (x2

1 + x2
2 + x2

3)/2

= x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3

45
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Example 19. Calculate e4[X3].

e4[X3] =
p(14)[X3]

24
−
p(211)[X3]

4
+
p(22)[X3]

8
+
p(31)[X3]

3
−
p(4)[X3]

4

=
(x1 + x2 + x3)

4

24
− (x2

1 + x2
2 + x2

3)(x1 + x2 + x3)
2

4
+

(x2
1 + x2

2 + x2
3)

2

8

+
(x3

1 + x3
2 + x3

3)(x1 + x2 + x3)

3
− x4

1 + x4
2 + x4

3

4
= 0

Remark 2. pk is linear homomorphism because as we stated above pk[cE + dF ] = cpk[E] +
dpk[F ] for E,F ∈ Q[x1, x2, . . . xn] and coefficients c, d ∈ Q, but this is not true for pλ in
general (e.g. p(2,1)[x1 + x2] = (x2

1 + x2
2)(x1 + x2) 6= p(2,1)[x1] + p(2,1)[x2] = x3

1 + x3
2).

Remark 3. This notation is an extension of the linear homomorphism defined in equation
(4.2) where we set Xn := x1 + x2 + · · ·+ xn.

In addition we will also consider Λ as functors on formal power series. LetR = Q[x1, x2, x3, . . .]

and R(k) as the subspace of elements in R of degree k. R̂(k) will denote the completion of
this subspace consisting of polynomials and formal series of monomials of degree k. Next
define the ring

ΛX = {f(x1, x2, . . .) ∈ R̂(k) : f(x1, x2, . . .) =(4.3)

f(xσ1 , xσ2 , . . .) for any permutation σ, k ≥ 0}.

Just as we had for ΛXn ⊆ Q[x1, x2, . . . , xn], f ∈ Λ acts on E ∈ ΛX ⊆
⊕

k≥0 R̂
(k). Denote

X = x1 + x2 + x3 + · · · ∈ ΛX so that pk[X] =
∑

i≥1 x
k
i . The operation of setting xn+1 =

xn+2 = · · · = 0 maps X to Xn and ΛX to ΛXn such that the following diagram commutes.

Remark 4. This notation we have just introduced is quite useful, though there is one pitfall
with which the reader should be aware.

Constants and variables are very different.

What we mean by this comment is that in polynomial notation where if f(x) = xk then
f(2) = 2k and f(−1) = (−1)k (here constants have the same properties that variables do).
In our notation, pk[2] = 2 and pk[−1] = −1 because pk[xi] = xk

i , while pk does nothing when
it acts on constants. The reader should spend a few minutes to try to figure out a ‘meaning’
of pk[c] or pk[cXn] because these do not represent pk(c) and pk(cx1, cx2, . . . , cxn) and it is
important in doing calculations to be aware of this difference.
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One interpretation of the expression f [n] for a positive integer n should be thought of as
f [1 + 1 + · · · + 1] and represents the symmetric function f ∈ Λ with each pk replaced by
xk

1 +xk
2 + · · ·+xk

n and with each of these variables set to 1. We will derive more formulas for
our symmetric functions below and using (4.5) we see that ek[n] = 0 for n = 0, 1, 2, . . . , k−1
and ek[k] = 1. f [c] when c is not a non negative integer does not have such a concrete
realization and is instead a polynomial interpolation of f [n].

Similarly, we have that kXn = Xn +Xn + · · · +Xn (k-times) and hence f [kXn] represents
the symmetric function f evaluated at a set of n variables repeated k times.

In some cases we will use a parameter q in some of our formulas. This parameter will act as a
variable and has the property that pk[qX] = qkpk[X]. The contrast between variables (q has
the same properties as a variable) and constants can be seen here since pλ[qX] = q|λ|pλ[X]
while for a constant c, pλ[cX] = c`(λ)pλ[X].

From now on we will denoteXn := x1+x2+· · ·+xn so that we have pk[Xn] = xk
1+x

k
2+· · ·+xk

n.
We are now ready to state and prove the fundamental theorem of symmetric functions which
relates the algebra of symmetric functions and the algebra of symmetric polynomials.

We have defined pk[X] to be
∑

i x
k
i and pk[Xn] =

∑n
i=1 x

k
i . Therefore we realize pλ[X]

and pλ[Xn] as just products of these elements. This does give us an explicit formula for
hn[X] and en[X] because they are just defined to be hn[X] =

∑
λ`n pλ[X]/zλ and en[X] =∑

λ`n(−1)n−`(λ)pλ[X]/zλ. This formula is not at all adequate because we need only compute
a few of these elements by hand or by computer to realize that the coefficient of any monomial
of degree n in hn[X] is always 1. It is not immediately clear from the definition that the
coefficients should even be integers.

Proposition 4.1. For n ≥ 1,

(4.4) hn[X] =
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin

(4.5) en[X] =
∑

i1<i2<···<in

xi1xi2 · · ·xin

These results are implied by the following expressions for the generating functions of hn[X]
and en[X]

(4.6) H(t)[X] =
∑
n≥0

hn[X]tn =
∏

i

1

1− txi

(4.7) E(t)[X] =
∑
n≥0

(−1)nen[X]tn =
∏

i

(1− txi)
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Proof. Consider the generating function P (t)[X] =
∑

r≥1 pr[X]/rtr. This may be
rewritten as

P (t)[X] =
∑
r≥1

pr[X]

r
tr =

∑
r≥1

∑
i

xr
i

r
tr

=
∑

i

∑
r≥1

xr
i

r
tr = −

∑
i

log(1− txi)(4.8)

= log

(∏
i

1

1− txi

)
However we have already seen in equation (1.9) thatH(t)[X] = exp(P (t))[X] = exp(P (t)[X])
and a similar calculation yields E(t)[X] = exp(−P (t)[X]). This demonstrates equations (4.6)
and (4.7).

The equation for hn[X] follows from taking the coefficient of tn in (4.6). In each monomial
there are n variables and each xi can appear with repetition because 1

1−txi
= 1+txi +(txi)

2+

(txi)
3 + · · · .

The equation for en[X] can be arrived at by taking the coefficient of tn in (4.7). In each
monomial each xi can appear at most once and each variable that appears contributes a
factor of −1 and exactly n variables will appear in each monomial. �

We are now prepared to explicitly state the relationship between Λ and ΛXn . These spaces
are not isomorphic, however the degree k components of each of these spaces is isomorphic
as long as k ≤ n.

Proposition 4.2. ΛXn is algebraically generated by the elements e1[Xn], e2[Xn], . . ., en[Xn]
and every f(Xn) ∈ ΛXn is uniquely expressible as a linear combination of the elements
eλ[Xn] for λ partitions with parts smaller or equal to n. In particular, the subspace of ΛXn of
degree k is isomorphic to the subspace of degree k elements of Λ under the map which sends
f 7→ f [Xn].

Proof. For any f(x1, x2, · · · , xn) ∈ ΛXn we note that the coefficient of xα1
1 x

α2
2 · · ·xαn

n

and xλ1
1 x

λ2
2 · · ·xλn

n must be the same if α = σλ for some σ ∈ Symn. Therefore a linear basis
of this space is given by the functions

(4.9) m̂Xn
λ =

∑
α∼λ

xα1
1 x

α2
2 · · ·xαn

n

where λ is a partition with no more than n parts and the sum is over compositions α such
that when the entries sorted in decreasing order the resulting partition is equal to λ. The
dimension of ΛXn at degree m is the number of partitions of m with no more than n parts.

Now consider the elements eλ[Xn] ∈ ΛXn which are symmetric and hence can be expressed
in the m̂Xn

µ basis. Notice that if λ1 ≤ n then

eλ[Xn] = m̂Xn

λ′ + terms containing m̂Xn
µ with µ finer than λ′,
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otherwise eλ[Xn] = 0. Therefore {eλ[Xn]} λ`n
λ1≤n

is a basis for ΛXn and hence ΛXn is alge-

braically generated by the elements e1[Xn], e2[Xn], . . ., en[Xn]. �

Since en is a linear combination of the hλ with λ ` n then we also have the following corollary.

Corollary 4.3. ΛXn is algebraically generated by the elements h1[Xn], h2[Xn], . . ., hn[Xn]
and every f(Xn) ∈ ΛXn is uniquely expressible as a linear combination of the elements hλ[Xn]
for λ partitions with parts smaller or equal to n.

Similarly, pn can is a linear combination of the eλ with λ ` n and we can also state the
previous corollary with pi[Xn] in place of hi[Xn]. There is however a difference between
the pi[Xn] and the ei[Xn] or hi[Xn] since if f(Xn) is a symmetric polynomial with integer
coefficients then when it is an expressed as a polynomial in either the {eλ[Xn]}λi≤n basis
or the {hλ[Xn]}λi≤n basis it will have integer coefficients. This is not true in general of the
{pλ[Xn]}λi≤n basis (see exercise 2.8).

This leads us to what we will refer to as the fundamental theorem of symmetric functions.
It says essentially that Λ and ΛX are isomorphic and as long as the degree of the symmetric
functions you are working with is smaller than n then Λ, ΛXn and ΛX are all the same.

Theorem 4.4. For f, g ∈ Λ with deg(f) ≤ n and deg(g) ≤ n, the following are equivalent:

(1) f = g
(2) f [E] = g[E] for every expression E ∈

⊕
k≥0R

(k)

(3) f [X] = g[X] where X = x1 + x2 + x3 + · · ·
(4) f [Xn] = g[Xn] where Xn = x1 + x2 + · · ·+ xn

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are trivial.

(3) ⇒ (4). If f [X] = g[X], then this expression holds independent of the values of xi.
In particular, if we set xn+1 = xn+2 = · · · = 0, then we see that it must also hold that
f [Xn] = g[Xn].

(4) ⇒ (1). Assume that f 6= g then f − g ∈ Λ can be expressed in the eλ basis with at least
one coefficient not equal to 0. As we showed in the last proposition, eλ[Xn] is a basis of ΛXn

and hence f [Xn]− g[Xn] is not equal to 0. �

The formulas for hk[X] and ek[X] are interesting because it also gives us recurrences in terms
of variables. Because any single variable appears in any monomial in hk[X] with exponent
0, 1, 2, . . . , k and in ek[X] with exponent either 0 or 1, then we can grade hk[X+z] or ek[X+z]
depending on the coefficient of z.

(4.10) hk[X + z] =
k∑

i=0

zihk−i[X]
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(4.11) ek[X + z] = ek[X] + zek−1[X]

This is useful because it can be used to derive a formula for the homogeneous and elementary
symmetric functions at 1−qn

1−q
= 1 + q + q2 + · · ·+ qn−1

Example 20.

p2

[
1− q3

1− q

]
= p2[1 + q + q2] = 1 + q2 + q4 =

1− q6

1− q2

e2

[
1− q3

1− q

]
= p(1,1)

[
1− q3

1− q

]
/2− p(2)

[
1− q3

1− q

]
/2

=
(1− q3)2

2(1− q)2
− 1− q6

2(1− q2)

=
(1− 2q3 + q6)(1 + q)− (1− q6)(1− q)

2(1− q)(1− q2)
= q

1− q3

1− q

h2

[
1− q3

1− q

]
= p(1,1)

[
1− q3

1− q

]
/2− p(2)

[
1− q3

1− q

]
/2

=
(1− q3)2

2(1− q)2
+

1− q6

2(1− q2)

=
(1− 2q3 + q6)(1 + q) + (1− q6)(1− q)

2(1− q)(1− q2)
=

(1− q3)(1− q4)

(1− q)(1− q2)

The use of H(t)[X] as a generating function in which we can take coefficients a useful
technique for deriving results in the theory of symmetric functions. To this end we define
the special element Ω =

∑
n≥0 hn which lies in the completion of Λ. In some sense, Ω is still

a generating function for the homogeneous generators like H(t) from the previous section
and we have Ω = H(1), H(t)[X] = Ω[tX], E(t)[X] = Ω[−X]. This special element has some
remarkable properties and we call it the Cauchy element.

Proposition 4.5.

(4.12) Ω[X + Y ] = Ω[X]Ω[Y ]

and consequently

(4.13) Ω[−X] = Ω[X]−1

Proof. Note that since Ω = H(1) so we have from equation (4.6) that

(4.14) Ω[X] =
∏

i

1

1− xi

.

Therefore we also have

(4.15) Ω[X + Y ] =
∏

i

1

1− xi

∏
i

1

1− yi

= Ω[X]Ω[Y ]
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Notice that Ω[X − X] = 1 since for k > 0, pk[X − X] = pk[X] − pk[X] = 0. This implies
that the operation of sending f to f [X −X] gives the constant term of f and for Ω this is
just 1. Therefore

(4.16) Ω[X −X] = Ω[X]Ω[−X] = 1

and so Ω[−X] = Ω[X]−1 =
∏

i 1− xi. �

Algebra with infinite series sometimes has unusual consequences and there is one relation
involving the element Ω which we shall exploit as often as possible.

Proposition 4.6. (The phantom relation) Let φ(z, u) =
∑

k∈Z z
ku−k, then for any alphabet

X,

(4.17) φ(z, u)Ω[zX]Ω[−uX] = φ(z, u)

What this means is that φ(z, u) (1− Ω[zX]Ω[−uX]) = 0 which is slightly unexpected since
elements of our polynomial algebra are not zero divisors, however playing with these infinite
series we can arrive at these unusual relations.

Proof. Take the coefficient of zmun in φ(z, u)Ω[zX]Ω[−uX]. This will be equal to

· · ·+ (−1)n−1hm+1[X]en−1[X] + (−1)nhm[X]en[X]

+ (−1)n+1hm−1[X]en+1[X] + (−1)n+2hm−2[X]en+2[X] + · · ·

Because hn[X] = en[X] = 0 for n < 0, this sum is not infinite for each m and n, instead we
have that for m+ n > 0 the sum is equal to

(4.18)
m+n∑
i=0

(−1)ihm+n−i[X]ei[X] = 0.

If m + n < 0, then the sum is 0 simply because all terms are equal to 0, and if m + n = 0
then exactly one term is non-zero and it is equal to 1. This means that the coefficient of
zmun in φ(z, u)Ω[zX]Ω[−uX] is equal to 1 if m = −n and 0 otherwise and hence the series
is equal to φ(z, u). �

Another remarkable property of the element Ω is that it plays the role of the identity element
with respect to the Kronecker product. This means that for any symmetric function Ω∗ f =
f ∗Ω = f . The bialgebra structure with product ∗ and coproduct ∆′ has an identity element
but that element does not lie in the algebra Λ, instead it is in the completion of Λ.

4.1. The monomial symmetric functions

For any given basis {aλ}λ of Λ (so far we are essentially working with just the power,
homogeneous and elementary) we can ask “what is the set of elements of Λ, {bλ}λ, such that
〈aλ, bµ〉 = δλµ?”
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It is a basic fact of linear algebra that the {bλ}λ must also be a basis since if there is some
linear dependence

∑
µ cµbµ = 0 with at least one cλ 6= 0, then

∑
µ cµbµ cannot be 0, because

then cλ =
〈∑

µ cµbµ, aλ

〉
= 〈0, aλ〉 = 0. Therefore because the set {bλ}λ has exactly the

number of partitions of n elements at each degree and this set is linearly independent and
therefore it spans and is a basis. We will call {bλ}λ the basis dual to {aλ}λ. Notice also that
this property is reflexive and {aλ}λ is the dual basis to {bλ}λ as well.

The bases {pλ}λ and {pλ/zλ}λ are a pair of dual bases. As we have only just developed two
other bases {hλ}λ and {eλ}λ, we should ask what their dual bases are. For this reason we
develop the following amazing property of the element Ω. In the expression below, XY is the
product of X =

∑
i xi and Y =

∑
j yj and hence XY =

∑
i,j xiyj. Therefore by definition,

Ω[XY ] =
∏

i,j
1

1−xiyj
.

Proposition 4.7. Let {aλ}λ be a basis for the symmetric functions then {bλ}λ is the dual
basis if and only if

(4.19) Ω[XY ] =
∑

λ

aλ[X]bλ[Y ]

It follows then that

(4.20) 〈f [X],Ω[XY ]〉X = f [Y ]

Proof. Since Ω =
∑

n≥0

∑
λ`n pλ/zλ, then we see that

Ω[XY ] =
∑
n≥0

∑
λ`n

pλ[X]pλ[Y ]/zλ

=
∑
n≥0

∑
λ`n

∑
µ`n

aµ[X] 〈pλ[X], bµ[X]〉X pλ[Y ]/zλ

=
∑
n≥0

∑
µ`n

aµ[X]
∑
λ`n

〈pλ[X], bµ[X]〉X pλ[Y ]/zλ(4.21)

=
∑
n≥0

∑
µ`n

aµ[X]bµ[Y ]

The reverse implication can be seen from the same calculation since∑
n≥0

∑
λ`n

pλ[X]pλ[Y ]/zλ =
∑
n≥0

∑
λ`n

∑
µ`n

aµ[X] 〈pλ[X], bµ[X]〉X pλ[Y ]/zλ

so we can conclude by taking the coefficient of pλ[Y ]/zλ that pλ =
∑

µ`n aµ 〈pλ, bµ〉. This

means that if aγ =
∑

λ cγλpλ,

aγ =
∑

λ

cγλpλ =
∑

λ

cγλ

∑
µ`n

aµ 〈pλ, bµ〉 =
∑
µ`n

〈aγ, bµ〉 aµ

Since {aλ}λ is a basis, we can take the coefficient of aλ on both sides of this equation and
conclude that 〈aγ, bλ〉 = δλγ and hence {bµ}µ is the dual basis to {aλ}λ.
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To show the last result, we take for f ∈ Λ and expand it in the power symmetric function
basis using some coefficients cλ, f =

∑
λ cλpλ.

〈f [X],Ω[XY ]〉 =
∑

λ

cλ
∑

µ

〈pλ[X], pµ[X]/zµ〉X pµ[Y ]

=
∑

λ

cλpλ[Y ] = f [Y ].(4.22)

�

We will define the basis dual to {hλ}λ to be the monomial basis {mλ}λ and the basis dual to
the elementary symmetric functions {eλ}λ are usually referred to as the forgotten symmetric
functions. The last proposition can be used to find a direct formula for the monomial
symmetric functions.

Proposition 4.8. Let λ ` n,

(4.23) mλ[X] =
∑
α∼λ

∏
i

xαi
i

where the sum is over all sequences α = (α1, α2, α3, . . .) and we have taken α ∼ λ to mean
the number of non-zero entries in α is `(λ) and if they are sorted in decreasing order the
sequence is equal to λ.

Proof. From the last propostion we know that Ω[XY ] =
∏

i
1

1−xiyj
=
∑

λ hλ[X]mλ[Y ].

Now consider the coefficient of yα1
i1
yα2

i2
· · · yαk

ik
in Ω[XY ] is

(4.24)
∏

j

1

1− xjyi1

∣∣∣
y

α1
i1

∏
j

1

1− xjyi2

∣∣∣
y

α2
i2

· · ·
∏

j

1

1− xjyik

∣∣∣
y

αk
ik

which is equal to hα1 [X]hα2 [X] · · ·hαk
[X]. Therefore we may realize Ω[XY ] as a sum over

all sequences α = (α1, α2, α3, . . .) with αi ≥ 0 and a finite number of non-zero entries we find
that

(4.25) Ω[XY ] =
∑

α

hα[X]yα

where hα = hλ if α ∼ λ. This means that mλ[Y ] is equal to the coefficient of hλ[X] in the
expression above and hence it is equal to

∑
α∼λ y

α. �

We have defined the monomial symmetric functions {mλ}λ as the basis which is dual to the
homogeneous basis {hλ}λ, but now knowing an explicit formula for mλ[X] allows us to easily
deduce relations between these bases that are difficult to show otherwise. For instance, we
immediately see that m(k)[X] = pk[X] and m(1k)[X] = ek[X] and therefore m(k) = pk and
m(1k) = ek and so unlike our other bases mλ is not generated as a product of elements. We
can also see that hk =

∑
λ`k mλ either from Proposition 4.1 or by recalling that we have

calculated 〈hk, hλ〉 = 1 as an exercise. The formula for mλ[X] can also be used to derive a
combinatorial rule for multiplying two monomial symmetric functions together.
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Proposition 4.9. Let λ ` n and µ ` k

(4.26) mλ ·mµ =
∑

ν`n+k

rν
λµmν

where rν
λµ is the number of pairs of sequences (α, β) with αi, βi ≥ 0 where α ∼ λ and β ∼ µ

such that α+ β = ν.

Proof. This is easily seen in the expansion of mλ[X]mµ[X], we need only take the
coefficient of xν in this expression. There is a contribution of weight 1 to each monomial of
type xν in the product for each α ∼ λ and β ∼ µ such that xαxβ = xν . This is equivalent to
the condition that α+ β = ν. �

Example 21. We ask what the coefficient of m(4,3,3) is in m2
(2,2,1). This must be 2 because

the only pairs (α, β) ∼ ((2, 2, 1), (2, 2, 1)) such that α + β = (4, 3, 3) are ((2, 1, 2), (2, 2, 1))
and ((2, 2, 1), (2, 1, 2)). As a more pictorial way of expressing this result, we may ask how
many ways are there of coloring the Young diagram of the partition (4, 3, 3) with two colors
(the first color always lies to the left of the second) such that the horizontal pieces of the
first color are of size (2, 2, 1) and of the second color are of size (2, 2, 1). The two diagrams
are expressed as

Perhaps this combinatorial rule looks familiar since the coefficient of mν in mλmµ will be
the same as the coefficient of hλ ⊗ hµ in the expression ∆(hν) (a fact which we leave to the
reader as an exercise). We used the same picture as appeared in chapter 1 to demonstrate
exactly that connection.

From this we can arrive at a combinatorial method for computing the scalar product of
〈hλ, hµ〉, 〈eλ, hµ〉 or 〈pλ, hµ〉. The scalar product of 〈hn, hλ〉 appears in the exercises of the
last section, but the solution relied on the use of the h⊥k operators on the hµ basis. This time
we give a proof that relies on a simple observation about symmetric functions given in terms
of their variables. Since the homogeneous basis is dual to the monomial basis, we know that
〈f, hµ〉 is the coefficient of mµ[X] in f [X].

Proposition 4.10. For µ a partition of n, 〈hλ, hµ〉 = Aλµ or

(4.27) hµ =
∑

λ

Aλµmλ

where Aλµ is the number of matricies with entries in N whose column sum is µ and row sum
is equal to λ. 〈hλ, eµ〉 = Bλµ or

(4.28) eµ =
∑

λ

Bλµmλ
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where Bλµ is the number of matricies with entries in {0, 1} whose column sum is µ and row
sum is equal to λ. 〈hλ, pµ〉 = Cλµ or

(4.29) pµ =
∑

λ

Cλµmλ

where Cλµ is the number of matricies with entries in N whose column sum is µ and row sum
is equal to λ and there is at most one non-zero entry for each column.

Proof. The coefficient of mλ in hµ will be equal to the coefficient of xλ in hµ[X]
so we need only count the number of ways the coefficient xλ may arise in hµ[X]. Since
hn[X] =

∑
|α|=n x

α where the sum is over all compositions α whose entries sum to n, we see

that the coefficient of xλ will be the number of sequences (α(1), α(2), . . . , α(`(µ))) such that

xα(1)
xα(2) · · ·xα(`(µ))

= xλ where α(i) is a composition such that |α(i)| = µi. We may think of
α(i) as a column vector of length `(µ) since the last non-zero entry occurs before `(µ) and
the sum of the entries in that column are of course µi. The sum of the rows of the matrix
(α(1), α(2), . . . , α(`(µ))) are exactly λ. Since there is a contribution of 1 to the coefficient of xλ

in hµ[X] for every such matrix Aλµ is exactly the number of such matricies.

The interpretation for Bλµ and Cλµ are very similar. Since the coefficient of mλ in eµ is
equal to the coefficient of xλ in eµ[X], we are counting the number of ways that xλ arises in
eµ[X]. Since en[X] =

∑
|α|=n x

α with the sum running over all compositions α with entries

in {0, 1}. This means that the coefficient of xλ is again counting the number of matricies
whose column sums are µi and whose row sums are λj, but with the additional restriction
that the entries in these matricies are either 0 or 1.

Similarly, the interpretation for Cλµ arises because pn[X] =
∑

i x
n
i =

∑
|α|=n x

α, where the
sum is over all compositions α with exactly one entry equal to n and the other enetries 0.
This implies that the coefficient of xλ in pµ[X] is the number of matricies whose row sum
λj and whose column sum is µ but at most one entry in the each column is allowed to be
non-zero. �

Example 22. It is useful to see this proposition work in an example. We have established
the coefficient of m(2,2,2) in e(3,2,1) is B(2,2,2),(3,2,1) and recall that this will also be the scalar

product
〈
h(2,2,2), e(3,2,1)

〉
. One method for computing this scalar product could be to compute

this directly by expanding both expressions in the power basis and using the definition of
the scalar product, but we can also construct each of the {0, 1} matricies with row sums
equal to (2, 2, 2) and column sums equal to (3, 2, 1). By exhaustively writing them out, we
see there are exactly 3. They are

(4.30)

1 1 0
1 1 0
1 0 1

 ,

1 1 0
1 0 1
1 1 0

 ,

1 0 1
1 1 0
1 1 0

 .

This is not however the only combinatorial interpretation possible for these coefficients. We
can provide another set of objects with the same number of elements as an interpretation that
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is perhaps easier to visualize. These interpretations are not significantly different however
since there is a direct bijection between the elements in one set and the other.

Corollary 4.11. Alternatively, Aλµ is the number of ways of filling the the Young diagram
for the partition λ with µ1 1s, µ2 2s, etc. that are weakly increasing in the rows and there is
no restriction on the relationship between the values in the columns.

Bλµ is the number of ways of filling the the Young diagram for the partition λ with µ1 1s, µ2

2s, etc. that are strictly increasing in the rows and there is no restriction on the relationship
between the values in the columns.

Cλµ is the number of ways of filling the the Young diagram for the partition λ with µ1 1s, µ2

2s, etc. that are weakly increasing in the rows and we require that all cells with label i must
lie in the same row.

Example 23. We again compute the same coefficient
〈
h(2,2,2), e(3,2,1)

〉
by giving the possible

fillings of the Young diagram of shape (2, 2, 2) with 3 1s, 2 2s and 1 3.

(4.31)

1 3
1 2
1 2

1 2
1 3
1 2

1 2
1 2
1 3

Notice the relationship between these tabloid and to the matricies listed in the previous
example. A bijection between the two sets of objects should be clear.

Example 24. To expand h(3,2) in terms of the monomial symmetric functions we examine
all possible ways of filling the Young diagrams for the partitions of size 5 with 3 1s and 2 2s
such that the entries are weakly increasing in the rows. We draw all of the possible tabloid
as follows:

1 1 1 2 2
2
1 1 1 2

1
1 1 2 2

2 2
1 1 1

1 2
1 1 2

1 1
1 2 2

2
2
1 1 1

2
1
1 1 2

1
2
1 1 2

1
1
1 2 2

2
2
1
1 1

2
1
2
1 1

2
1 2
1 1

2
1 1
1 2

1
1 1
2 2

1
2 2
1 1

1
1 2
1 2

1
2
2
1 1

2
1
1
1 2

1
2
1
1 2

1
1
2
1 2

1
1
1
2 2

There are also
(
5
3

)
= 10 ways of filling the Young diagram of shape (11111) in this manner.

This implies that

h(32) = m(5) + 2m(41) + 3m(32) + 4m(311) + 5m(221) + 7m(2111) + 10m(11111).

Example 25. To express p(321) in the monomial basis we need only examine partitions of
size 6 such that the partition are sums of the parts of (3, 2, 1). We list all of the possible
tabloid for the partitions (3, 2, 1), (3, 3), (4, 2), (5, 1), (6).

3
2 2
1 1 1

2 2 3
1 1 1

1 1 1
2 2 3

2 2
1 1 1 3

3
1 1 1 2 2 1 1 1 2 2 3
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This implies that p(3,2,1) has the expansion

p(321) = m(321) + 2m(33) +m(42) +m(51) +m(6).

The forgotten symmetric functions are the basis which is dual to the elementary symmetric
functions. Because we have that 〈ωf, ωg〉 = 〈f, g〉 where f and g are elements of Λ, we have
that 〈eµ, ω(mλ)〉 = 〈hµ,mλ〉 = δλµ and so {ω(mλ)}λ is the basis which is dual to the {eλ}λ.
We name this basis fλ := ω(mλ), the forgotten symmetric functions.

Just by the definition, we have the following formulas:

(4.32) Ω[XY ] =
∑

λ

eλ[X]fλ[Y ]

For a partition µ of n,

eµ =
∑

λ

Aλµfλ

hµ =
∑

λ

Bλµfλ(4.33)

pµ = (−1)|µ|−`(µ)
∑

λ

Cλµfλ

where the coefficients Aλµ, Bλµ and Cλ,µ are given in Proposition 4.10.

(4.34) fλ · fµ =
∑

ν`|λ|+|µ|

rν
λµfν

where the coefficients rν
λµ are given in Proposition 4.9.

To expand the monomial symmetric functions in terms of the forgotten basis we have the
usual expansion

(4.35) mλ =
∑
µ`|λ|

〈mλ, eµ〉 fµ

Notice also that if we expand the elementary basis in terms of the homogeneous basis we see
the same coefficients

(4.36) eµ =
∑
λ`|µ|

〈mλ, eµ〉hλ

That is if we define the coefficient Dλµ := 〈mλ, eµ〉, then we have the symmetry mλ =∑
µDλµfµ and eλ =

∑
µDµλhµ.

We have not exploited completely the formulas that we have derived for the coefficient of
en in the hλ basis. We can use this formula to give a rough combinatorial formula for the
coefficient of hλ in the expansion of eµ. By the solution to exercise 1.9, we know that

(4.37) en =
∑
λ`n

(−1)n−`(λ) `(λ)!∏
imi(λ)!

hλ.
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This implies that

(4.38) eµ =

`(µ)∏
i=1

∑
ν`µi

(−1)µi−`(ν) `(ν)!∏
imi(ν)!

hν .

Now in order to take the coefficient of hλ in this equation we say that there will be a
contribution to the coefficient of hλ for every sequence of partitions (ν(1), ν(2), . . . , ν(`(µ)))
such that ν(1) ] ν(2) ] . . . ] ν(`(µ)) = λ and ν(i) ` µi. We can see immediately that the sign

of eµ

∣∣∣
hλ

is simply (−1)n−`(λ) because the sign of each contribution to the coefficient of hλ in

the product is always
∏`(µ)

i=1 (−1)µi−`(ν(i)) = (−1)|µ|−`(λ). The contribution for each sequence
(ν(1), ν(2), . . . , ν(`(µ))) which satisfies these conditions is

(4.39)

`(µ)∏
i=1

`(ν(i))!∏ν
(i)
1

j=1mj(ν(i))!

This implies the following proposition.

Proposition 4.12.

(4.40)
eµ =

∑
λ`|µ|Dλµhλ hµ =

∑
λ`|µ|Dλµeλ

mµ =
∑

λ`|µ|Dµλfλ fµ =
∑

λ`|µ|Dµλmλ

where

(4.41) Dλµ = (−1)|µ|−`(λ)
∑

(ν(1),ν(2),...,ν(`(µ)))

`(µ)∏
i=1

`(ν(i))!∏ν
(i)
1

j=1mj(ν(i))!

is the sum over all sequences of partitions such that ν(1)]ν(2)] . . .]ν(`(µ)) = λ and ν(i) ` µi.

The formula for Dλµ is very similar to that for the coefficient of hλ in pµ, an explicit formula
for these coefficients was calculated in exercise (1.11). These coefficients also appear in the
expansion of the the monomial and forgotten bases in terms of the power basis.

Proposition 4.13.

pµ =
∑
λ`|µ|

Eλµhλ pµ = (−1)|µ|−`(µ)
∑
λ`|µ|

Eλµeλ

mµ =
∑
λ`|µ|

Eµλpλ/zλ fµ =
∑
λ`|µ|

(−1)|λ|−`(λ)Eµλpλ/zλ

with

Eλµ = (−1)`(λ)−`(µ)
∑

(ν(1),ν(2),...,ν(`(µ)))

`(µ)∏
i=1

µi(`(ν
(i))− 1)!∏

j≥1mj(ν(i))!

where the sum is over all sequences of partitions with ν(i) ` µi and ν(1)]ν(2)]· · ·]ν(`(µ)) = λ.

Proof. The justification of the expansion of pµ in the homogeneous basis is exercise
(1.10) and (1.11) from the previous chapter. An application of ω to this formula justifies the
expansion of pµ in the elementary basis.
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Now to show the expansion of the monomial basis in the power basis, we recall that for µ ` n

mµ =
∑
ν`n

〈mµ, pλ〉 pλ/zλ

=
∑
ν`n

〈
mµ,

∑
ν`n

Eνλhν

〉
pλ/zλ

=
∑
ν`n

Eµλpλ/zλ

The expansion of the forgotten basis in terms of the power basis also follows by an application
of the involution ω on the previous formula. �

We should note that the only one of these formulas where the coefficients all have the same
sign is the expansion of fµ in the power sum basis. The coefficients of pλ will be positive (or
0) if |µ|+ `(µ) is even and negative otherwise.

Example 26. We will give an example of a computation of the expansion of e(421) and p(421)

in the homogeneous basis. The sum is over the same set of objects so it is easy to both of
the computations at the same time.

Each of the following pictures represents how to divide the partition λ in to sub-partitions
(ν(1), ν(2), ν(3)) such that ν(1) ` 4, ν(2) ` 2 and ν(3) ` 1. For each of these tableaux we will
count each with a weight.

3
2
2
1
1
1
1

3
2
2
1
1
1 1

3
1
1
1
1
2 2

3
2
2
1
1 1 1

3
2
2
1 1
1 1

3
1
1
2 2
1 1

3
2 2
1 1
1 1

3
1
2 2
1 1 1

3
2
2
1 1 1 1

3
2 2
1 1 1 1

Now in order to expand e(421) in terms of hλ we count each of these tableaux with the weight

(−1)7−`(λ)

3∏
i=1

`(ν(i))!∏
j≥1mj(ν(i))!

,

where ν(i) is the partition whose rows are labeled with i. This implies that

e(421) = h(421) − h(413) − 2 h(3211) + 2 h(314) − h(231) + 4 h(2213)

− 4 h(215) + h(17)

In order to expand p(421) in terms of hλ, we weight each of the tableaux listed above with
the coefficient

(−1)3−`(λ)4 · 2 · 1
3∏

i=1

(`(ν(i))− 1)!∏
j≥1mj(ν(i))!

.

p(421) = 8 h(421) − 4 h(413) − 8 h(3211) + 4 h(314) − 4 h(231) + 10 h(2213)

− 6 h(215) + h(17)
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From the previous discussion we have determined a formula or combinatorial interpreta-
tion for the coefficient of every one of the 5 bases in every other one of the 5 bases. The
coefficients Aλµ, Bλµ and Cλµ can be found in Proposition 4.10 and Corollary 4.11. A for-
mula/combinatorial interpretation for the coefficients Dλµ is in Proposition 4.12 and the
preceding discussion and Eλµ is in Proposition 4.13. From these definitions we have the
following table for the coefficient of bλ in aµ where aµ represents the entry down the left side
of the table and bλ represents the label across the top of the table.

pλ hλ eλ mλ fλ

pµ δλµ Eλµ (−1)|µ|−`(µ)Eλµ Cλµ (−1)|µ|−`(µ)Cλµ

hµ Cµλ/zλ δλµ Dλµ Aλµ Bλµ

eµ (−1)|λ|−`(λ)Cµλ/zλ Dλµ δλµ Bλµ Aλµ

mµ Eµλ/zλ Fλµ Gλµ δλµ Dµλ

fµ (−1)|λ|−`(λ)Eµλ/zλ Gλµ Fλµ Dµλ δλµ

This leaves two coefficients that we have not yet determined, Fλµ and Gλµ, we leave it as an
exercise to determine some sort of formula for these coefficients. For a more detailed account
of the combinatorial interpretation of change of basis coefficients see [?].

4.2. Algebra operations and sets of variables

The notation that we have introduced allows us to express the operations of our Hopf algebra
and bialgebra that we have already discussed as addition, subtraction and multiplication of
alphabets.

Notice that pk[X + Y ] = pk[X] + pk[Y ] while ∆(pk) = pk ⊗ 1 + 1 ⊗ pk. Because we have
defined pλ[X+Y ] =

∏
i pλi

[X+Y ] =
∏

i(pλi
[X]+pλi

[Y ]). It then follows that the coefficient
of pµ[X]pν [Y ] in pλ[X + Y ] is equal to the coefficient of pµ ⊗ pν in ∆(pλ). More generally it
follows that that if ∆(f) =

∑
i fi ⊗ gi, then f [X + Y ] =

∑
i fi[X]gi[Y ]..

This means that there is a clear isomorphism between Λ ⊗ Λ and ΛX+Y , that is, a basis
element pλ[X]pµ[Y ] of ΛX+Y is isomorphic to the basis element pλ ⊗ pµ ∈ Λ ⊗ Λ. More
generally, an element of ΛX+Y

∑
i fi[X]gi[Y ] is isomorphic to

∑
i fi ⊗ gi. That means that

addition of two sets of variables encodes the coproduct ∆ which we express in the following
proposition.

Proposition 4.14. Given f ∈ Λ such that ∆(f) is given by ∆(f) =
∑

i fi ⊗ gi, then

(4.42) f [X + Y ] =
∑

i

fi[X]gi[Y ].

Moreover, if {aλ}λ and {bλ}λ are dual bases for Λ, then for all f ∈ Λ

(4.43) f [X + Y ] =
∑
k≥0

∑
λ`k

(a⊥λ f)[X]bλ[Y ]
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Proof. We know that for f = pλ we see that

pλ[X + Y ] =

`(λ)∏
i=1

(pλi
[X] + pλi

[Y ])

=
∑

S⊆{1,...,`(λ)}

∏
i∈S

pλi
[X]

∏
i/∈S

pλi
[Y ](4.44)

=
∑
k≥0

∑
µ`k

(
p⊥µ
zµ

pλ

)
[X]pµ[Y ]

Now for f =
∑

λ cλpλ we have that

f [X + Y ] =
∑

λ

cλpλ[X + Y ]

=
∑

λ

cλ
∑
k≥0

∑
µ`k

(
p⊥µ
zµ

pλ

)
[X]pµ[Y ](4.45)

=
∑
k≥0

∑
µ`k

∑
λ

cλ

(
p⊥µ
zµ

pλ

)
[X]pµ[Y ]

=
∑
k≥0

∑
µ`k

(
p⊥µ
zµ

f

)
[X]pµ[Y ]

Now that we know that (4.43) holds for aλ = pλ/zλ and bλ = pλ, we show more generally
that

f [X + Y ] =
∑
k≥0

∑
µ`k

∑
ν`k

(
p⊥µ
zµ

f

)
[X] < pµ, aν > bν [Y ]

=
∑
k≥0

∑
ν`k

∑
µ`k

(
< pµ, aν >

p⊥µ
zµ

f

)
[X]bν [Y ](4.46)

=
∑
k≥0

∑
ν`k

(
a⊥ν f

)
[X]bν [Y ].

�

Subtraction of variables is equivalent to addition of a negative set of variables and a symmet-
ric function evaluated at a negative set of variables is equal to an application of the antipode
map.

Proposition 4.15. For f ∈ Λ such that f is homogeneous of degree k

(4.47) f [−X] = S(f)[X] = (−1)kω(f)[X]

Proof. Recall that S(pk) = −pk = (−1)kω(pk) and S(pλ) = (−1)`(λ)pλ = (−1)|λ|−`(λ)pλ.
We also have pλ[−X] = (−1)`(λ)pλ[X] = S(pλ)[X]. This means that for f =

∑
λ`k cλpλ for
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some coefficients cλ,

f [−X] =
∑
λ`k

cλpλ[−X] =
∑
λ`k

cλS(pλ)[X] = S(f)[X].

�

Remark 5. We can encode the antipode map S which is much like the involution ω, but
not quite the same since it is off by −1 raised to the degree of the symmetric function it is
acting on. It is possible to introduce notation which eliminates the sign. To this end one
may introduce a variable q and at the end of the calculation set q = −1. This will be denoted
ε. That is, for f ∈ Λ, f homogeneous of degree k

f [−εX] = (−1)kω(f)[qX]
∣∣∣
q=−1

= (−1)kqkω(f)[X]
∣∣∣
q=−1

= ω(f)[X].

Note that ε is very different from −1 because it is a variable. This notation is more useful
when working with non-homogeneous symmetric functions since it allows us to encode the
involution ω without referring to the degree of the symmetric function. We will not use this
notation here.

Using this notation we can see multiplication as an operation that maps ΛX+Y to ΛX by
setting the Y variables equal to the X variables. This can be seen since µ(f ⊗ g) = f · g
while at the same time f [X]g[Y ]

∣∣∣
Y =X

= f [X]g[X] = (f · g)[X]. This means that we will be

representing multiplication by the symbol
∣∣∣
Y =X

which acts on the expression that lies to the

left of this symbol by changing the Y variables to the X variables.

This notation implies that we have already computed such expressions as hm[X+Y ] since we
have already computed that ∆(hm) =

∑
i hi ⊗ hm−i in Proposition 1.15. Using the previous

remark, this means hm[X + Y ] =
∑m

i=0 hi[X]hm−i[Y ], and similarly that em[X + Y ] =∑m
i=0 ei[X]em−i[Y ].

Notice that for any f, g ∈ Λ,

(4.48) 〈g[X + Y ], f [Y ]〉 = (f⊥g)[X].

This is perhaps an unusual means for computing f⊥g, but it is important interpretation of
the operation f [X + Y ]. We may also use this operation to compute specific operators f⊥.

Proposition 4.16. For k ∈ Z and f ∈ Λ,

(4.49) h⊥k f [X] = f [X + z]
∣∣∣
zk

(4.50) e⊥k f [X] = f [X − z]
∣∣∣
zk

(−1)k

Proof. The first identity follows from equation (4.43),

(4.51) f [X + z] =
∑

λ

(
h⊥λ f

)
[X]mλ[z]
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all terms of this sum are 0 unless λ has exactly one part. The coefficient of zk in this equation
will be (h⊥k f)[X].

This same argument using the dual bases {eλ}λ and {fλ}λ and the relation fλ[−z] =
(−1)|λ|mλ[z] shows that

(4.52) f [X − z] =
∑

λ

(
e⊥λ f

)
[X]fλ[−z] =

∑
λ

(−1)|λ|
(
e⊥λ f

)
[X]mλ[z].

The coefficient of zk in this equation will be (−1)k(e⊥k f)[X]. �

This last proposition implies that

(4.53) f [X + z] =
∑
k≥0

zk(h⊥k f)[X] = Ω[zX]⊥f [X]

where by Ω[zX]⊥ is the operator which is dual to multiplication by the series Ω[zX] with
respect to the scalar product in the X variables. As a manipulation, we know then for any
two symmetric functions f, g ∈ Λ,

(4.54) 〈f [X], g[X + z]〉 = 〈Ω[zX]f [X], g[X]〉 .

The defining relation of the antipode, µ ◦ (id ⊗ S) ◦ ∆ = u ◦ ε can easily be seen in this
notation.

µ ◦ (id⊗ S) ◦∆(f)[X] = µ ◦ (idXSY )f [X + Y ]

= µf [X − Y ] = f [X −X] = f [0](4.55)

This means that u ◦ ε(f)[X] = f [0], but this was something that we already knew since

u ◦ ε(f) = f
∣∣∣
pk=0

.

Similarly, because we have that pk[XY ] = pk[X]pk[Y ] then just by the definition pλ[XY ] =
pλ[X]pλ[Y ]. Comparing this to ∆′(pλ) = pλ⊗pλ, it follows that again the coefficient of pµ⊗pν

in ∆′(pλ) is equal to the coefficient of pµ[X]pν [Y ] in pλ[XY ] (that is, they are both equal to
δµλδνλ). More generally this shows that if ∆′(f) =

∑
i fi ⊗ gi, then f [XY ] =

∑
i fi[X]gi[Y ].

This means that the coproduct ∆′ is encoded in the multiplication of two sets of variables
in the sense of the following propostion.

Proposition 4.17. For any symmetric function f inΛ, if ∆′(f) =
∑

i fi ⊗ gi, then

(4.56) f [XY ] =
∑

i

fi[X]gi[Y ].

Moreover for any dual bases {aλ}λ and {bλ}λ, we have that

(4.57) f [XY ] =
∑
k≥0

∑
λ`k

(aλ ∗ f)[X]bλ[Y ].
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Proof. We have yet to show (4.57) which we know will hold for f = pλ aµ = pµ/zµ and
bµ = pµ since

(4.58) pλ[XY ] = pλ[X]pλ[Y ] =
∑

µ

(
pµ

zµ

∗ pλ

)
[X]pµ[Y ]

since all but one term of this sum is equal to 0. More generally, if f =
∑

λ cλpλ and {aλ}λ

and {bλ}λ are any pair of dual bases, then

f [XY ] =
∑

λ

∑
µ

cλ

(
pµ

zµ

∗ pλ

)
[X]pµ[Y ]

=
∑

λ

∑
µ

∑
ν

cλ

(
pµ

zµ

∗ pλ

)
[X] 〈pµ, aν〉 bν [Y ](4.59)

=
∑

λ

∑
ν

∑
µ

cλ

(
〈pµ, aν〉

pµ

zµ

∗ pλ

)
[X]bν [Y ]

=
∑

ν

(aν ∗ f) [X]bν [Y ]

�

4.3. Application: Coloring enumeration

Starting with a figure like the one below, we can ask how many distinct ways there are of
coloring the regions of the figure with k colors. If the figure is fixed in place and not allowed
to move the answer is simply k8 since there are 8 regions and each region can be colored
independently with one of k different colors.

Figure 27. A square figure with 8 regions.

Now allow a group of isometries to act on the figure and say that two colorings are equal
if there is some group element that transforms one to the other. With this condition there
must be fewer than k8 colorings because some of the k8 colorings are now the equal. For
instance, if we allow the group of four rotations to act on this figure then the following 4
colorings will be equivalent.
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In general, to count the colorings we cannot simply divide by four since not all colorings will
have the same order in their symmetry. In fact we will show that the number of colorings
of figure 27 with k colors and this group of isometries acting on it is 1

4
(k8 + 2k2 + k4),

something that is difficult to do with a simple counting argument.

A more general problem is to count the number of ways of coloring a figure like the one in
figure 27 with a1 regions blue, a2 regions red, a3 regions green, etc. such that a1+a2+a3+· · ·
is equal to the number of regions. For example to color figure 27 with 6 blue regions and
2 green regions it is not difficult to determine that there are 8 distinct colorings like those
given below. We wish to approach this problem in a general setting and give a formula for
these enumerations.

It turns out that both of these types of problems can be solved using symmetric functions and
the link between enumerating colorings and symmetric polynomials is a generating function
for the number of colorings. Notice that if we assign a monomial weight w(c) to each possible
coloring c of a figure where w(c) is x1 raised to the number times the first color appears,
x2 to the number of times the second color appears, etc., then the sum over all possible
colorings of w(c) will be symmetric in the variables xi and hence this expression will be a
symmetric polynomial.

To begin we introduce some notation. A group action of a group G on a set R of regions to
be colored satisfying the following properties:

(1) For the identity element e ∈ G, e(r) = r for r ∈ R.
(2) For g1, g2 ∈ G, g1(g2(r)) = (g1 · g2)(r) for all r ∈ R.
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Now the elements g ∈ G act on the set R and permute the elements. The cycle type of G
when it acts on R will be denoted by λR(g) and is equal to the cycle type of the following
permutation: (

r1 r2 · · · rn

g(r1) g(r2) · · · g(rn)

)
.

Define the cycle index symmetric function of a group G acting on a set R will be denoted

(4.60) CG
R =

1

|G|
∑
g∈G

pλR(g)

and it is a symmetric function of degree equal to the number of elements of R.

Example 28. Let G = C4 be the cyclic group of permutations which rotate figure 27. That
is, there are four elements of this group C4 = {e, r, r2, r3} where r4 = e and r acting on
this figure is a rotation by 90 degrees. There are 8 regions of this figure to be colored and
λR(e) = (18), λR(r) = λR(r3) = (4, 4), and λR(r2) = (2, 2, 2, 2). Therefore

CC4
R =

1

4

(
p8

1 + 2p2
4 + p4

2

)
.

Example 29. Let G = D4 be the group of rotations and reflections acting on figure 27. This
time there are 8 elements in the group, D4 = {e, r, r2, r3, s, sr, sr2, sr3} where r4 = e and
s2 = e and sr = r3s. r acting on this figure is again a rotation by 90, s will be a flip across the
horizontal passing through the center of the figure. We have already calculated the cycle type
of the elements e, r, r2, r3 and we also have λR(s) = λR(sr) = λR(sr2) = λR(sr3) = (2, 2, 2, 2).
Therefore

CD4
R =

1

8

(
p8

1 + 2p2
4 + 5p4

2

)
.

If we have a group action of G on a set X then the orbit of an element x ∈ X is the set

Orbit(G;x) = {g(x) : g ∈ G}.

We also define the stablilizer of an element x to be the set

Stab(G;x) = {g ∈ G : g(x) = x}.

If g ∈ Stab(G;x) then g−1(x) = g−1(g(x)) = (g−1g)(x) = x and hence g−1 ∈ Stab(G;x). If
g, h ∈ Stab(G;x) then (gh)(x) = g(h(x)) = x and so gh ∈ Stab(G;x) and hence Stab(G;x)
is a subgroup of G. We also have that for g ∈ G, if g(x) = y then g−1(y) = g−1(g(x)) =
(g−1g)(x) = x. The orbit and the stabilizer of an element x are related by the set Orbit(G;x)
is isomorphic to the set of left cosets of Stab(G;x). We show this in the following lemma.

Proposition 4.18. For x ∈ X, we have Orbit(G;x) is isomorphic to the set of left cosets
of Stab(G;x) in G. This implies

|Orbit(G;x)| |Stab(G;x)| = |G| .
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Proof. The correspondence between the orbit and the cosets of the stabilizer simply
sends the element gx to the coset g · Stab(G;x). We show

g · Stab(G;x) = h · Stab(G;x) ⇔ (h−1g) · Stab(G;x) = Stab(G;x)

⇔ h−1g ∈ Stab(G;x)

⇔ (h−1g)(x) = x

⇔ g(x) = h(x).

This shows that the map is onto since for g ∈ G, g(x) = gi(x) for some representative
element gi(x) ∈ Orbit(G;x) and g · Stab(G;x) = gi · Stab(G;x). This also implies that the
map is one-to-one since g(x) = h(x) implies g · Stab(G;x) = h · Stab(G;x). Since the cosets
of Stab(G;x) partition the group G into equal parts and every element is in exactly one
coset, we know that

|Orbit(G;x)| = # cosets of Stab(G;x) in G =
|G|

|Stab(G;x)|
.

�

If we have a finite set X and G acts on X by permuting the elements, then there are a
finite number of sets Orbit(G; c) and every element of X will be in exactly one of the orbits
(the set of orbits forms a partition of the set X). Let m be the number of elements in
{Orbit(G; c) : c ∈ X} and let c1, c2, . . . , cm be representative elements of this set of orbits so
that every c ∈ X is in exactly one set Orbit(G; ci).

Proposition 4.19. If c ∈ Orbit(G; d), then Orbit(G; c) = Orbit(G; d) and consequently
|Stab(G; c)| = |Stab(G; d)|.

Proof. If c ∈ Orbit(G; d) then c = g(d) for some g ∈ G. This mean that

Orbit(G; c) = {h(c) : h ∈ G} = {h(g(d)) : h ∈ G} = Orbit(G; d).

�

For a finite set R of regions, a coloring of R with k colors is a map c : R→ {1, 2, . . . k}. If g
acts on R then the definition of g on the coloring c is g(c)(r) = c(g(r)) for r ∈ R (in other
words, a group acts on a coloring of the regions by permuting the regions).

A coloring c will be invariant under the action of a group element g if every r in the same
orbit of g is colored with the same value, that is, if g(r) = r′ then c(r) = c(r′). This implies
that each cycle in the permutation(

r1 r2 · · · rn

g(r1) g(r2) · · · g(rn)

)
may be assigned a value independently. The number of colorings invariant under the action
of the element g ∈ G is equal to k raised to the number of cycles in this permutation or
k`(λR(g)) = pλR(g)[k]. That is, we have

pλR(g)[k] = #{c : R→ {1, 2, . . . k}|g(c) = c}.
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This leads us to our first enumeration formula:

Theorem 4.20. (Burnside’s formula) Let R be a set of regions to color and X be the set of
colorings with k colors. Say that the set {Orbit(G; c) : c ∈ X} has order m, then

CG
R [k] = m.

Proof. Let m be the number of elements in {Orbit(G; c) : c ∈ X} and c1, c2, . . . , cm be
a set of representative elements so that every c ∈ X is in exactly one of the sets Orbit(G; ci).

CG
R [k] =

1

|G|
∑
g∈G

pλR(g)[k]

=
1

|G|
∑
g∈G

∑
c∈X

g(c)=c

1

=
1

|G|
∑
c∈X

∑
g∈G

g(c)=c

1

=
1

|G|

m∑
i=1

∑
c∈Orbit(G;ci)

|Stab(G; c)|(4.61)

=
1

|G|

m∑
i=1

∑
c∈Orbit(G;ci)

|Stab(G; ci)|

=
1

|G|

m∑
i=1

|Orbit(G; ci)||Stab(G; ci)|

=
1

|G|

m∑
i=1

|G| = m.

�

Example 30. We computed CC4
R and CD4

R for R equal to the regions in figure 27. Theorem
4.20 says that the number of distinct ways of coloring this figure k colors when the group C4

acts on the figure is 1
4
(k8 + 2k2 + k4) and when D4 acts on the figure is 1

8
(k8 + 2k2 + 5k4).

Let us consider a figure which we can verify by hand very easily that this formula does in
fact work as advertised.

Example 31. How many ways are there of coloring a cube with 2 colors such that two
coloring are considered to be equal if they look the same by a rotation? The natural group
of isometries which acts on this object is the group of rotations which permute the faces,
edges and vertices of the cube.

It helps to have a cube to look at, if you can find a die or a Rubik’s cube the calculations
that we are about to do will seem easier.
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We note that the symmetry group of rotations the cube has 24 elements in it. This is easy
to see because any rotation of the cube moves one of 6 faces to the face which is on top and
then there are 4 choices for the face which is in front. The question is, what are these 24
group elements which act on the cube?

The first element to consider is the identity element. There is only 1 of these.

Next, there are 9 rotations of the cube with two faces left fixed. In the figure below this
corresponds to the rotations about one of the three lines which pass through the center of
the cube perpendicular to exactly two faces.

There are also 6 rotations of the cube by 180 degrees that leave two edges fixed. This
corresponds to a rotation around one of the the six lines in the figure below that pass
through the center of the cube and are perpendicular to two edges.

Finally there are 8 rotations by 120 degrees or 240 degrees around two opposite corners of
the cube. This will be a rotation around one of the four lines in the figure below that pass
through the center of the cube and connect two of the corners.
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Let G be this group of isometries and R be the 6 faces of the cube. Calculating CG
R is as easy

as looking at each of the four types of permutations listed above. By looking at a cube and
noticing what the cycle type of each of these permutations of the faces is we calculate

1

24

(
p6

1 + 6p4p
2
1 + 3p2

2p
2
1 + 6p3

2 + 8p2
3

)
.

Therefore if we wish to know the number of distinct ways of coloring the cube with 2 colors, it
will be 1

24
(26 + 6 · 23 + 3 · 24 + 6 · 23 + 8 · 22) = 10. This number is something we can easily

determine by exhaustively listing the 10 possible colorings. In the figure below we have
folded out flat the 6 faces of the cube and colored them either red or blue.

Example 32. How many distinct ways are there of coloring the following figure with 3 colors
where the group that acts on it is generated by a reflection across the vertical line and a
rotation by 60 degrees?

The group acting on this figure is the dihedral group of order 12 since it is generated
by two elements x, y ∈ D6 satisfying x6 = y2 = e and xy = yx5. This means that
D6 = {e, x, x2, x3, x4, x5, y, yx, yx2, yx3, yx4, yx5}. There are 30 regions in the figure and
are permuted by the elements of this group. We compute the following cycle structures of
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these group elements on the regions of the figure.

λR(e) = (130)

λR(x) = λR(x5) = (65)

λR(x2) = λR(x4) = (310)

λR(x3) = λR(yx) = λR(yx3) = λ(yx5) = (215)

λR(y) = λR(yx2) = λ(yx4) = (214, 12)

These calculations determine

CD6
R =

1

12

(
p30

1 + 2p5
6 + 2p10

3 + 4p15
2 + 3p14

2 p
2
1

)
It follows then that the number of ways of coloring this figure with 3 colors is equal to

CD6
R [3] =

1

12

(
330 + 2 · 35 + 2 · 310 + 4 · 315 + 3 · 316

)
= 17157609895752.

Example 33. A simple graph is a set of vertices V (which we shall take as the set =
{1, 2, . . . n}) together with a set of edges E ⊆ {{u, v} : u, v ∈ V and u 6= v}. The symmetric
group acts on V by permuting the vertex set and on edges by σ{u, v} = {σ(u), σ(v)}. In our
context, two graphs (V,E) and (V,E ′) will be isomorphic if there is a permutation σ ∈ Symn

such that σE = E ′.

A simple graph is represented by a set of labeled points and a line between two points u and
v if {u, v} is an edge in E.

We wish to count non-isomorphic simple graphs and this can be done by thinking of a graph
(V,E) as a coloring of the two element subsets Rn = {{i, j} : 1 ≤ i < j ≤ n} with two colors
say white and black. The black edges will represent those which are in E and the white ones
will represent those that are not in E.

This means that CSymn
Rn

will be a symmetric function of degree
(

n
2

)
. Lets compute the number

of non-isomorphic graphs on with 2, 3, 4 and 5 vertices. To determine these symmetric
functions we need to determine the action for each σ on the two element subsets but it is
only necessary to look at one of each cycle type (we will list calculate λR of each of the group
elements listed in cycle notation).

For n = 2, λR2((1)(2)) = (1) and λR2((12)) = (1). Therefore CSym2
R2

= 1
2
(p1 + p1) = p1.

For n = 3, there are 3 two element subsets and λR3((1)(2)(3)) = (1, 1, 1), λR3((12)(3)) =

(2, 1) and λR3((123)) = (3). We have, CSym3
R3

= 1
6

(
p(13) + 3p(2,1) + 2p(3)

)
= h3.

For n = 4, there are 6 two element subsets. λR4((1)(2)(3)(4)) = (16), λR4((12)(3)(4)) =
(2, 2, 1, 1), λR4((12)(34)) = (2, 2, 1, 1), λR4((123)(4)) = (3, 3), λR4((1234)) = (4, 2). The
cycle index symmetric function is

CSym4
R4

=
1

24

(
p(16) + 6p(2,2,1,1) + 3p(2,2,1,1) + 8p(3,3) + 6p(4,2)

)
.
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For n = 5 there are 10 two element subsets. For the most part, the order of the subset
{u, v} will be the l.c.m. of the length of the cycle that u is in and the length of the cycle
that v is in (the exception being the sets {1, 3} and {2, 4} under the action of the element
(1234)(5)). λR5((1)(2)(3)(4)(5)) = (110), λR5((12)(3)(4)(5)) = (23, 14), λR5((12)(34)(5)) =
(24, 1, 1), λR5((123)(4)(5)) = (33, 1), λR5((123)(45)) = (6, 3, 1), λR5((1234)(5)) = (4, 4, 2),
λR5((12345)) = (5, 5).

CSym5
R5

=
1

120

(
p(110) + 10p(23,14) + 15p(24,1,1) + 20p(33,1) + 20p(6,3,1) + 30p(4,4,2) + 24p(5,5)

)
.

Now that we have the cycle index symmetric functions, it is quite easy to determine the
number of non-isomorphic simple graphs there are, we just evaluate them at the value 2.
This means that there are CSym2

R2
[2] = 2 graphs on two vertices, CSym3

R3
[2] = 4 graphs on three

vertices, CSym4
R4

[2] = 11 graphs on four vertices, and CSym5
R5

[2] = 34 graphs on five vertices.
Each of these values are not too difficult to verify by hand so we draw the sets of graphs
below to see that they agree with the theory.
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We turn our attention now to a more specific type of enumeration problem, that of counting
the number of ways of coloring a figure using a prescribed number of colors. We gave an
example of such a question when above when we posed the question how many ways the
figure 27 could be colored with 6 blue regions and 2 green regions.

Let G be a group with an action on a set of regions R. For any coloring c : R→ N, we call the

weight function the map w with w(c) =
∏|R|

i=1 xc(ri) where the ri are the elements of R listed
in some order (since our variables commute this expression is independent of the order). The
weight function sends a coloring to a monomial in Q[x1, x2, x3, . . .] The generating function∑

cw(c) where the sum is over all distinct colorings of R under the group G is called the
pattern inventory.

The pattern inventory is a generating function which contains all the information necessary
to count the number of patterns with given number of colors appearing, we need only take
a coefficient in this generating function of xa1

1 x
a2
2 x

a3
3 · · · to find the number of colorings with

color 1 appearing a1 times, color 2 appearing a2 times, color 3 appearing a3 times, etc.

This generating function also encodes the total number of colorings using k colors. We can
recover the information by setting x1 = x2 = · · · = xk = 1 and xk+1 = xk+2 = · · · = 0. This
give a clue to identifying the formula for the pattern inventory.
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Theorem 4.21. (Pòlya’s theorem) Let G be a group which acts on a set R and let C be a
set of colorings mapping R to the set N which are all distinct under the action of G.

CG
R [X] =

∑
c∈C

w(c).

Proof. This means �

4.4. Exercises:

(1) Show

ek [[n]q] = q(
k
2)
[
n

k

]
q

where [n]q = 1−qn

1−q
, [n]q! = [n]q[n− 1]q · · · [1]q and

[
n
k

]
q

= [n]q !

[n−k]q ![k]q !
.

(2) Show

hk [[n]q] =

[
n+ k − 1

k

]
q

.

(3) Show

pk [[n]q] =
[nk]q
[k]q

.

(4) Show directly (without appealing to a formula which we have derived for these
values) that the coefficient of mν in mλmµ will be the same as the coefficient of
hλ ⊗ hµ in the expression ∆(hν).

(5) Show that ek[X − z] =
∑k

i=0(−z)iek−i[X] and hk[X − z] = hk[X]− zhk[X].
(6) Show Ω ∗ f = f ∗ Ω = f for all f ∈ Λ.

(7) Show that Ω
[

x−y
1−q

]
=
∏

i≥0
1−xqi

1−yqi .

(8) Show that if f(Xn) is in the linear span of the symmetric polynomials mλ[Xn] over
Z then when it is expressed in the {eλ[Xn]}λ1≤n basis it has coefficients in Z and
when it is expressed in the {hλ[Xn]}λ1≤n basis it has coefficients in Z. Show that in
general if it is expressed in the {pλ[Xn]}λ1≤n basis the coefficients will be in Q.

(9) Show that

〈hµ, eλ′〉

 > 0 if µ < λ
= 1 if λ = µ
= 0 otherwise.

(10) Determine some sort of formula for the coefficient of hλ in mµ and the coefficient
of eλ in mµ in terms of the other coefficients which we have already determined a
formula.
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The Schur functions

The last of the six standard bases of the symmetric functions which have yet to give an
account for are the Schur symmetric functions. We have saved the best for last. Since we
have developed the symmetric functions as an algebra generated by elements h1, h2, h3, . . .
it seems natural to take a the following formula as a definition of the Schur function basis.

(5.1) sλ := det|hλi−i+j|1≤i,j≤`(λ).

This is known as the Jacobi-Trudi formula for the Schur functions.

Example 34.

s(1n) = det

∣∣∣∣∣∣∣∣∣∣

h1 h2 h3 · · · hn

1 h1 h2 · · · hn−1

0 1 h1 · · · hn−2
...

...
0 · · · 0 1 h1

∣∣∣∣∣∣∣∣∣∣
This determinant we know to be equal to en by exercise 1.6(b).

s(n) = det
∣∣ hn

∣∣ = hn

s(n−k,1k) = det

∣∣∣∣∣∣∣∣∣∣∣∣

hn−k hn−k+1 hn−k+2 · · · hn

1 h1 h2 · · · hk

0 1 h1 · · · hk−1

0 0 1 · · · hk−2
...

...
0 · · · 0 1 h1

∣∣∣∣∣∣∣∣∣∣∣∣
By expanding this determinant about the first column and using the result above for s(1n)

and a short induction argument we can see that this is equal to hn−kek − hn−k+1ek−1 +
hn−k+2ek−2 − · · ·+ (−1)khn.

There are literally dozens of formulas for the Schur functions which we could have taken as
a starting point to study these elements of the ring of symmetric functions. We chose the
Jacobi-Trudi formula because it seems to be the simplest formulation for these functions as
elements in the algebra Λ = Q[h1, h2, h3, . . .]. The original definition of the Schur function is
due to Jacobi and was defined as the ratio of alternating polynomials as we present in (7)
below.

The Schur functions {sλ} are the fundamental basis for the symmetric functions just as
the irreducible characters of the symmetric group are the fundamental basis for the class
functions of the symmetric group. Our presentation of them will begin as a deluge of formulas

75
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for the Schur functions by showing that 16 formulations of the definition are all an equivalent
way of defining the basis sλ. In this way we not only show that all of these formulas hold,
but also that any one of them can be taken as the definition and the other formulas follow.

Before we begin we should note that some of the following definitions are obviously equivalent
to each other and that it is not difficult to show one from the other so perhaps it is unfair
to say that we are presenting 16 different definitions. At the same time the object of the
following theorem is to try to take some of the mystery out of the Schur functions and
indicate why they are an important basis.

Theorem 5.1. (A plethora of Schur function definitions) The following definitions are equiv-
alent.

(1)
sµ = det|hµi−i+j|1≤i,j≤`(µ)

(2) Let n ≥ `(µ)

sµ[X] = Ω[XYn]
∏

1≤i<j≤n

(1− yj/yi)
∣∣∣
yµ

(3) Let Sm =
∑

i≥0(−1)ihm+ie
⊥
i , then

sµ = Sµ1Sµ2 · · ·Sµ`(µ)
1

(4) Let S̃m =
∑

i≥0(−1)iem+ih
⊥
i ,

sµ = S̃µ′1
S̃µ′2

· · · S̃µ′
`(µ′)

1

(5) Let n ≥ `(µ′)

sµ[X] = Ω[−XYn]
∏

1≤i<j≤n

(1− yj/yi)
∣∣∣
yµ′

(6)
sµ = det|eµ′i−i+j|1≤i,j≤`(µ′)

(7)
sλ[Xn] = ∆λ+δn(Xn)/∆δn(Xn)

where ∆(a1,a2,...,an)(Xn) = det|xaj

i | and δn = (n− 1, n− 2, . . . , 1, 0).
(8) sµ[Xn] = Jn(xµ), where Jn(f(x1, . . . , xn)) = Wn(f(x1, . . . , xn))/Wn(1) and

Wn(f(x1, . . . , xn)) =
∑

σ∈Symn

ε(σ)σ(xδf(x1, . . . , xn))

(9)

sµ[Xn] =
∑

σ∈Symn

σ

(
xµ
∏
i<j

xi

xi − xj

)
(10) {sµ}µ`n is the set of elements of Λn which satisfy the equations

hµ =
∑
λ`n

Kλµsλ

where Kµλ is the number of column strict tableaux of shape µ and content λ.
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(11)

sµ =
∑

λ

Kµλmλ

where Kµλ is the number of column strict tableaux of shape µ and content λ.
(12)

sµ[Xn] =
∑

T

n∏
i=1

x
ni(T )
i

where the sum is over all column strict tableaux of shape µ and content with labels
1 through n and ni(T ) is the number of cells of T labeled with an i.

(13) {sµ}µ is the unique basis which satisfies the following two properties
(a) sµ = mµ +

∑
λ<lexµ cλµmλ for some coefficients cλµ

(b) 〈sµ, sλ〉 = δλµ

(14) {sµ}µ is the unique basis which satisfies the following two properties
(a) sµ = mµ +

∑
λ<lexµ cλµmλ for some coefficients cλµ

(b) hµ = sµ +
∑

λ>lexµ dλµsλ for some coefficients dλµ

(15) {sµ}µ is the unique basis which satisfies the following two properties
(a) sµ = mµ +

∑
λ<lexµ cλµmλ for some coefficients cλµ

(b) sµ = hµ +
∑

λ>lexµ gλµhλ for some coefficients dλµ

(16) Fix n > 0. Let Mn
mh be the matrix [Aλµ]λ,µ∈Par(n) where the coefficients Aλµ are

given in Proposition 2.10 so that

[h(n), h(n−1,1), . . . , h(1n)] = [m(n),m(n−1,1), . . . ,m(1n)]M
n
mh

Let Ln
mh and Un

mh be the matricies in the LU-decomposition of the matrix Mn
mh, that

is, Ln
mh is a lower triangular matrix and Un

mh is an upper triangular matrix such
that Mn

mh = Ln
mhU

n
mh.

[s(n), s(n−1,1), . . . , s(1n)] := [h(n), h(n−1,1), . . . , h(1n)] (U
n
mh)

−1

= [m(n),m(n−1,1), . . . ,m(1n)]L
n
mh.

Remark 6. We said very little about the expansion of mµ in the elementary basis in the
last chapter, but exercise 2.(8) says that

eλ′ = mλ + terms containing mµ with µ < λ

and so we must also have

(5.2) mλ = eλ′ + terms containing eµ with µ < λ′.

This means that definitions (13), (14), (15) and (16) could all have been stated with the
elementary basis (indexed by the conjugate partition) instead of the monomial basis.

We will show this theorem by a series of implications showing certain definitions imply others.
We will try to outline clearly our sequence of reasoning showing that these definitions are
all equivalent. To show these equivalences, we require a few lemmas. These sub-results will
be useful in any case to demonstrate other properties of the Schur symmetric functions.
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For any m ∈ Z, let Sm =
∑

i≥0(−1)ihm+ie
⊥
i and S̃m =

∑
i≥0(−1)iem+ih

⊥
i as given in the

proposition. Although they these operators are defined as an infinite sum, when they act
on any given symmetric function, they are a finite operation because if i is sufficiently large
(larger than the degree of the symmetric function that it is acting on) then e⊥i and h⊥i will
certainly act as 0.

The operators Sm are usually referred to as Bernstein operators because A. Zelevinsky at-
tributes their discovery to Bernstein around 1980. The operators S̃m are related to Sm by
ωSmω = S̃m.

We define a generating function for these operators by the following formula. Let P [X] be
any symmetric function in the set of variables X, then set

S(z)P [X] = P [X − 1/z]Ω[zX]

=

(∑
i≥0

(−1/z)ie⊥i P [X]

)(∑
k≥0

zkhk[X]

)
=
∑
m∈Z

zm
∑
i≥0

(−1)ihm+ie
⊥
i P [X](5.3)

=
∑
m∈Z

zmSmP [X].

Similarly we can compute

(5.4) S̃(z)P [X] = P [X + 1/z]Ω[−zX] =
∑
m∈Z

(−1)mzmS̃mP [X].

This means that in order to compute SmP , we can use this generating function as alternative

notation and we may equally compute SmP [X] = P [X − 1/z]Ω[zX]
∣∣∣
zm

. As well, we can

compute S̃mP [X] = (−1)mP [X + 1/z]Ω[−zX]
∣∣∣
zm

.

Example 35. As an example we compute S2S21 and S̃1S̃21 to see how the generating

function definition works. To begin, S21 = Ω[zX]
∣∣∣
z2

= h2[X].

Now S2S21 = S2(h2[X]) = h2[X − 1/z]Ω[zX]
∣∣∣
z2

. Recall from Proposition 2.15 that we have

P [X − 1/z] =
∑

k≥0(−
1
z
)ke⊥k P [X] and in particular e⊥k hj = (δk1hj−1 + δk0hj). Therefore

S2S21 = h2[X]Ω[zX]
∣∣∣
z2
− 1

z
h1[X]Ω[zX]

∣∣∣
z2

= h2[X]2 − h1[X]h3[X].

Similarly we can compute S̃21 = Ω[−zX]
∣∣∣
z2

= e2[X].
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S̃1S̃21 = S̃1(e2[X]) = e2[X+1/z]Ω[−zX]
∣∣∣
z1

. P [X+1/z] =
∑

k≥0(
1
z
)kh⊥k P [X] and e2[X+z] =

e2[X] + ze1[X], so

S̃1S̃21 = e2[X]Ω[−zX]
∣∣∣
z1

+
1

z
e1[X]Ω[−zX]

∣∣∣
z1

= −e2[X]e1[X] + e1[X]e2[X] = 0.

We will use these generating functions to develop formulas for the Schur functions. To show
that these operations work as advertised we demonstrate the following commutation relations
in the next few lemmas.

Lemma 5.2. For any m,n ∈ Z,

(5.5) SmSn = −Sn−1Sm+1

(5.6) S̃mS̃n = −S̃n−1S̃m+1

In particular, SmSm+1 = S̃mS̃m+1 = 0 for all m.

Proof. The second equation of this lemma follows directly from the first since we have
the relationship that ωSmω = S̃m and so we need only conjugate equation (5.5) by ω to
arrive at equation (5.6). In addition, the last relation follows by setting n = m+ 1, then we
have that SmSm+1 = −SmSm+1 = 0.

The proof of the first equation follows by computing a relationship between the generating
functions S(z)S(u) and S(u)S(z). To find this formula we choose an arbitrary symmetric
function P [X] and act on this by S(z)S(u). It follows that

S(z)S(u)P [X] = S(z)P [X − 1/u]Ω[uX]

= P [X − 1/z − 1/u]Ω[u(X − 1/z)]Ω[zX](5.7)

= P [X − 1/u− 1/z]Ω[z(X − 1/u)]Ω[uX]
1− u/z

1− z/u

= S(u)S(z)P [X]
1− u/z

1− z/u

Note that 1−u/z
1−z/u

= u(z−u)
z(u−z)

= −u
z
. We may therefore conclude that S(z)S(u) = −u

z
S(u)S(z).

Equation (5.5) follows by taking the coefficient of zmun in both sides of this equation. �

Lemma 5.3. For any m,n ∈ Z,

(5.8) Smhn = hnSm − hn−1Sm+1

(5.9) hnSm =
n∑

i=0

Sm+ihn−i

(5.10) S̃men = enS̃m − en−1S̃m+1

(5.11) enS̃m =
n∑

i=0

S̃m+ien−i
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Proof. We need only show the first two of these formulas because the last two follow
by a conjugation by the operator ω on both sides of the equations just as in the previous
lemma.

These formulas follow by showing a relationship between S(z)Ω[uX] and Ω[uX]S(z) by
acting again these two generating functions on a arbitrary symmetric function P [X]. We
calculate that

S(z)Ω[uX]P [X] = Ω[u(X − 1/z)]P [X − 1/z]Ω[zX]

= (1− u/z)Ω[uX]S(z)P [X](5.12)

Now if we take the coefficient of zmun in both sides of these equations we arrive at equation
(5.8). But now by dividing both sides of equation (5.12) it follows that Ω[uX]S(z) =

1
1−u/z

S(z)Ω[uX] = (1 + u/z + (u/z)2 + (u/z)3 + · · · )S(z)Ω[uX]. By taking the coefficient of

zmun in both sides of this equation we arrive at (5.9). �

Lemma 5.4. For any m,n ∈ Z,

(5.13) Smen =
n∑

i=0

(−1)ien−iSm+i

(5.14) enSm = Smen + Sm+1en−1

(5.15) S̃mhn =
n∑

i=0

(−1)ihn−iS̃m+i

(5.16) hnS̃m = S̃mhn + S̃m+1hn−1

Proof. Again we have that the last two equations follow from the first two since they
are related by a conjugation by the operation ω. We will demonstrate the first two equations
by arriving at a relation between S(z)Ω[−uX] and Ω[−uX]S(z).

S(z)Ω[−uX]P [X] = Ω[−u(X − 1/z)]P [X − 1/z]Ω[zX]

= Ω[−uX]S(z)P [X]
1

1− u/z
(5.17)

= Ω[−uX]S(z)P [X](1 + u/z + (u/z)2 + · · · )
Now if we take the coefficient of zmun in both sides of this equation (remembering that the
coefficient of un in Ω[−uX] is (−1)nen, then we arrive at equation (5.13). It also follows that
Ω[−uX]S(z) = (1− u/z)S(z)Ω[−uX] and again taking the coefficient of zmun in both sides
of this equation we arrive at equation (5.14). �

Lemma 5.5. For m,n ∈ Z,

(5.18) SmS̃n = S̃n+1Sm−1 + (−1)nδm,−n,

(5.19) S̃nSm = Sm+1S̃n−1 + (−1)nδm,−n.



5. THE SCHUR FUNCTIONS 81

Proof. This relation follows in the same way that we showed the previous commutation
relations, by acting the generating functions for these operators on an arbitrary symmetric
function, P [X]. We will skip a few steps and state that

(5.20) S(z)S̃(u)P [X] = P [X + 1/u− 1/z]Ω[zX]Ω[−uX]
1

1− u/z

and

(5.21) S̃(u)S(z)P [X] = P [X + 1/u− 1/z]Ω[zX]Ω[−uX]
1

1− z/u
.

Recall from the phantom relation (Proposition 2.6), that we defined φ(z, u) =
∑

k∈Z z
ku−k

and we see this generating function if we add S(z)S̃(u) and (z/u)S̃(u)S(z). We develop
this expression and apply the phantom relation and the dual to the phantom relation
φ(z, u)Ω[zX]⊥Ω[−uX]⊥ = φ(z, u).

S(z)S̃(u)P [X]+(z/u)S̃(u)S(z)P [X]

= P [X + 1/u− 1/z]Ω[zX]Ω[−uX]φ(z, u)(5.22)

= P [X]φ(z, u).

Now take the coefficient of zmun on each side of this equation. On the right hand side the
answer is simply 0 unless m = −n, and then the answer is P [X]. On the left hand side of
this generating function, the coefficient of zmun is (−1)nSmS̃nP [X]+(−1)n+1S̃n+1Sm−1P [X].
If we multiply each side of the equation by the appropriate power of (−1) we arrive at the
relation stated in the proposition. �

Next we consider polynomials f(x1, x2, . . . , xn) with the property that σf(x1, x2, . . . , xn) =
ε(σ)f(x1, x2, . . . , xn). These are called alternating polynomials and notice that it is sufficient
to show that for the basic transpositions sif(x1, x2, . . . , xn) = −f(x1, x2, . . . , xn). We will
show that alternating polynomials are always a symmetric polynomial times the special
element ∆δn(x1, x2, . . . , xn) = det|xn−i

j |1≤i,j≤n.

Lemma 5.6. If f(x1, x2, . . . , xn) is an alternating polynomial then it is divisible by
∏

1≤i<j≤n(xi−
xj).

Proof. For any polynomial p(x) if p(a) = 0, then p(x) is divisible by (x− a). This is a
well known fact about polynomials, but it follows for the reason that the ring of polynomials
forms a Euclidean domain. For any polynomials p(x) and f(x) we know that there exists
polynomials q(x) and r(x) such that p(x) = f(x)q(x) + r(x) and deg(r(x)) < deg(f(x)).
Therefore p(x) = (x− a)q(x) + r(x) where deg(r(x)) < deg(x− a) = 1. Therefore r(x) is a
constant and by evaluating this polynomial at x = a, we see that r(x) = p(a). Since p(a) = 0
then p(x) = (x− a)q(x) and hence p(x) is divisible by x− a.

Let f(x1, x2, . . . , xn) be an alternating polynomial. Since

f(x1, . . . , xi, . . . , xj, . . . , xn) = −f(x1, . . . , xj, . . . , xi, . . . , xn),

if xj = xi then

f(x1, . . . , xi, . . . , xi, . . . , xn) = −f(x1, . . . , xi, . . . , xi, . . . , xn) = 0.



82 5. THE SCHUR FUNCTIONS

From this we conclude that f(x1, x2, . . . , xn) is divisible by xj − xi for any i and j. If i < j
and k < ` then xi − xj does not divide xk − x` but it does divide f(x1, x2, . . . , xn), therefore∏

i<j(xi − xj) divides f(x1, x2, . . . , xn). �

Recall that interchanging two rows of a matrix has the effect of changing the sign of the
determinant of the matrix. This means that a matrix such as Γ(a1,a2,...,an) = [xai

j ]1≤i,j≤n

which has the property that the permutation of the variables in the entries also permutes the
columns of the matrix, then the determinant of the matrix will be an alternating polynomial
(and hence by the last lemma will be divisible by

∏
1≤i<j≤n(xi − xj)). For any sequence

(a1, a2, . . . , an) with ai ≥ 0, we set ∆(a1,a2,...,an)(x1, x2, . . . , xn) = det
(
Γ(a1,a2,...,an)

)
.

Corollary 5.7. (the Vandermonde determinant) For n ≥ 0, let δn = (n−1, n−2, . . . , 1, 0),
then

∆δn(x1, x2, . . . , xn) := det

∣∣∣∣∣∣∣∣∣∣

xn−1
1 xn−1

2 · · · xn−1
n

xn−2
1 xn−2

2 · · · xn−2
n

...
...

x1 x2 · · · xn

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(xi − xj)

Proof. Note that ∆δn(x1, x2, . . . , xn) = det|xn−i
j |1≤i,j≤n is a polynomial of degree

(
n
2

)
and by the previous remark it is alternating and therefore divisible by

∏
1≤i<j≤n(xi − xj)

by the previous Lemma. Since
∏

1≤i<j≤n(xi − xj) is also of degree
(

n
2

)
, this means that

∆δn(x1, x2, . . . , xn) = c
∏

1≤i<j≤n(xi−xj) for some constant c. It remains to show that c = 1,

but this is easy to do since we clearly have that the coefficient of xn−1
1 xn−2

2 · · ·xn−1 is 1 in
both ∆δn(x1, x2, . . . , xn) and

∏
1≤i<j≤n(xi − xj). �

Corollary 5.8. Again we let δn = (n− 1, n− 2, . . . , 1, 0), then

(5.23) ∆δn(Xn)∆δn(Yn) = Ω[−XnYn]det

∣∣∣∣ 1

1− xiyj

∣∣∣∣
1≤i,j≤n

.

Proof. ∆δn(Xn)∆δn(Yn) is a polynomial of degree 2
(

n
2

)
and since Ω[−XnYn] =

∏n
i,j=1(1−

xiyj), the right hand side is also a polynomial of degree n2 − n. Ω[−XnYn]det
∣∣∣ 1
1−xiyj

∣∣∣
1≤i,j≤n

is alternating in the x variables and hence is divisible by ∆δn(Xn) and in the y variables
and hence is divisible by ∆δn(Yn). Since the degree is the same as ∆δn(Xn)∆δn(Yn) these
polynomials must be equal up to a constant factor. It is slightly more difficult than in the
previous proposition to justify that the constant factor equals 1, but we need only examine
the coefficient of one monomial, namely that of xδnyδn , and show that it is the same on both
sides of the equation.
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On the left hand side of (5.23) this coefficient is easily seen to be 1. On the right hand side
of (5.23), we expand this expression

Ω[−XnYn]det

∣∣∣∣ 1

1− xiyj

∣∣∣∣
1≤i,j≤n

=
∑

σ∈Symn

ε(σ)
n∏

i=1

n∏
j=1

j 6=σ(i)

(1− xiyj).

In order to have a monomial in this sum with xn−1
1 so that yn does not occur, it must be

that it comes from the product, (x1y1)(x1y2) · · · (x1yn−1) and σ(1) = n. Since x2 occurs with
power n − 2, the only way that this can happen and have the correct powers of yi is from
the product (x2y1)(x2y2) · · · (x2yn−2) and so σ(2) = n − 1. This continues and it is easy to
see that xδnyδn only appears as a monomial in the term which has σ(i) = n− i+1. The sign

of that terms will be ε(σ)(−1)(
n
2) and since σ itself has length

(
n
2

)
, this coefficient is equal to

1. Therefore (5.23) holds as stated. �

Proposition 5.9. For m ∈ Z,

(5.24) 〈Smf, g〉 =
〈
f, (−1)mS̃−mg

〉
Proof.

〈Smf, g〉 =

〈∑
i≥0

(−1)ihm+ie
⊥
i f, g

〉
=
∑
i≥0

〈
f, (−1)ieih

⊥
m+ig

〉
(5.25)

=

〈
f,
∑
i≥m

(−1)i−mei−mh
⊥
i g

〉

=

〈
f, (−1)m

∑
i≥0

(−1)ie−m+ih
⊥
i g

〉
=
〈
f, (−1)mS̃−mg

〉
�

Proposition 5.10.

(5.26) h⊥n S̃m = S̃mh
⊥
n + S̃m−1h

⊥
n−1

(5.27) h⊥nSm =
n∑

i=0

(−1)iSm−ih
⊥
n−i

(5.28) e⊥nSm = Sme
⊥
n + Sm−1e

⊥
n−1

(5.29) e⊥n S̃m =
n∑

i=0

(−1)iS̃m−ie
⊥
n−i
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Proof. We can show these commutation relation in the same way that we showed
Propositions 5.2, 5.3 and 5.4, by computing the commutation relation of the generating series
H⊥(u)P [X] = P [X+u] =

∑
i≥0 u

ih⊥i P [X] and E⊥(u)P [X] = P [X−u] =
∑

i≥0(−u)ie⊥i P [X]

with S(z) and S̃(z). Alternatively we will use the last proposition and calculate that〈
h⊥n S̃mf, g

〉
=
〈
S̃mf, hng

〉
= 〈f, (−1)mS−mhng〉
= 〈f, (−1)m(hnS−mg − hn−1S−m+1g)〉(5.30)

=
〈
S̃mh

⊥
n f, g

〉
+
〈
S̃m−1h

⊥
n−1f, g

〉
Therefore since this relationship holds for all symmetric functions g, it is true that h⊥n S̃mf =
S̃mh

⊥
n f+S̃m−1h

⊥
n−1f and this shows the first equation. All of the other commutation relations

in this proposition can be shown by similar means and we leave them as an exercise to the
reader. �

Proof. (of Theorem 5.1)

We are now ready to prove that the definitions listed in Theorem 5.1 are all equivalent. We
will start by showing that the first six are equal in that order. After that we will take a
break, prove some related results and continue to show that the other results are equivalent.

Proof of (1) ⇔ (2) :

We compute the following expression for the product
∏

1≤i<j≤n(1 − yj/yi) using Corollary
5.7. ∏

1≤i<j≤n

(1− yj/yi) = ∆δn(y1, y2, . . . , yn)y−δn

= det
∣∣yn−i

j

∣∣
1≤i,j≤n

y−δn(5.31)

=
∑

σ∈Symn

ε(σ)
n∏

i=1

y
−(n−i)+(n−σ(i))
i

Now the expression for (2) is the same as (1) by the following computation.

Ω[XYn]
∏

1≤i<j≤n

(1− yj/yi)
∣∣∣
yµ

= Ω[XYn]
∑

σ∈Symn

ε(σ)
n∏

i=1

y
i−σ(i)
i

∣∣∣
yµ

=
∑

σ∈Symn

ε(σ)
n∏

i=1

hµi−i+σ(i)[X](5.32)

= det|hµi−i+j[X]|1≤i,j≤n

implying that the definitions are equivalent.
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Proof of (2) ⇔ (3) :

We know that Sm =
∑

i≥0(−1)ihm+ie
⊥
i , but we will be using equation (5.3). Assume by

induction that all partitions with `(µ) ≤ k ≤ n satisfy

(5.33) sµ[X] = Ω[XYn]
∏

1≤i≤j≤n

(1− yj/yi)
∣∣∣
yµ

For a partition with `(µ) = k, we calculate

Sm(sµ[X]) = Sm

(
Ω[XYn]

∏
1≤i≤j≤n

(1− yj/yi)
∣∣∣
yµ

)

= Ω

[(
X − 1

z

)
Yn

] ∏
1≤i≤j≤n

(1− yj/yi)
∣∣∣
yµ

Ω[zX]
∣∣∣
zm

(5.34)

= Ω[XYn]Ω[zX]Ω

[
−1

z
Yn

] ∏
1≤i≤j≤n

(1− yj/yi)
∣∣∣
zmyµ

= Ω[X(z + Yn)]
n∏

i=1

(1− yi/z)
∏

1≤i≤j≤n

(1− yj/yi)
∣∣∣
zmyµ

This last expression is exactly the formula for the symmetric function s(m,µ1,...,µk)[X] using
the alphabet z + Yn in definition (2). Therefore we know by induction that

(5.35) Sµ1Sµ2 · · ·Sµk
1 = Ω[XYn]

∏
1≤i≤j≤n

(1− yj/yi)
∣∣∣
yµ

for all partitions λ.

Remark 7. We have not so far assumed anywhere that µ is a partition in these proofs and
the first three definitions make sense for µ equal to any sequence of integers. It is the case
the Schur function may be defined for any sequence of integers, but to obtain a basis we
examine only the set of Schur functions which are indexed by partitions. Notice however
that relation (5.5) can be used to ‘straighten’ any sequence which is not a partition to one
which is in the following sense:

For any sequence (a1, a2, · · · , ak), if ai ≥ ai+1 for all 1 ≤ i ≤ k − 1, then s(a1,a2,··· ,ak) is a
Schur function indexed by a partition. If not then find the smallest i for which ai < ai+1.
If ai + 1 = ai+1, then s(a1,a2,··· ,ak) = Sa1 · · ·Sai

Sai+1 · · ·Sak
1 = −Sa1 · · ·Sai

Sai+1 · · ·Sak
1 = 0.

If ai+1 > ai + 1, then s(a1,a2,··· ,ak) = −s(a1,a2,··· ,ai+1−1,ai+1,...,ak) and now at least the first i
entries of this sequence are in order. In this way we have defined a bubble sort method
for ‘straightening’ a sequence indexing a Schur function into a partition indexing a Schur
function.

Example 36. The Schur function indexed by the sequence (2, 1, 5, 3, 1, 1) is equal to 0
because S2S1S5S3S1S11 = −S2S4S2S3S1S11 = 0 since S2S3 = 0. The sequence need not
consist of positive integers either, for instance the Schur function indexed by the sequence
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(−1,−3, 3, 1, 9, 7) is equal to

S−1S−3S3S1S9S71 = −S−1S2S−2S1S9S71 = S1S0S−2S1S9S71

= −S1S0S0S−1S9S71 = S1S0S0S8S0S71(5.36)

= . . . = −S5S2S1S1S0S71

= S5S2S1S1S6S11 = S5S2S1S5S2S11

= . . . = S5S3S3S2S2S11

Each of these sequences may be represented by an image, one row of length ai for a sequence
(a1, a2, . . . , a`(a)). This gives the algebraic formula a combinatorial interpretation by recog-
nizing that the each exchange in the sequence has the effect of swapping two rows increasing
the length of one of these rows by 1 and decreases the length of the other row by 1.

Each operator in the expression above can be represented by a row of cells so that when the
operators are applied in decreasing order the image will be a Young diagram for a partition.
Each exchange of operators represents a corresponding change in the diagram and Lemma 5.2
defines an equivalence class of signed diagrams. For example the first exchange of operators
in equation (5.36) above is represented by the following diagram.

= −

There is another way that one can compute the Schur functions indexed by a sequence of
integers. Notice that for each of the generators of the symmetric group τi for 1 ≤ i < n
where τi = (i i+ 1) acts on the sequences indexing a Schur function. (τi(a1 + k− 1, a2 + k−
2, . . . , ak))− (k− 1, k− 2, . . . , ak) = (a1 + k− 1, . . . , ai+1 + k− i− 1, ai + k− i, . . . , ak)− (k−
1, . . . , k − i, k − i − 1, . . . , ak) = (a1, . . . , ai+1 − 1, ai + 1, . . . , ak). This means that we can
define an action of the symmetric group generators on the sequences indexing the symmetric
functions. That is,

(5.37) s(a1,a2,...,ak) = −s(a1,...,ai+1−1,ai+1,...,ak) = −sτi(a+δk)−δk
.

Since this formula holds for the generators of the symmetric group, then it must be that

s(a1,a2,...,ak) = ε(σ)sσ(a+δk)−δk

= ε(σ)s(aσ(1)−σ(1)+1,aσ(2)−σ(2)+2,...,aσ(k)−σ(k)+k)(5.38)

for any permutation σ ∈ Symk.

This is a very useful and combinatorial method for computing the Schur function indexed
by a sequence. The formula says that if we add a staircase to the indexing sequence and
two of the parts of the result have the same length, then the Schur function is 0. If the
result of adding a staircase shape to the partition has distinct parts, then there is a unique
permutation which sorts the sequence to a strict partition. The Schur function indexed by
this sequence is equal (up to a sign) to the Schur function indexed by the partition of this
sorted sequence minus the staircase shape. This result may again be 0 if this staircase shape
has parts of negative length.
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Example 37. For example, the sequence (2, 1, 5, 3, 1, 1) plus the staircase shape (5, 4, 3, 2, 1, 0)
can be can be seen visually by the diagram below.

Since this diagram has two rows that are the same length, the Schur function s(2,1,5,3,1,1) = 0.

Example 38. The Schur function indexed by the sequence (−1,−3, 3, 1, 9, 7) can also be
calculated by adding the sequence (5, 4, 3, 2, 1, 0) which we represent by the following dia-
gram.

Since all of the rows have different lengths, there is a permutation that sorts the rows
in decreasing order and this has been drawn below, this time with the staircase which
now fits below the partition. The permutation that sorts the sequence (4, 1, 6, 3, 10, 7) to
(10, 7, 6, 4, 3, 1) this has length 11 and the following diagram shows that s(−1,−3,3,1,9,7) =
−s(5,3,3,2,2,1).

−

Proof of (3) ⇔ (4) :

We must assume that since the operation of conjugation of a partition only makes sense
for partitions (and not for a sequence of integers) that this equivalence will only hold for
partitions. We can assume by induction that for a partition of length k that we know

(5.39) Sµ1Sµ2 · · ·Sµk
1 = S̃µ′1

S̃µ′2
· · · S̃µ′µ1

1

Consider an m ≥ µ1. We know that

(5.40) SmSµ1Sµ2 · · ·Sµk
1 = SmS̃µ′1

S̃µ′2
· · · S̃µ′µ1

S̃0 · · · S̃01
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where there are m−µ1 copies of S̃0 on this trailing composition of operators. We may place
as many as we want since S̃01 = 1. Now by applying Lemma 5.5 this is equal to

= S̃µ′1+1Sm−1S̃µ′2
· · · S̃µ′µ1

S̃0 · · · S̃01

= S̃µ′1+1S̃µ′2+1Sm−2 · · · S̃µ′µ1
S̃0 · · · S̃01

=
...(5.41)

= S̃µ′1+1S̃µ′2+1 · · · S̃µ′µ1
+1S̃1 · · · S̃1S01

= S̃µ′1+1S̃µ′2+1 · · · S̃µ′µ1
+1S̃1 · · · S̃11

and (µ′1 + 1, µ′2 + 1, . . . , µ′µ1
+ 1, 1, . . . , 1) is equal to the partition µ′ with a column of length

m placed on the left of the partition.

This shows that for any partition µ,

(5.42) S̃µ′1
S̃µ′2

· · · S̃µ′µ1
1 = Sµ1Sµ2 · · ·Sµ`(µ)

1.

Remark 8. The commutation relation in Lemma 5.5 has a clear combinatorial interpretation
at this point. We have shown that adding a column of length n followed by a row of length
m on a partition is the same as adding a row of length m− 1 followed by a column of length
n+1. Perhaps this is best seen in the following picture to see that if Sm and S̃n are operators
which add rows and columns to the partitions, then of course they must satisfy this relation.

We should note that the algebraic formula which we have proven is even a stronger statement
than the picture suggests because the formula says that the commutation relation holds
between these operators independent of what they are acting on while our picture really
only makes sense when the red and blue cells surround a partition µ with µ1 ≤ m and
`(µ) ≤ n.

Proof of (4) ⇔ (5) :

Recall that S̃mP [X] = (−1)mP [X + 1/z]Ω[zX]
∣∣∣
zm

. We will show by induction on the length

of the sequence µ (which again we do not need to assume is a partition) that

(5.43) S̃µ1S̃µ2 · · · S̃µ`(µ)
1 = (−1)|µ|Ω[−XZn]

∏
1≤i<j≤n

(1− zi/zj)
∣∣∣
zµ



5. THE SCHUR FUNCTIONS 89

Assume that equation (5.43) holds for all sequences µ such that `(µ) ≤ k ≤ n. Then

S̃mS̃µ1S̃µ2 · · · S̃µ`(µ)
1

= (−1)|µ|S̃mΩ[−ZnX]
∏

1≤i<j≤n

(1− zi/zj)
∣∣∣
zµ

= (−1)|µ|+mΩ[−(X + 1/u)Zn]Ω[−uX]
∏

1≤i<j≤n

(1− zi/zj)
∣∣∣
zµ

∣∣∣
um

(5.44)

= (−1)|µ|+mΩ[−(u+ Zn)X]
n∏

i=1

(1− zi/u)
∏

1≤i<j≤n

(1− zi/zj)
∣∣∣
umzµ

.

This is exactly formula (5.43) in the alphabet consisting of the variables u, z1, z2, . . . , zn and
the sequence (m,µ1, µ2, . . . , µn). The base case for this induction argument is a sequence of
length 0 and the formula holds trivially, hence it is true for all sequences.

Proof of (5) ⇔ (6) :

The proof for this equivalence proceeds much as it did in the proof of (1) ⇔ (2).

We have from equation (5.31),

(5.45)
∏

1≤i<j≤n

(1− yj/yi) =
∑

σ∈Symn

ε(σ)
n∏

i=1

y
i−σ(i)
i .

Now showing that these two definitions are equal proceeds as we did in the nearly identical
proof of (2) ⇔ (3).

Ω[−XYn]
∏

1≤i<j≤n

(1− yj/yi)
∣∣∣
yµ

=
∑

σ∈Symn

ε(σ)Ω[−XYn]
n∏

i=1

y
i−σ(i)
i

∣∣∣
yµ

=
∑

σ∈Symn

ε(σ)
n∏

i=1

(−1)µi−i+σ(i)eµi−i+σ(i)[X](5.46)

= (−1)|µ|det |eµi−i+j[X]|1≤i,j≤n

Therefore the definitions are equivalent.

Proof of (2) ⇔ (7)

We will show that ∆δn(Xn)sµ[X] = ∆µ+δn(Xn) by direct calculation. Choose an n such that
n ≥ `(µ). Recall from Corollary 5.8 we have a formula for ∆δn(Xn)∆δn(Yn)Ω[XnYn].
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∆δn(Xn)sµ[Xn] = ∆δn(Xn)Ω[XnYn]
∏

1≤i≤j≤n

(1− yj/yi)
∣∣∣
yµ

= ∆δn(Xn)Ω[XnYn]y−δn
∏

1≤i≤j≤n

(yi − yj)
∣∣∣
yµ

(5.47)

= ∆δn(Xn)∆δn(Yn)Ω[XnYn]
∣∣∣
yµ+δn

= det

∣∣∣∣ 1

1− xiyj

∣∣∣∣
1≤i,j≤n

∣∣∣
yµ+δn

.

Now expand the determinant in the last line of this calculation where we arrive at the
following expression.

=

 ∑
σ∈Symn

ε(σ)
n∏

i=1

1

1− xσ(i)yi

∣∣∣
yµ+δn

=
∑

σ∈Symn

ε(σ)
n∏

i=1

(∑
k≥0

(xσ(i)yi)
k
∣∣∣
y

µi+n−i
i

)
(5.48)

=
∑

σ∈Symn

ε(σ)
n∏

i=1

xµi+n−i
σ(i)

= ∆µ+δn(Xn)

Therefore sµ[Xn]∆(Xn) = ∆µ+δn(Xn).

Remark 9. Definitions (7), (8) and (9) are three ways of writing the same formula and
there is little to prove that these are equivalent.

Proof of (7) ⇔ (8)

Note that

(5.49) Wn(xµ) =
∑

σ∈Symn

ε(σ)σ(xµ+δn) = ∆µ+δn(x1, x2, . . . , xn)

and in particular Wn(1) = ∆δn(x1, x2, . . . , xn). Therefore J(xµ) = ∆µ+δn(Xn)/∆δn(Xn) =
sµ[Xn].

Proof of (7) ⇔ (9)
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∆δn(x1, x2, . . . , xn) =
∏

1≤i<j≤n(xi − xj) and hence has the property that σ(
∏

1≤i<j≤n(xi −
xj)) = ε(σ)

∏
1≤i<j≤n(xi − xj) for all permutations σ. This implies that∑

σ∈Symn

σ

(
xµ

∏
1≤i<j≤n

xi

xi − xj

)
=

∑
σ∈Symn

σ

(
xµ xδ

n

∆δn(x1, x2, . . . , xn)

)
=

1

∆δn(x1, x2, . . . , xn)

∑
σ∈Symn

ε(σ)σ
(
xδn+µ

)
(5.50)

=
∆δn+µ(x1, x2, . . . , xn)

∆δn(x1, x2, . . . , xn)

Remark 10. So far we have shown that the numbered definitions (1) through (9) listed in
the theorem are equivalent because the expressions for the basis that they produce are the
same. Another way that we can show that two definitions are equivalent is to show that
one of the definitions consists of conditions which uniquely define a basis of the symmetric
functions and that the other definition defines a basis which satisfies these conditions. It
follows that these definitions will be equivalent.

Now that we have shown that definitions (1) through (9) are equivalent, we will demonstrate
the following product rule.

Proposition 5.11. (The Pieri Rule)

(5.51) hmsλ =
∑

µ

sµ

where the sum is over all partitions µ ` |λ| + m which contain the partition λ and there is
at most one cell for each column in µ/λ (alternatively, 0 ≤ µ′i − λ′i ≤ 1 for all i). We say
that the partitions in this sum are those such that µ/λ is a horizonal m-strip (which we will
denote as µ/λ ∈ Hm).

Proof. What we will show is that defintion (4) and the commutation relations in Pro-
postion 5.4 are enough to demonstrate this result. Recall that equation (5.16) says that

(5.52) hnS̃m = S̃mhn + S̃m+1hn−1

so that

hnsλ = hnS̃λ′1
S̃λ′2

· · · S̃λ′λ1
1

=
∑

δ

S̃λ′1+δ1S̃λ′2+δ2 · · · S̃λ′λ1
+δλ1

hn−|δ|(5.53)

=
∑

δ

S̃λ′1+δ1S̃λ′2+δ2 · · · S̃λ′λ1
+δλ1

(S̃1)
n−|δ|1

where the sum here is over sequences δ of length λ1 of 0s and 1s. The terms that have
λ′i = λ′i+1 and δi = 0 and δi+1 = 1 vanish because in that case part of this composition

contains S̃λ′i
S̃λ′i+1 = 0. All other terms correspond to partitions µ which contain λ and have

at most one cell in each column of µ/λ. �
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By an application of the involution ω we can show the following corollary, that the product
of em and sλ is the conjugate of the result for hm times sλ′ . Alternatively we can show that
defintion (3) and the commutation relation between em and Sn can be used to show the
following conjugate Pieri rule.

Corollary 5.12. (Conjugate Pieri rule)

(5.54) emsλ =
∑

µ

sµ

where the sum is over all partitions µ ` |λ| + m which contain the partition λ and there is
at most one cell for each row in µ/λ (alternatively, 0 ≤ µi − λi ≤ 1 for all i). We say that
the partitions in this sum are those such that µ/λ is a vertical m-strip and denote this by
µ/λ ∈ Vm.

We leave the following two additional results as exercises. They can be proven in the same
manner that we used to show the Pieri rule using the commutation relations between h⊥m
and S̃n (alternatively e⊥m and Sn).

Proposition 5.13. (Dual Pieri rule)

(5.55) h⊥msλ =
∑

µ:λ/µ∈Hm

sµ

Corollary 5.14. (Dual conjugate Pieri rule)

(5.56) e⊥msλ =
∑

µ:λ/µ∈Vm

sµ

Example 39. The product of h3 with the Schur function s(4,2) will be the sum of Schur
functions indexed by set of partitions of size 9 that are in the following diagrams.

This means that h3s(4,2) = s(4,3,2) + s(5,2,2) + s(4,4,1) + s(5,3,1) + s(6,2,1) + s(5,4) + s(6,3) + s(7,2).

By contrast, if we multiply e3 by s(4,2) there will be one Schur function in the result for each
partition in the following diagrams.

Therefore we have that e3s(4,2) = s(4,2,1,1,1) + s(4,3,1,1) + s(5,2,1,1) + s(5,3,1).

In order to calculate h⊥3 s(4,2), there will be one term in the expression for each of the following
two partitions.
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Therefore we have that h⊥3 s(4,2) = s(2,1) + s(3).

Note that e⊥3 s(4,2) = 0 since there is no way of removing a vertical strip of size 3 from a
partition which has only height 2. For this reason e⊥msλ = 0 if and only if m > `(λ) and
similarly h⊥msλ = 0 if and only if m > λ1.

For the next three definitions we will have to refer to the section on tableaux, in particular
we are interested in facts about the number of column strict tableaux of shape λ and content
µ, Kλµ. These coefficients arise as the entries in the change of basis matrix between the
homogeneous and Schur basis and the Schur and monomial basis. This fact will follow
directly from the Pieri rule which we have established that the basis defined in (1) through
(6) satisfies. We recall in particular that Kλµ = 1 if λ = µ and Kλµ = 0 if λ < µ in
dominance order of partitions.

Proof of (4) ⇔ (10) :

By the facts that we have established about column strict tableaux, we know that if sµ is a
basis of the symmetric functions and hµ =

∑
λ`|µ|Kλµsλ, then hµ = sµ+ terms containing

sλ with partitions λ > µ.

For any family of symmetric functions indexed by partitions, we will denote
−→
bn as the row

vector of
[
b(n), b(n−1,1), . . . , b(1n)

]
. Therefore the change of basis matrix Mn

sh defined as the
matrix

(5.57)
−→
hn =

−→
snMn

sh

is clearly upper triangular and hence is invertible. So by stating that hµ =
∑

λ`nKλµsλ for

all partitions µ ` n, we establish a formula for sλ as an entry in
−→
sn =

−→
hnMn

sh
−1.

We show that any basis that satisfies the Pieri rule (in particular, the Schur functions) also
satisfies definition (10) by induction on the length of the partition µ. Let µ̃ = (µ1, . . . , µ`(µ)−1)
and assume that

(5.58) hµ̃ =
∑
λ`|µ̃|

Kλµ̃sλ.

Now since hµ = hµ`(µ)
hµ̃ so

hµ =
∑
λ`|µ̃|

Kλµ̃

∑
γ:γ/λ∈Hm

sγ

=
∑
γ`|µ|

∑
λ:γ/λ∈Hm

Kλµ̃sγ(5.59)
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Every column strict tableau T of shape λ and content α = (α1, α2, . . . , α`(α)) is isomorphic
to a column strict tableau of shape γ and content α̃ = (α1, α2, . . . , α`(α)−1) with λ/γ ∈ Hµ`(µ)

since each of the cells labeled with a `(µ) must lie in a horizontal strip in T . This shows that

(5.60)
∑

λ:γ/λ∈Hm

Kλα̃ = Kγα,

and hence in particular when α = µ, we have

(5.61) hµ =
∑
γ`|µ|

Kγµsγ.

Example 40. This establishes that hµ is equal to the sum over all column strict tableaux of
content µ counted with weight sλ(T ) for each column strict tableau T of shape λ(T ). So for
instance, if we would like to compute h(2,2,2) we draw all column strict tableaux of content
(2, 2, 2), as in:

3 3
2 2
1 1

3
2 2
1 1 3

3
2 3
1 1 2

3
2
1 1 2 3

2 3
1 1 2 3

2 2
1 1 3 3

2 3 3
1 1 2

2
1 1 2 3 3

3 3
1 1 2 2

3
1 1 2 2 3 1 1 2 2 3 3 .

This shows that h(2,2,2) = s(2,2,2) + 2s(3,2,1) + s(4,1,1) + 3s(4,2) + 2s(5,1) + s(6).

Example 41. h(1n) when expanded in the Schur basis will have exactly one term for each
standard tableau. For example, when we compute h(14), all of the standard tableaux of size
4 are

4
3
2
1

4
3
1 2

4
2
1 3

3
2
1 4

3 4
1 2

2 4
1 3

4
1 2 3

3
1 2 4

2
1 3 4 1 2 3 4 .

Therefore

h(14) = s(4) + 3s(3,1) + 2s(2,2) + 3s(2,1,1) + s(1,1,1,1).

Proof of (4) ⇔ (11) :

The coefficient of mλ in sµ is given by the scalar product 〈sµ, hλ〉. Let α be a sequence of
non-negative integers of length equal to k. Assume that for all sequences of partitions β of
length less than k we have that 〈sν , hβ〉 = Kνβ. We set α̃ = (α1, . . . , α`(α)−1) and notice that

〈sµ, hα〉 =
〈
h⊥α`(α)

sµ, hα̃

〉
=

∑
µ/γ∈Hα`(α)

〈sγ, hα̃〉(5.62)

=
∑

µ/γ∈Hα`(α)

Kγα̃ = Kµα
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which follows from equation (5.60). In particular, when α = λ (a partition), 〈sµ, hλ〉 = Kµλ

and therefore

(5.63) sµ =
∑
λ`|µ|

〈sµ, hλ〉mλ =
∑
λ`|µ|

Kµλmλ.

Example 42. We have just shown that the Schur function sµ is given as the sum over all
column strict tableaux T of shape µ and partition content with a weight of mµ(T ) where
µ(T ) is the content of the tableau T . This means that in order to compute s(2,2,2) we draw
all column strict tableaux of shape (2, 2, 2) and partition content:

3 3
2 2
1 1

3 4
2 2
1 1

4 5
2 3
1 1

3 5
2 4
1 1

5 6
3 4
1 2

4 6
3 5
1 2

5 6
2 4
1 3

4 6
2 5
1 3

3 6
2 5
1 4

Therefore we know that s(2,2,2) = m(2,2,2) +m(2,2,1,1) + 2m(2,1,1,1,1) + 5m(1,1,1,1,1,1).

Proof of (11) ⇔ (12):

We have already shown in equation (5.60) that if α is a sequence of integers (α1, α2, . . . , αk)
with αi ≥ 0 such that sorting α to a partition λ (with dropping the 0s at the end of the
sequence) then the number of column strict tableaux of shape µ and content λ is equal to
the number of column strict tableaux of shape µ and content α. Therefore if we let CSTα

µ

represent the set of column strict tableaux of shape µ and content α then,

(5.64)
∑

T∈CSTµ

n∏
i=1

x
ni(T )
i =

∑
α:|α|=|µ|

∑
T∈CST α

µ

xα

where the sum on the right hand side of this equation is over all sequences α of length n of
non-negative integers whose sum is |µ|. This Say that α ∼ λ if there exists a permutation
σ ∈ Sn such that σα = λ (ignoring any 0s at the end of the partition). We have shown that
if α ∼ λ, then Kµα = Kµλ. This implies that the previous expression is equal to

=
∑
λ`|µ|

∑
T∈CST λ

µ

∑
α∼λ

xα

=
∑
λ`|µ|

∑
T∈CST λ

µ

mλ[Xn](5.65)

=
∑
λ`|µ|

Kλµmλ[Xn].

This last expression is equivalent to definition (11) for any n ≥ |µ|.

Example 43. If we want to evaluate a Schur function at an alphabet with a finite number
of variables, this formula is useful (by taking a limit we can also use it to evaluate Schur

functions on an infinite number of variables as well). We take as an example, s(2,2,2)[
1−q4

1−q
] =

s(2,2,2)[1+q+q2+q3]. For each tableau T of shape (2, 2, 2) we count the term with a monomial
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of
∏4

i=1 q
(i−1)ni(T ) which is equal to q to the power of the sum of the entries in the tableau

−6.

3 3
2 2
1 1

4 4
2 2
1 1

4 4
3 3
1 1

4 4
3 3
2 2

3 4
2 2
1 1

3 4
2 3
1 1

3 4
2 3
1 2

4 4
2 3
1 1

4 4
2 3
1 2

4 4
3 3
1 2

This means that we have evaluated

s(2,2,2)

[
1− q4

1− q

]
= q6 + q8 + q10 + q12 + q7 + q8 + q9 + q9 + q10 + q11

= q6

[
5
2

]
We leave it as an exercise to generalize this result.

Proof of (3) ⇔ (13):

The conditions listed in (13) (a) and (b) are exactly what is necessary to calculate a self-dual
basis using the Grahm-Schmit orthonormalization procedure. We start with s(1n) = m(1n)

taking each successive partition of size n in lex order we define

(5.66) sµ = mµ −
∑

λ<lexµ

〈mµ, sλ〉 sλ

This uniquely determines the basis which satisfies conditions (a) and (b) of (13).

Now in order to show that the definition (3) is equivalent to (13), we verify that if sµ =
Sµ1Sµ2 · · ·Sµ`(µ)

1 for all partitions µ, then 〈sµ, sλ〉 = δλµ. Since the scalar product is sym-

metric, without loss of generality we may assume that µ1 ≥ λ1. Let λ̃ = (λ2, λ3, . . . , λ`(λ))
and µ̃ = (µ2, . . . , µ`(µ)). Recall that proposition 5.9 says

(5.67) 〈sµ, sλ〉 = 〈Sµ1sµ̃, sλ〉 =
〈
sµ̃, (−1)µ1S̃−µ1sλ

〉
.

Now for a partition ν and m > ν1, applying Lemma 5.5 we have

(5.68) S̃−m(sν) = Sν1+1Sν2+1 · · ·Sν`(ν)+1S̃−m−`(ν)1 = 0.

This implies that if µ1 > λ1, then 〈sµ, sλ〉 = 0. If µ1 = λ1, then µ1 + 1 > λ2 and

(5.69) 〈sµ, sλ〉 =
〈
sµ̃, sλ̃ + (−1)µ1Sλ1+1S̃−µ1−1sλ̃

〉
= 〈sµ̃, sλ̃〉 .

Therefore, by an inductive argument we have shown 〈sλ, sµ〉 = δλµ.

Example 44. We shall use definition (13) to calculate explicitly the symmetric functions
sλ for λ ` 3 in terms of the monomial basis. By the triangularity relations, we know that
s(111) = m(111).
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s(21) = m(21) −
〈
m(21), s(111)

〉
s(111). Since we have already calculated s(111) = m(111), we

need only calculate one scalar product by brute force:
〈
m(21),m(111)

〉
= −2 and s(21) =

m(21) + 2m(111).

s(3) = m(3)−
〈
m(3), s(21)

〉
s(21)−

〈
m(3), s(111)

〉
s(111). Now in order to expand s(3) explicitly we

need to calculate two scalar products. We calculate then that s(3) = m(3) + s(21) − s(111) =
m(3) +m(21) +m(111).

Proof of (13) ⇔ (14):

We have already said that condition (13) uniquely defines a basis of the symmetric functions.
It does not seem immediately clear that condition (14) even determines the basis uniquely,
yet it does. We will count the following example as the outline of a proof of how definition
(14) defines the Schur functions.

Example 45. To compute the Schur functions of degree 4, we set

(5.70) s(4) := h(4) = m(4) +m(31) +m(22) +m(211) +m(1111)

then since h(31) has leading term equal to m(4), then we set

s(31) = h(31) − s(4) = h(31) − h(4)

= m(31) +m(22) + 2m(211) + 3m(1111).

To compute s(22), since the leading term of h(22) is m(4) we eliminate it by subtracting s(4)

and h(22) − s(4) has a leading term of m(31) so we must have

s(22) = h(22) − s(4) − s(31) = h(22) − h(31)

= m(22) +m(211) + 2m(1111).

Next we have that h(211) has a leading term of m(4), and the leading term of h(211) − s(4) is
2m(31) and the leading term of h(211) − s(4) − 2s(31) is equal to m(22) and hence

s(211) = h(211) − s(4) − 2s(31) − s(22)

= h(211) − h(22) − h(31) + h(1111)

= m(211) + 3m(1111).

Finally we know already that s(1111) = m(1111) = h(1111) − 3h(211) + h(22) + 2h(31) − h(4).

Assume the functions {sµ}µ satisfy (13) (a) and (b), then clearly they also satisfy (14) (a)
since these conditions are the same and the coefficient of sλ in hµ will be equal to

(5.71) 〈hµ, sλ〉 =

〈
hµ,mλ +

∑
ν<lexλ

cλνmν

〉
and this value must clearly be equal to 0 unless µ <lex λ since the monomial and homogeneous
bases are self dual. In fact we see that the coefficient of sλ in hµ is equal to cλµ and hence

(5.72) hµ = sµ +
∑

λ>lexµ

cλµsλ.
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Therefore the functions {sµ}µ also satisfy (14) (b).

Proof of (14) ⇔ (15):

These two conditions are exactly equivalent, (14) (a) and (15) (a) are the same and if
hλ = sλ+ terms which are lower in lex order then sλ = hλ+ terms which are lower in lex
order.

Proof of (14) ⇔ (16)

The LU decomposition of a matrix is unique and so (16) defines the Schur functions as a
basis in terms of the homogeneous and monomial bases.

The fact that these definitions are equivalent is a matter of expressing conditions (14) (a)
and (b) in terms of matricies.

�

We have justified a large number of properties of the Schur functions by verifying that these
conditions all defined the same set of symmetric functions. A few of these properties may
not yet be clear so we identify the most important ones here.

Corollary 5.15.

(5.73) 〈sλ, sµ〉 = δλµ

(5.74) ω(sλ) = sλ′

(5.75) f [Xn]
∣∣∣
sλ[Xn]

= f [Xn]
∏

1≤i<j≤n

(1− xi/xj)
∣∣∣
xλ

(5.76) sµ = mµ + terms mλ with λ < µ

(5.77) sµ = hµ + terms hλ with λ > µ

(5.78) sµ[Xn] = 0 if n < `(µ)

We have yet to compute a formula for the expansion of the Schur functions in the power
symmetric functions. In order to do this we will examine the commutation relations between
p⊥k and the operators Sm.

Lemma 5.16. For k > 0 and any m ∈ Z, we have

(5.79) p⊥k Sm = Sm−k + Smp
⊥
k .

equivalently

(5.80) pkSm = Smpk + Sm+k
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Proof. The commutation relation of p⊥k and hm is easy to compute given that p⊥k hm =
p⊥k (hm) + hmp

⊥
k . Recall that p⊥k (hm) = hm−k, hence

p⊥k Sm = p⊥k
∑
i≥0

(−1)ihm+ie
⊥
i

=
∑
i≥0

(−1)ip⊥k (hm+i)e
⊥
i +

∑
i≥0

(−1)ihm+ie
⊥
i p

⊥
k

= Sm−k + Smp
⊥
k

The second identity is proven in a similar manner. �

From this we can calculate the action of p⊥k when it acts on the Schur function sλ. For any
partition λ, we will set λrc = (λ2 − 1, λ3 − 1, . . . , λ`(λ) − 1).

To indicate how this is done we do an example because it explains clearly how the proof
proceeds and how to express the action of p⊥k on the Schur function sλ.

Example 46. To demonstrate this Lemma we compute p⊥4 on s(8,6,5,4,2,1,1). In order to do
this we consider this Schur function as the composition of operators S8S6S5S4S2S1S11. We
will represent compositions of operators by a diagram. This means that p⊥4 s(8,6,5,4,2,1,1) will
be the sum of the compositions of operators represented by all of the following 7 diagrams.

Some of these compositions of operators are 0. All of them can be reduced by straightening
relations in equation (5.5) or we can use the method described in Example 37. The following
sequence of operators survive (corresponding to the 1st, 3rd, 4th and 5th digarams), the others
are 0 either because they end in a negative part or in the case of the 2nd diagram there is a
relation of the form SmSm+1 = 0. The sign next to the diagram comes from the number of
applications of the relation (5.5) that were use to straighten the composition to a partition.

− − − +

Notice that the resulting diagrams are partitions which are contained in the partition (8, 6, 5, 4, 2, 1, 1)
and differ from it by removing a ‘slinky’ from the border (also known as a rim hook). What
we have shown is that

p⊥4 s(8654211) = −s(5554211) − s(8632211) − s(8651111) + s(8654).
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Proposition 5.17. For k > 0,

(5.81) p⊥k sλ =
∑

µ

(−1)`(λ/µ)−1sµ

where the sum is over all partitions µ such that λ/µ is connected and of size k and λrc ⊆
µ ⊆ λ. Note that we are using the notation `(λ/µ) to represent the number of rows that the
skew partition λ/µ occupies.

Proof. By the previous lemma, we have that

p⊥k sλ = Sλ1−kSλ2 · · ·Sλ`(λ)
1 + Sλ1Sλ2−k · · ·Sλ`(λ)

1 + · · ·
+ Sλ1Sλ2 · · ·Sλ`(λ)−k1

Now each of these terms is (up to sign) equal to a Schur function or 0 and the commutation
relation of Lemma 5.2 allows us to see that the terms which correspond to partitions µ
will have λ/µ will be a slinky while all others will be 0. The sign in front of the Schur
function indexed by a partition µ will be the number of exchanges required to straighten the
composition of operators. This will be 1 less than the number of rows that λ/µ occupies. �

Using the self-duality property of the Schur functions we may easily derive from this equation
the expansion of the product pksλ in the Schur basis.

Corollary 5.18.

(5.82) pksλ =
∑

µ

(−1)`(µ/λ)−1sµ

where the sum is over all parititions µ such that µ/λ is connected and of size k and µrc ⊆
λ ⊆ µ.

Proof.

pksλ =
∑

µ`|λ|+k

〈pksλ, sµ〉 sµ

=
∑

µ`|λ+k|

〈
sλ, p

⊥
k sµ

〉
sµ(5.83)

=
∑

µ`|λ|+k

∑
ν:µrc⊆ν⊆µ

〈
sλ, (−1)`(ν/µ)−1sν

〉
sµ

=
∑

µ:µrc⊆λ⊆µ

(−1)`(λ/µ)−1sµ

the the sum over partitions ν in the third line is such that µrc ⊆ ν ⊆ µ and µ/λ is connected
and of size k. Similar conditions hold on the final expression for pksλ. �

Proposition 5.17 and Corollary 5.18 are often referred to as the Murnaghan-Nakayama rule
but they are also attributed to Littlewood.
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This leads us to a combinatorial interpretation for the coefficient of pλ/zλ in sµ which will
be equal to 〈pλ, sµ〉. Define χµ(λ) to be this quantity, it then follows that

sµ =
∑

λ

χµ(λ)
pλ

zλ

and

pλ =
∑

µ

χµ(λ)sµ.

For fixed partitions λ and µ we can calculate χµ(λ) by successively removing a row at a time
from the partition λ.

Example 47. To calculate the coefficient χ(44)(4211) we are determining the scalar product〈
p(4211), s(44)

〉
=
〈
p(421), p

⊥
1 s(44)

〉
. Since p1 = h1 it follows either from Proposition 5.17 or 5.13

that p⊥1 s(44) = s(43). Therefore χ(44)(4211) =
〈
p(42), p

⊥
1 s(43)

〉
=
〈
p(42), s(42) + s(33)

〉
. Now we

can apply the Proposition 5.17 to determine the following coefficients. We can determine
from Corollary 5.18 that for k > 0,

〈
pk, s(k−i,1i)

〉
= (−1)i and 〈pk, sλ〉 = 0 if λ is not a hook

shaped partition.

χ(44)(4211) =
〈
p(4), p

⊥
2 s(42)

〉
+
〈
p(4), p

⊥
2 s(33)

〉
=
〈
p(4), s(4) + s(22)

〉
+
〈
p(4), s(31) − s(22)

〉
= 1− 1

At each successive step of this procedure we can label each of the terms that are Schur
functions by a Young diagram with cells labeled at each step they were removed. The terms
which contribute to the sum in the end are the Young diagrams such that they have been
filled with λ1 1s, λ2 2s, etc. such that the cells of the diagram labeled with an i are a
slinky (or rim hook) of size λi. Call this combinatorial object a rim hook tableau (or slinky
tableau) of content λ. The sign of a rim hook tableau will be the product of each of the signs
associated to the cells labeled with an i and so the value of the sign of a rim hook tableau
will be ±1.

In the example above the two terms which contributed to the value of the coefficient are
represented by the following diagrams.

2 2 3 4
1 1 1 1

1 2 2 4
1 1 1 3

The one on left has a weight of +1 while the weight of the diagram on the right will be −1.
This is different from the combinatorial interpretations for other coefficients which we have
presented so far in the fact that the sign of each of the terms is not always the same and
so it is difficult to gain much information about the sign of the coefficients χµ(λ) without
computing the coefficient explicitly.

Stated more precisely, the last example gives

Proposition 5.19. χµ(λ) =
∑

T sgn(T ) where the sum is over all rim hook tableaux (slinky
tableaux) T of shape µ and content λ.
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The following proposition shows that the functions s⊥λ sµ have a simple determinantal formula
which generalizes the Jacobi-Trudi identity. We will develop a formula for the expansion of
these elements in the Schur basis in the next section.

Proposition 5.20.

s⊥µ sλ = det
∣∣hλi−µj−i+j

∣∣
1≤i,j≤n

This is an easy calculation which shall be done in two steps because the intermediate step
will be useful for another formula that we will derive for these elements.

Lemma 5.21.

s⊥µ sλ[X] = Ω[ZnX]sµ[Zn]
∏

1≤i<j≤n

(1− zj/zi)
∣∣∣
zλ

Proof. To expand a formula for f⊥g[X] we will use the coproduct structure on vari-
ables that was discussed at the end of the last chapter through the identity f⊥g[X] =
〈f [Y ], g[X + Y ]〉Y . Now,

s⊥µ sλ[X] =

〈
sµ[Y ],Ω[Zn(X + Y )]

∏
1≤i<j≤n

(1− zj/zi)
∣∣∣
zλ

〉
= 〈sµ[Y ],Ω[ZnY ]〉Ω[ZnX]

∏
1≤i<j≤n

(1− zj/zi)
∣∣∣
zλ

(5.84)

= sµ[Zn]Ω[ZnX]
∏

1≤i<j≤n

(1− zj/zi)
∣∣∣
zλ
.

�

The second step of this proof will be to change this to a determinant much like in the proof
of the equivalence between definition (1) and (2). The key step in the proof will be the use
of Corollary 5.8.

Proof. Recall from Proposition 5.7 that
∏

1≤i<j≤n(1 − xj/xi) = x−δn∆δn(Xn) where

δn = (n− 1, n− 2, . . . , 1, 0).
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We begin with the identity from the previous lemma.

s⊥µ sλ[X] = Ω[ZnX]sµ[Zn]
∏

1≤i<j≤n

(1− zj/zi)
∣∣∣
zλ

= Ω[ZnX]Ω[ZnYn]
∏

1≤i<j≤n

(1− yj/yi)
∏

1≤i<j≤n

(1− zj/zi)
∣∣∣
zλyµ

= Ω[ZnX]Ω[ZnYn]y−δnz−δn∆δn(Yn)∆δn(Zn)
∣∣∣
zλyµ

= Ω[ZnX]det

∣∣∣∣ 1

1− ziyj

∣∣∣∣
1≤i,j≤n

∣∣∣
zλ+δnyµ+δn

(5.85)

= Ω[ZnX]
∑

σ∈Symn

ε(σ)
n∏

i=1

1

1− ziyσ(i)

∣∣∣
zλ+δnyµ+δn

= Ω[ZnX]
∑

σ∈Symn

ε(σ)
n∏

i=1

z
µσ(i)+n−σ(i)

i

∣∣∣
zλ+δn

=
∑

σ∈Symn

ε(σ)
n∏

i=1

hλi−µσ(i)+n−i−(n−σ(i))[X]

= det
∣∣hλi−µj−i+j[X]

∣∣
1≤i,j≤n

�

5.1. The Irreducible Characters of Symn

There is a connection between the class functions of Symn that we have alluded to in this
presentation, that the Schur functions are the Frobenius image of the irreducible characters
of Symn. Recall the following basic facts about the irreducible characters of the symmetric
group that we derived for the characters of an arbitrary finite group.

(1) The number of irreducible characters of Symn is equal to the number of conjugacy
classes in Symn (the number of partitions of n).

(2) If {χλ}λ`n is a complete set of irreducible characters, then χλ(e) is the dimension
of the module corresponding to this irreducible character where e is the identity
element in Symn.

(3)
∑

λ`n χ
λ(e)2 = n!.

(4)
〈
χλ, χµ

〉
= δλµ.

(5)
∑

λ`n χ
λ(π)χλ(σ−1) = zγ if both π and σ are both of cycle type γ and the result is

0 if π and σ are not of the same cycle type.
(6) Since π and π−1 are of the same cycle type, then χλ(π) = χλ(π−1) = χλ(π) and

hence χλ are all real valued.

These properties correspond to the following facts about the Schur symmetric functions.
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(1) {sλ}λ`n is a linear basis for the symmetric functions of degree n.

(2) sλ

∣∣∣
pn
1

=
〈
sλ, p(1n)

〉
=
〈
sλ, h(1n)

〉
= Kλ(1n) is equal to the number of standard tableaux

of shape λ.
(3) In particular, n! =

〈
p(1n), p(1n)

〉
=
∑

λ,µ

〈
Kλ(1n)sλ, Kµ(1n)sµ

〉
=
∑

λ`nK
2
λ(1n).

(4) 〈sλ, sµ〉 = δλµ

(5) pλ =
∑

µ`|λ| χ
µ(λ)sµ and in particular zλδλµ = 〈pλ, pγ〉 =

∑
µ`|λ| χ

µ(λ)χµ(γ).

(6) χµ(λ) =
∑

T sgn(T ) where the sum is over all rim-hook tableaux T of shape µ and
content λ and the sign of the tableau is the product of the signs of each of the hooks
(see Proposition 5.19) hence these coefficients are clearly integers.

The real block here is we have not established an association between the irreducible char-
acters and partitions. To this end we establish the following Proposition.

Proposition 5.22. Let Symλ = Symλ1
× Symλ2

× · · · × Symλ`(λ)
⊆ Sym|λ|. Represent the

trivial character on Symλ by χTλ and the sign character on Symλ by χsgnλ, then for λ, µ ` n〈
χTλ ↑Symn

Symλ
, χsgnµ ↑Symn

Symµ

〉
> 0

if and only if λ ≥ µ′,
〈
χTλ ↑Symn

Symλ
, χsgnµ ↑Symn

Symµ

〉
= 0 otherwise, and

〈
χTλ ↑Symn

Symλ
, χsgnµ ↑Symn

Symµ

〉
=

1 if λ = µ′.

Proof. We have already mostly established this proposition except for a few details
because F(χTµ ↑Symn

Symµ
) = hµ and F(χsgnλ ↑Symn

Symλ
) = eλ hence we are making a statement

about the scalar product 〈hµ, eλ〉. By Proposition 2.10, this is the number of matrices with
entries in 0 and 1 with column sum µ and row sum λ and there is a second combinatorial
interpretation which we have discussed. These combinatorial interpretations or a proof by
induction using the dual multiplication operators can be used to establish the corresponding
statements in the proposition for the scalar product of symmetric functions. This is left as
an exercise in the previous chapter. �

The fact that
〈
χTλ ↑Symn

Symλ
, χsgnλ′ ↑Symn

Symλ′

〉
= 1 implies that there is a single common irreducible

constituent to both of these characters. Define χλ to be this character and set s̃λ = F(χλ).

{χµ}µ`n is then a complete family of irreducible characters since there are the correct number
which must be linearly independent. By the definition of the Frobenius map,

s̃µ = F(χµ) =
∑
λ`n

χµ(λ)pλ/zλ

where χµ(λ) is the value of the class function evaluated at a permutation of cycle type λ.
We would like to say that F(χµ) are in fact the Schur functions, since they are certainly an
orthonormal family of symmetric functions given that

(5.86) 〈s̃µ, s̃λ〉 =
〈
χµ, χλ

〉
= δλµ.
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If χ is a character, then it will have the property that the coefficient of s̃λ in F(χ) will always
be non-negative since it is multiplicity of the irreducible representation corresponding to the
partition λ in the module/matrix representation corresponding to χ. For this reason families
of symmetric functions which have non-negative coefficients when expanded in the Schur
basis are interesting because it is possible that they correspond to family of representations.

Now we look closer to see what the proposition above says about the functions s̃µ. Since
〈s̃µ, eµ′〉 = 1, we know that all characters will have non-negative scalar products. Therefore
if λ � µ then by exercise 2.(8),

0 ≤ 〈s̃µ, hλ〉 ≤ 〈eµ′ , hλ〉 = 0.

This implies that
s̃µ = mµ + terms containing mλ with λ < µ.

Similarly, since 〈s̃µ, hµ〉 = 1, then for µ � λ,

0 ≤ 〈s̃µ, eλ′〉 ≤ 〈hµ, eλ′〉 = 0.

We also know from Remark 6 that mλ = eλ′ + terms containing eγ′ with γ < λ. Therefore

〈s̃µ,mλ〉 = 0.

This implies the result which we are looking to prove, that

s̃µ = hµ + terms containing hλ with λ > µ.

5.2. Exercises

(1) Define the generating function of h⊥n operators H⊥(u) by the formula H⊥(u)P [X] =
P [X+u] and for the (−1)ne⊥n operators E⊥(u)P [X] = P [X−u]. Compute the com-
mutation relations between these generating functions and S(z) defined in equation
(5.3) and equation (5.4). Use these relations to derive the dual Pieri rules.

(2) Show that

sλ

[
1− qn

1− q

]
= qn(λ)Hn(λ′; q)

where Hn(λ; q) =
∏

s∈λ
1−qn−c(s)

1−qh(s) and for s = (i, j), c(s) = j− i and h(s) = λi +λ′j −
i− j + 1.

(3) Show the identity pkSm = Smpk + Sm+k. Use scalar products to show how this
implies S̃mp

⊥
k − (−1)kS̃m−k = p⊥k S̃m and use this identity to derive the Murnaghan-

Nakayama rule.
(4) If λ is a partition such that λ = λ′ then prove that for all f ∈ Λ such that f is of

degree |λ|, sλ ∗ f = ω(sλ ∗ f).





CHAPTER 6

The Littlewood-Richardson Rule

We started by developing the symmetric functions and developed three different ‘multiplica-
tion’ operations: product, the Kronecker or inner product and plethysm. These were defined
on the power basis because there they are the easiest to state and understand.

pλ · pµ = pλ]µ

pλ

zλ

∗ pµ

zµ

=
pν

zν

pλ ◦ pµ =

`(λ)∏
i=1

p(λiµ1,λiµ2,...,λiµ`(λ))

Each of these operations have an interpretation in terms of representation theory that makes
them a curious object to study in the theory of symmetric functions. The definition of these
operations leads to three natural questions that arise. What is the coefficient of sν in the
expression sλ � sµ where � is one of the operations ·, ∗ or ◦. This means that we are
looking for some expression/formula/combinatorial interpretation/ algorithm or method of
computation for the following three expressions:

(6.1) 〈sλsµ, sν〉 , 〈sλ ∗ sµ, sν〉 , 〈sλ ◦ sµ, sν〉 .

Since we have developed means of expanding the Schur function in terms of the power basis
in equations (??), a formula for each of these expressions can be found by expanding the
Schur functions in the expressions above and giving an expression for these quantities in
terms of sums of expressions involving the coefficients χµ(λ). This is our starting point for
each of these coefficients. This formula however is fairly unsatisfactory because it does little
to explain why the coefficients are positive integers or what they might represent.

A goal of exposition will be to arrive at a ‘satisfactory’ explanation for the coefficients above.

One of the most important aspects of the Schur functions are the coefficients which appear
when a product of two Schur functions are again expanded in the Schur basis.

Example 48. We may compute the product s(21)s(32) by expanding these Schur functions in
terms of the homogeneous basis and then converting this expression into the back into the
Schur basis by computing the Schur functions of degree 8 which appear in this expression.
We find that

s(21)s(32) = s(53) + s(521) + s(44) + 2 s(431) + s(422)

+ s(4211) + s(332) + s(3311) + s(3221)

107
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It is not obvious from the method which we used to compute this expansion that the co-
efficients which appear should be non-negative integers. This is a property which always
occurs in the expansion of a product of Schur functions and the purpose of this section will
be to arrive at a combinatorial rule for computing each coefficient. This combinatorial rule
is known as the Littlewood-Richardson rule.

The coefficient of sµ in the product of Schur functions sλ and sν is typically denoted as cµλν ,
that is,

(6.2) sλsν =
∑

µ`|λ|+|ν|

cµλνsµ.

This means that cµλν = 〈sλsν , sµ〉 and by the definition of s⊥λ this means as well that cµλν =〈
sν , s

⊥
λ sµ

〉
and hence

(6.3) s⊥λ sµ =
∑

ν`|µ|−|λ|

cµλνsν

Since the product of two Schur functions is commutative, we note that it must be the case

that cµλν = cµνλ and since ω(sλ) = sλ′ then it follows that cµ
′

λ′ν′ = cµλν since 〈sλ′sν′ , sµ′〉 =
〈ω(sλsν), ω(sµ)〉 = 〈sλsν , sµ〉. We also note that cµλν is non-zero only if |µ| = |λ|+ |ν|.

To begin with, we will derive a combinatorial rule for computing the coefficient cµλν . This
rule is not the Littlewood-Richardson rule, but is instead a precursor since will be a sum
which contains negative components and we will arrive at the Littlewood-Richardson rule
by refining this combinatorial procedure.

Proposition 6.1.

(6.4) s⊥λ sµ =
∑

T∈CSTλ

sµ−n(T )

where the sum is over all column strict tableau of shape λ and with cells labeled with entries
in {1, 2, . . . , `(µ)} and n(T ) = (n1(T ), n2(T ), . . . , n`(µ)(T )) where ni(T ) is the number of cells
in T labeled with an i.



6. THE LITTLEWOOD-RICHARDSON RULE 109

Proof. Recall that by definition (2) we know that sµ[X] = Ω[XZn]
∏

1≤i<j≤n(1 −
zi/zj)

∣∣∣
zµ

. Since we have in general that (g⊥f)[X] = 〈g[Y ], f [X + Y ]〉 then

(s⊥λ sµ)[X] =

〈
sλ[Y ],Ω[(X + Y )Zn]

∏
1≤i<j≤n

(1− zi/zj)
∣∣∣
zµ

〉
Y

= 〈sλ[Y ],Ω[Y Zn]〉Y Ω[XZn]
∏

1≤i<j≤n

(1− zi/zj)
∣∣∣
zµ

= sλ[Zn]Ω[XZn]
∏

1≤i<j≤n

(1− zi/zj)
∣∣∣
zµ

(6.5)

=
∑

T∈CSTλ

zn(T )
n Ω[XZn]

∏
1≤i<j≤n

(1− zi/zj)
∣∣∣
zµ

=
∑

T∈CSTλ

sµ−n(T )[X]

This last equality follows by using the extended definition of the Schur functions indexed by
a composition since as we remarked in the proof of the equivalence of definitions (1), (2) and
(3) that this relation holds for Schur functions indexed by an arbitrary sequence. �

Although it seems like this is a sum over a positive set of objects, µ− ni(T ) is not always a
partitions and hence some of the terms in the sum could be negative when expanded in the
Schur basis. We will give an example to demonstrate this combinatorial formula.

Example 49. Let us show how this equation can be used to compute the expression
s⊥(21)s(442). The formula says that there is one term in this sum for each column strict

tableau of shape (2, 1) with labels in the set {1, 2, 3}. Below we list all 8 tableau as well
as the composition of integers representing the content and the Schur function indexed by
(4, 4, 2) minus the content composition.

2
1 1

3
1 1

2
1 2

3
1 3

(2, 1, 0) (2, 0, 1) (1, 2, 0) (1, 0, 2)
s(232) = 0 s(241) = −s(331) s(322) s(340) = 0

3
2 2

3
2 3

3
1 2

2
1 3

(0, 2, 1) (0, 1, 2) (1, 1, 1) (1, 1, 1)
s(421) s(430) = s(43) s(331) s(331)

This implies that the Schur function expansion of s⊥(21)s(442) is given by s(322) +s(421) +s(43) +
s(331).

Notice that the one term that represents a negative Schur function when indexed by a
partition in this example cancels with one of the two terms coming from the tableaux of
content (1, 1, 1). It is not clear from the way that we have presented this example which
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terms survive in this sum but add an additional combinatorial element and we will be able
to identify exactly what the terms are which survive.

For a partition µ and a column strict tableau T we define the recording diagram for T with
respect to the partition µ which we will denote by Rµ(T ). Rµ(T ) will have ni(T ) cells in the
ith row and these cells will be right justified so that the rightmost cell lies in the µth

i column
of the diagram (we will allow these cells to trickle into the (−x,+y)-quadrant if necessary).
In the ith row the cells will be labeled in increasing order and will contain a label k for each
label i in the kth row of the tableau T .

This is best demonstrated with a few examples.

Example 50.

R(5,4,3)

(
2 3
1 1 3

)
=

1 2
2
1 1

R(2,2,2)

(
2 3
1 1 3

)
=

1 2
2

1 1

R(4,3,3,1)

 4 4
2 3
1 2 2

 =

3 3
2

1 1 2
1

The Littlewood-Richardson rule can now be stated as follows.

Theorem 6.2. cµλν is the number of column strict tableaux of shape λ such that Rµ(T ) is a
column strict tableau of shape µ/ν.

Before we proceed with the proof we will give a second example of a computation with
equation (6.4) and this time we will list all of the column strict tableaux as well as the
recording tableau to demonstrate that the Littlewood-Richardson rule works as advertised.

Example 51. As an example we will compute s⊥(221)s(4332). There are 20 tableaux of shape

(2, 2, 1) with content in the labels {1, 2, 3, 4, 5}.

3
2 2
1 1

4
2 2
1 1

3
2 3
1 1

4
2 4
1 1

3
2 3
1 2

3
2 2

1 1

3

2 2
1 1

2 3
2
1 1

2 3

2
1 1

2 3
1 2

1
s(2122) = 0 s(2131) = −s(2221) s(2212) = 0 s(2230) = 0 s(3112) = 0
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4
2 4
1 2

4
3 4
1 1

4
3 3
1 1

4
3 4
2 2

4
2 3
1 1

2 3

1 2
1

2 3
2

1 1

3
2 2

1 1

2 3
2

1 1

3
2
2
1 1

s(3130) = −s(322) s(2320) = 0 s(2311) = 0 s(4120) = 0 s(2221)

4
2 3
1 2

3
2 4
1 2

4
2 4
1 3

4
3 4
1 3

4
3 3
2 2

3
2

1 2
1

2
3

1 2
1

2 3
1
2

1

2 3
1 2

1

3
2 2
1 1

s(3121) = 0 s(3121) = 0 s(3220) = s(322) s(3310) = s(331) s(4111)

4
3 4
2 3

3
2 4
1 1

4
3 3
1 2

3
2 4
1 3

4
3 4
1 2

2 3
1 2

1

2
3
2
1 1

3
2 2

1
1

2
1 3

2
1

2 3
2
1

1
s(3310) = s(331) s(4111) s(2221) s(3211) s(3220) = s(322)

There are two terms in this collection with negative weight and two terms with positive
weight such that R(4332)(T ) is not a column strict tableau and these negative and positive
terms cancel. 9 of the 20 terms in this sum have 0 weight and the only terms which survive
are those such that R(4332)(T ) is a skew column strict tableau. This calculation shows that

s⊥(221)s(4332) = s(421) + s(4111) + s(331) + s(322) + 2s(3211) + s(2221)


