
Chapter 1

Invariant theory of finite groups

1.1 Introduction

In this introduction we shall make some historical remarks and give some
examples1. Some of the basic theorems and concepts of computational
algebra can be found in 19th century papers on classical invariant theory.
The roots of invariant theory can be traced back to Lagrange (1773-1775)
and Gauss (1801) who were interested in the problem of representing integers
by quadratic binary forms and used the discriminant to distinguish between
non equivalent forms.

Algebraic invariants such as the discriminant show up also in algebraic ge-
ometry when one asks for properties of geometric objects which are invariant
under certain classes of transformations. For example, the geometric signifi-
cance of the discriminant is that a quadratic binary form defines two distinct
points on the projective line P1(C) if and only if its discriminant is non
zero.2 People became interested in such invariant properties especially after
the introduction of homogeneous coordinates by Moebius (1827) and Plucker
(1830)3. This was a major impetus for invariant theory.

In the first decades of invariant theory (1840-1870), people were mainly
concerned with the discovery of particular invariants. The major case of
interest was that of forms of degree d in n variables with SLn(C) acting by
linear substitution (see example 1.7).

In order to understand some of the most basic questions which can be studied
in invariant theory we shall consider two simple examples first. They are
both concerned with finite groups which will be the main object of our

1This section is mainly taken from [5], [6], [3]
2The geometric aspects of the invariant theory of binary forms is explained in [8]
3Find the command for umlauts
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2 CHAPTER 1. INVARIANT THEORY OF FINITE GROUPS

investigation. We shall assume, unless otherwise specified, that the base
field k has characteristic zero, the group G is a finite group of matrices and
the action of M ∈ G over a polynomial f is

M · f(x) = f(M · x).

Note that x is to be thought of as a column vector. However when we write
f(x) componentwise, like in f(x1, x2), we shall write it as a row vector for
simplicity.

Example 1.1. 4 Consider the finite group

V4 =

{(
±1 0
0 ±1

)}
⊆ GL(2,K)

This is sometimes called the Klein four group. We consider the action

g · f(x) = f(g · (x)).

If a polynomial f ∈ K[x, y] is invariant under V4 then

f(x, y) = f(−x, y) = f(x,−y)

and it is immediate to show that the converse is true. If

f(x, y) =
∑
i,j

aijx
iyj,

the condition f(x, y) = f(−x, y) is equivalent to aij = 0 for i odd and the
condition f(x, y) = f(x,−y) is equivalent to aij = 0 for j odd. Thus we can
write

f(x, y) = g(x2, y2)

for a unique polynomial g(x, y) ∈ K[x, y]. Conversely, every polynomial of
this form is invariant under V4. This proves that

K[x, y]V4 = K[x2, y2]

In the example 1.2 we shall see that if we consider invariants for other groups,
even for a subgroup of V4 itself, things may become more complicated.

4Taken from [3]
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Example 1.2. 5 Let

C2 =

{
±
(

1 0
0 1

)}
⊆ V2

Of course a polynomial which is invariant under V4 is also invariant under
C2 but now we have more invariant polynomials, like for example xy. It is
not hard to show that f is invariant under C2 if and only if we can write

f(x, y) = g(x2, y2, xy)

for at least a polynomial g(x, y) ∈ K[x, y] and therefore

K[x, y]C2 = K[x2, y2, xy].

The ring K[x2, y2, xy] however is fundamentally different from the previous
example because uniqueness breaks down: a given invariant can be written
in terms of x2, y2 and xy in more than one way. For example x4y2 is clearly
invariant and

x4y2 = (x2)2 · y2 = x2 · (xy)2

Example 1.3. Let

S2 =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
⊆ V2

The group S2 is isomorphic to C2 but its action on K[x, y] is a different one.
It can be shown (see example 1.4 for a general statement about symmetric
groups) that

K[x, y]S2 = K[x+ y, xy]

Example 1.4. 6. The claims of this example will be proved in the next
section. Suppose the symmetric group Sn acts on V = Kn by

σ · (x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(n)), σ ∈ Sn.

Let us write

φ(t) := (t− x1)(t− x2) · · · (t− xn) = tn − σ1t
n−1 + σ2t

n−2 − · · ·+ (−1)nσn

5Taken from [3]
6Taken from [6]
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with σ1, . . . , σn ∈ K[x1, . . . , xn] the so called elementary symmetric polyno-
mials. Formulas for σ1, . . . , σn are given by:

σ1 = x1 + x2 + · · ·+ xn

σ2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn
...

...
...

σr =
∑

i1<i2<...ir

xi1xi2 · · ·xir

...
...

...

σn = x1x2 · · ·xn
Claim The invariant ring of Sn in this representation is generated by the
algebraically independent invariants σ1, . . . , σn.
This claim will be proved in the next section.

From these examples we see that given a matrix group G, invariant theory
has two basic questions to answer about the ring of invariants K[x1, . . . , xn]G

1. Finite generation Can we find finitely many homogeneous invariants
f1, . . . , fm such that every invariant is a polynomial in f1, . . . , fm?

2. Uniqueness In how many ways can an invariant be written in terms of
f1, . . . , fm i.e. how to describe the ideal of relations of f1, . . . , fm?

For finite groups acting on a ring of polynomials with coefficient in an
algebraically closed field of characteristic zero we will give complete answers
to both questions in Section 1.4 and describe an algorithm for finding all
invariants and all relations between them.
For completing this program we need to introduce a fundamental tool for
doing computations in polynomial rings, i.e. Groebner basis. However, before
introducing it in Section 1.3, we shall deal with the problem of finding all
polynomial invariants for the symmetric group in Section 1.4. This will give
a concrete introduction to the problem of introducing a complete linear order
on polynomials and to the problem of generalizing the division algorithm of
one variable polynomials, which are the two problems which lie at the root
of the theory of Groebner basis
Things are in general more difficult for infinite groups. The following
examples deal with this more general situation

Example 1.5. 7 Suppose that char(K) = 0. Gordan proved that the
invariant rings of the 2-dimensional special linear group SL(2,K) over K
are always finitely generated (see [9]).

7Taken from [6].
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Let Vd be the vector space

{a0x
d + a1x

d−1y + · · ·+ ady
d | a0, a1, . . . , ad ∈ K}

of homogeneous polynomials of degree d in x and y. Such polynomials are
often referred to as binary forms. The coordinate ring K[Vd] can be identified
with K[a0, a1, . . . , ad]. We can define an action of SL(2,K) on Vd by

σ · g(x, y) := g(αx + γy, βx+ δy), σ =

(
α β
γ δ

)
∈ Sl(2K)

There are many ways of constructing invariants for binary forms. One
important invariant of a binary form is the discriminant.
For d = 2, one has K[V2]SL2 = K[∆(g2)], where ∆(g2) = a2

1 − 4a0a2 is the
well known discriminant of a quadratic polynomial g2 = a0x

2 + a1xy + a2y
2.

For d = 3, one has K[V3]SL2 = K[∆(g3)], where

∆(g3) = a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 + 18a0a1a2a3

is the discriminant of a cubic polynomial g3 = a0x
3 + a1x

2y + a2xy
2 + a3y

3.
For d = 4, one has K[V4]SL2 = K[f2, f3], where

f2 = a0a4 −
1

4
a1a3 +

1

12
a2

2 and f3 = det

 a0 a12/4 a2/6
a1/4 a2/6 a3/4
a2/6 a3/4 a4


The discriminant ∆(g4) can be expressed in f2 and f3, namely ∆(g4) =
28(f 3

2 − 27f 2
3 ). For d = 5, 6, 8, the invariant rings are also explicitly known

(see [13] and [15]). See also [12]

In Example 1.5 the ring of invariants is finitely generated even if the group G
was not finite. In one of his famous problems (the fourteenth) Hilbert raised
the question if the ring of invariants is always 8 finitely generated, but this
is not always the case, as the following construction due to Nagata proves.

Example 1.6. 9 This is the counter example of Nagata to Hilbert’s four-
teenth problem. Take K = C and complex numbers ai,j algebraically inde-
pendent over Q where i = 1, 2, 3 and j = 1, 2, . . . , 16. Let G ⊆ GL(32,C) be
the group of all block diagonal matrices

A1

A2

. . .

A16


8check
9Taken from [6]
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where

Aj =

(
cj cjbj
0 cj

)
for j = 1, 2, . . . , 16. Here the cj and bj are arbitrary complex numbers such
that c1c2 · · · c16 = 1 and

∑16
j=1 ai,jbj = 0 for i = 1, 2, 3. Then K[x1, . . . , x32]G

is not finitely generated (see [10]).

Example 1.7. 10 Let V = K
n. The group GL(V ) acts on End(V ) by

conjugation.11

σ · A := σAσ−1, σ ∈ GL(V ), A ∈ End(V ).

The characteristic polynomial of A ∈ End(V ) is given by

χ(t) := det(tI − A) = tn − g1t
n−1 + g2t

n−2 − · · ·+ (−1)ngn.

We view g1, . . . , gn as functions of A. The coefficients gi ∈ K[End(V )] are
clearly invariant under the action of GL(V ). Let us show that K[End(V )]G =
K[g1, . . . , gn]. Consider the set of diagonal matrices

T := {


x1

x2

. . .

x4

 |x1, x2, . . . , xn ∈ k}

The group Sn can be viewed as the subgroup of GLn of permutation matrices.
The set T is stable under the action of Sn. The restriction of χ(t) to T is
Sn-invariant, in fact it is equal to

φ(t) := (t− x1)(t− x2) · · · (t− xn)

Restricting gi to T yields the elementary symmetric polynomial fi. It follows
that g1, . . . , gn are algebraically independent. If h ∈ k[K[End(V )]GL(V ), then
the restriction of h to T is Sn-invariant. We can find a polynomial ψ such that
the restriction of h to T is equal to ψ(f1, . . . , fn). Let U be the set of matrices
which have distinct eigenvalues. Every matrix with distinct eigenvalues can
be conjugated into T , so U ⊆ G · T . The set U is Zariski dense since it is the
complement of the Zariski closed set defined by ∆(χ) = 0. It follows that
h = ψ(g1, . . . , gn) because h−ψ(g1, . . . , gn) vanishes on G · T ⊃ U . The trick
of this example (reducing the computation of k[K[V ]G to the computation
of k[K[W ]H with W ⊆ U and H ⊆ G) works in a more general setting (see
[11]).

10Taken from [6]
11Gl(V ) is the group of invertible linear transformations L : V → V . It is isomorphic

to Gl(n,K) and an explicit isomorphism can be given by choosing a basis {e1, . . . , en} in
V . The isomorphism L→ A = (aij) ∈ Gl(n,K) is given explicitly by A(ej) :=

∑
aijei
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1.2 Monomial ordering and Symmetric Poly-

nomials

In this Section we shall prove the Claim in Example 1.4, i.e. we describe
completely the ring of polynomial invariants under the action of the sym-
metric group12. Let us recall here the definition of the elementary symmetric
polynomials in n variables.

σ1 = x1 + x2 + · · ·+ xn

σ2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn
...

...
...

σr =
∑

i1<i2<...ir

xi1xi2 · · ·xir

...
...

...

σn = x1x2 · · ·xn

Exercise 1.1. Cocoa Define a function which returns the elementary sym-
metric polynomials

From the elementary symmetric polynomials we can construct other sym-
metric polynomials by taking polynomials in σ1, . . . , σn. Thus for example,
for n = 3

σ2
2 − σ1σ3 = x2

1x
2
2 + x2

1x2x3 + x2
1x

2
3 + x1x

2
2x3 + x1x2x

2
3 + x2

2x
2
3

is a symmetric polynomial. The result we want to prove here is that all
symmetric polynomials can be uniquely represented in this way. To prove
this we follow Gauss. We use an inductive procedure and the notion we
need to carry on this induction is that of an order on monomials13. Ordering
monomials in the polynomial ring K[x] is simple: one does this by degree.
This ordering is implicit in the usual division algorithm for polynomials
in K[x]. However for K[x, y] or K[x1, . . . , xn] it is less clear how to order
monomials. We write monomials in x1, . . . , xn as

xα = xa1
1 · · ·xann

so that α = (a1, . . . , an) ∈ Zn≥0 is the vector of exponents. Then a monomial
order is any total order > on monomials with the following two properties.

12This section is mainly taken from [3]
13This section on ordering is taken by [4]
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1. (Well ordering) The order > is a well ordering on the set of monomials,
i.e., any non empty subset of monomials has at least element under >.

2. (Compatibility) If xα > xβ, then xαxγ > xβxγ for any monomial xγ.

Exercise 1.2. (Characteristic zero) A monomial order > has the property
xα > 1 whenever xα 6= 1.

Solution 1 > xα would imply 1 > xα > x2α > x3α > . . . by compatibility,
which would contradict well ordering.

Once we have specified a monomial order > on K[x1, . . . , xn], we can order
the terms of a polynomial. If we write f ∈ K[x1, . . . , xn] as

f =
∑
α

cαx
α, cα ∈ K, (1.1)

then a term of f is cαx
α for cα 6= 0.

Definition 1.1. Given a monomial order > on K[x1, . . . , xn], and a non zero
f as in (1.1)

1. The multidegree of f is

multideg(f) = max(α ∈ Zn≥0 : cα 6= 0)

(the maximum is taken with respect to >)

2. The leading coefficient of f is

LC(f) = cmultideg(f)

3. The leading monomial of f is

LM(f) = xmultideg(f)

4. The leading term of f is

LT (f) = LC(f) · LM(f) = max>{cαxα|cα 6= 0}

where max> means the maximum with respect to >.

The leading term is sometimes called the initial term.
One of the simplest monomial orders is lexicographic order (lex for short) To
define it, we order variables first, say

x1 > x2 > · · · > xn
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We then define

axi11 x
i2
2 · · ·xinn > bxj11 x

j2
2 · · ·xjnn

if i1 > j1, or if i1 = j1 and i2 > j2, or if i1 = j1 and i2 = j2 and i3 > j3, or ...

If we list the variables differently, we get a different lex order, so that there
are n! possible lex orders on monomials in K[x1, . . . , xn].

Exercise 1.3. Let f = 4xy2z + 4z2 − 5x3 + 7x2z2 and let > be lex order as
above. Compute multidegree(f), LC(f), LM(f) and LT(f)

Solution multideg(f) = (3, 0, 0); LC(f) = −5, LM(f) = x3, LT (f) =
−5x3.

Exercise 1.4. Find the leading term of the polynomial p = 12x3
1 +3x1x2x3−

7x2
1x2 with respect to lex when x1 > x2 > x3, when x2 > x3 > x1 and when

x2 > x1 > x3.

Solution 12x3
1, 3x1x2x3 and −7x2

1x2 respectively14.

We are now ready to prove the fundamental theorem of symmetric polyno-
mials.15

Theorem 1.1. Every symmetric polynomial in K[x1, . . . , xn] can be written
uniquely as a polynomial in the elementary symmetric functions σ1, . . . , σn

Proof The proof is taken from [3]. We will use lex order with x1 > x2 >
· · · > xn. Given a non zero symmetric polynomial f ∈ K[x1, . . . , xn], let
LT (f) = axα. If α = (α1, . . . , αn), we first claim that α1 ≥ α2 · · · ≥ αn.
To prove this, suppose that αi < αi+1 for some i. Let β be the exponent
vector obtained from α by switching αi and αi+1. We shall write it as
β = (. . . , αi+1, αi, . . . ). Since axα is a term of f , it follows that axβ is a
term of f(. . . , xi+1, xi, . . . ) = f , the last equality by symmetry, and thus axβ

is a term of f . This is impossible since β > α under lex order, and our claim
is proved.

Now let

h = σα1−α2
1 σα2−α3

2 · · ·σαn−1−αn
n−1 σαnn

14Perhaps it is better to introduce the division algorithm before the proof of the claim
15In general there is a first fundamental theorem which gives a set of generators for

the ring of invariants and a second fundamental theorem which describes the relations
(syzigies) among generators
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To compute the leading term of h, first note that LT (σr) = x1x2 · · ·xr for
1 ≤ r ≤ n. Hence,

LT (h) = LT (σα1−α2
1 σα2−α3

2 · · ·σαn−1−αn
n−1 σαnn )

= LT (σ1)α1−α2LT (σ2)α2−α3 · · ·LT (σn−1)αn−1−αnLT (σn)αn

= xα1−α2
1 (x1x2)α2−α3 · · · (x1 · · ·xn)αn

= xα.

It follows that f and ah have the same leading term, and thus

multideg(f − ah) < multideg(f)

whenever f − ah 6= 0.
Now set f1 = f−ah and note that f1 is symmetric since f and ah are. Hence,
if f1 6= 0, we can repeat the above process to form f2 = f1 − a1h1, where a1

is a constant and h1 is a product of powers of symmetric functions, defined
as above. Further we know that LT (f2) < LT (f1) when f2 6= 0. Continuing
in this way, we get a sequence of polynomials f, f1, f2, . . . with

multideg(f) > multideg(f1) > multideg(f2) · · ·

Since lex order is a well ordering, the sequence must be finite, hence ft+1 = 0
for some t and it follows easily that

f = ah+ a1h1 + · · ·+ atht

which shows that f is a polynomial in the symmetric functions.
Finally we need to prove uniqueness. Suppose that we have a symmetric
polynomial f which can be written

f = g1(σ1, . . . , σn) = g2(σ1, . . . , σn)

Hence g1 and g2 are polynomials in n variables, say y1, . . . , yn. We need to
prove that g1 = g2 ∈ K[y1, . . . , yn]. If we set g = g1−g2, then g(σ1, . . . , σn) =
0 in K[x1, . . . , xn] and we need to prove that g = 0 in K[y1, . . . , yn]. Suppose
that g 6= 0. If we write g =

∑
β aβy

β, then g(σ1, . . . , σn) is a sum of the

polynomials gβ = aβσ
β1

1 σ
β2

2 · · ·σβnn , where β = (β1, . . . , βn). Furthermore, the
argument used above to show that LT (h) = xα shows that

LT (gβ) = aβx
β1+···βn
1 xβ2+···βn

2 · · ·xβnn .

It is easy to show that the map

(β1, . . . , βn) 7→ (β1 + · · ·+ βn, β2 + · · ·+ βn, . . . , βn)
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is injective. Thus the gβ’s have distinct leading terms. In particular, if we
pick β such that LT (gβ) > LT (gγ) for all γ 6= β, then LT (gβ) will be greater
than all terms of the gγ’s. It follows that there is nothing to cancel LT (gβ)
and thus g(σ1, . . . , σn) cannot be zero in K[x1, . . . , xn]. This contradiction
completes the proof of the theorem. �

Exercise 1.5. The proof of the fundamental theorem of symmetric functions
gives an algorithm for writing a symmetric polynomial in terms of σ1, . . . , σn.
Use this algorithm to express

f = x3y + x3z + xy3 + xz3 + y3z + yz3

as a polynomial in the elementary symmetric functions.

Solution f = σ2
1σ2 − 2σ2

2 − σ1σ3

Exercise 1.6. Express x3 + y3 and x4 + y4 as a polynomial in σ1 and σ2.

Solution x3 + y3 = σ3
1 − 3σ2σ1 and σ4

1 − 4σ2σ
2
1 + 2σ2

2

It is possible to give a different algorithm16 to express a symmetric polynomial
in term of elementary symmetric functions. This algorithm is based on a
procedure to divide polynomials in the ring of polynomials with multiple
variables. This procedure is a fundamental tool in computational algebra
and it can be used to give a complete algorithmic description of the ring of
invariants for finite groups in characteristic zero. In the next section we shall
describe the generalization of the division to polynomials with more variables
and the fundamental tool to carry it on properly, namely Groebner basis.
There exists another important set of generators of the ring of symmetric
functions in n variables. We define the k-th power sum

sk = xk1 + xk2 + · · ·+ xkn

Theorem 1.2. If K is a field containing the rational numbers Q, then every
symmetric polynomials in K[x1, . . . , xn] can be written as a polynomial in
the power sums s1, . . . , sn.

Proof Because of theorem 1.1 it is enough to prove that σ1, . . . , σn are
polynomials in s1, . . . , sn. The Newton identities state

sk − σ1sk−1 + · · ·+ (−1)k−1σk−1s1 + (−1)kkσk = 0 1 ≤ k ≤ n (1.2)

16How different?
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For k = 1 σ1 = s1. Assume by induction that σk is a polynomial in s1, . . . , sn.
Equation 1.1 implies

σk = (−1)k−1 1

k
(sk − σ1sk−1 + · · ·+ (−1)k−1σk−1s1

1.3 The division algorithm and Groebner ba-

sis

17For K[x], the unique monomial order is given by 1 < x < x2 < · · · , so that,
for f ∈ K[x], its leading term LT (f) is simply the term of highest degree.
Thus the usual division algorithm for polynomials in K[x] can be stated as
follows: if f, g ∈ K[x] and g 6= 0, then we can write f uniquely in the form

f = qg + r,

where no term of r is divisible by LT (f). This might seem like a complicated
way to of saying r = 0 or deg(r) < deg(g), but it generalizes nicely to multiple
variables.
The general division algorithm will divide f ∈ K[x1, . . . , xn] by f1, . . . , fr ∈
K[x1, . . . , xn]18. We assume that a monomial order is given and we are looking
for an expression of the form

f = q1f1 + · · ·+ qsfs + r, (1.3)

where (generalizing the one variable case) the ”reminder” r should satisfy

no term of r is divisible by any of LT (f1), . . . , LT (fs) (1.4)

We also want to minimize cancellation of leading terms among the qifi, so
that we will require

LT (f) ≥ LT (qifi), 1 ≤ i ≤ s (1.5)

An expression (1.3) which satisfies (1.4) and (1.5) is called a standard
expression.
Given f and f1, . . . , fs, there is a simple algorithm for producing a standard
expression. The basic idea of the algorithm is the same as in the one variable
case: we want to cancel the leading term of f (w.r.t a fixed monomial order)
by multiplying some fi by an appropriate monomial and then subtract.

17This section is mainly taken from [4].
18Why dividing by r polynomials? The point is that we want to find the reminder of

a polynomials in an ideal and ideals of K[x1, . . . , xn] are finitely generated ideals but in
general not principal.
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Example 1.8. 19 We will first divide f = xy2 + 1 by f1 = xy + 1 and
f2 = y+ 1, using lex order with x > y. We want to employ the same scheme
as for division of one-variable polynomials. The goal is to find a1, a2, r such
that f = a1f1 + a2f2 + r and no term of r is divisible by any of LT (f1) and
LT (f2). We do it by recursion according to the following setup

a1 :

a2 :

xy + 1

y + 1

xy2 + 1

The leading terms LT (f1) = xy and LT (f2) = y both divide the leading
term LT (f) = xy2. Since f1 is listed first, we will use it. Thus we divide xy2

by xy, leaving y and then subtract y · f1 from f .

a1 : y

a2 :

xy + 1

y + 1

|xy2 + 1−
|xy2 + y

−−−−−−
−y + 1

Now we repeat the same process on −y + 1. This time we must use f2 since
LT (f1) = xy does not divide LT (−y + 1) = −y. We obtain

a1 : y

a2 : −1

xy + 1

y + 1

| − y + 1

| − y − 1

−−−−−−
2

19Taken from [3]
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Since LT (f1) and LT (f2) do not divide 2, the reminder is r = 2 and we are
done. Thus

xy2 + 1 = y · (xy + 1) + (−1) · (y + 1) + 2.

Example 1.9. 20 Let us divide f = x2y + xy2 + y2 by f1 = xy − 1 and
f2 = y2 − 1, using lex order with x > y. The first step is

a1 : x

a2 :

r :

xy − 1

y2 − 1

|x2y + xy2 + y2 −
|x2y − x
−−−−−−
xy2 + x+ y2

The second step

a1 : x+ y

a2 :

r :

xy − 1

y2 − 1

|xy2 + x+ y2 −
|xy2 − y
−−−−−−
x+ y2 + y

Now something new happens. The leading term of the polynomial to be
divided further is not divisible by the leading terms of f1 and f2. But if we
move this leading term in the reminder we can proceed further.

a1 : x+ y

a2 :

r : x

xy − 1

y2 − 1

y2 + y

20Taken from [3]
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and we get

a1 : x+ y

a2 : 1

r : x

xy − 1

y2 − 1

y2 + y −
y2 − 1

−−−−−
y + 1

Move again the leading term to the reminder you are left with one. Move
again to the remainder, you are left with zero and you are done. Thus, the
reminder is x+ y + 1, and we obtain

x2y + xy2 + y2 = (x+ y) · (xy − 1) + 1 · (y2 − 1) + x+ y + 1.

The algorithm works in general as follows. Start with f , a reminder variable
initially set to zero and s polynomials qi initially set to zero. Then, if LT (f)
is divisible by some LT (fi), we pick the smallest such i and write

f = (LT (f)/LT (fi))fi + f ′.

The reminder is unchanged and we add (LT (f)/LT (fi)) to qi. On the other
hand, if no LT (fi) divides LT (f), then we add LT (f) to the reminder, leave
all qi’s unchanged and write

f = LT (f) + f ′.

In each case, note that LT (f) > LT (f ′). Now repeat the above process
using f ′ and the current value of the reminder. Since > is a well ordering,
after finitely many steps, the process must stop. It is easy to prove that
the result is a standard expression for f 21. Although this algorithm is easy
to carry out, it does not behave as well as one would like. For instance,
the algorithm depends on how the polynomials f1, . . . , fs are ordered, and
changing the order can give a different result. To illustrate this point we
consider the following example. Using lex order with x > y on K[x, y], let’s

21See [3]
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divide f = xy2−x by f1 = xy+1 and f2 = y2−1. Using the above algorithm,
one easily gets

xy2 − x = y · (xy + 1) + 0 · (y2 − 1)− x− y, (1.6)

so that −x−y is the reminder. But if we divide the same polynomial f using
f2, f1, the algorithm gives

xy2 − x = x · (y2 − 1) + 0 · (xy + 1) + 0, (1.7)

where the reminder is now zero. Hence reminders are not unique.

Exercise 1.7. Cocoa Cocoa has an already defined function DivAlg to
perform division of a polynomial by a list of polynomials which return its
quotient and remeinder. Define a function MyDivAlg which implements the
divisiona algoritm by scratch.

This example reveals another problem with division. If we consider the ideal
generated by f1, f2, then (1.7) shows that dividing an element of an ideal by
a basis of the ideal may fail to give a zero remainder. We now shall see that
if we divide by the polynomials in a Groebner basis, then the shortcomings
of the division algorithm disappear.
Given a monomial order > on K[x1, . . . , xn] and an ideal I, the ideal of
leading terms < LT (I) > is the ideal generated by the leading terms LT (f)
for f ∈ I − 0. If I =< f1, . . . , fm > then

< LT (f1), . . . , LT (fs) >⊆< LT (I) > (1.8)

but equality need not occur.

Example 1.10. If f1 = x3 − 2xy and f2 = x2y − x − 2y2, then x2 =
yf1 − xf2 ∈< f1, f2 > hence x2 ∈ LT (< f1, f2 >). However, using
lex order with x > y, we have LT (f1) = x3 and LT (f2) = x2y, hence
x2 6∈< LT (f1), LT (f2) >

A Groebner basis occurs when we get equality in (1.8). More precisely

Definition 1.2. Given a monomial order > and and an ideal I ⊆
K[x1, . . . , xn], we say that {g1, . . . , gt} is a Groebner basis of I if

< LT (g1), . . . , LT (gs) >=< LT (I) >

Given an ideal I, the ideal LT (I) is a monomial ideal. These ideals have
some nice properties which we consider now.
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Definition 1.3. An ideal I ⊆ K[x1, . . . , xn] is a monomial ideal if there
is a subset A ⊆ Zn (possibly infinite) such that I consists of all polynomials
which are finite sums of the form

∑
α∈A hαx

α, where hα ∈ K[x1, . . . , xn].

Exercise 1.8. Let I =< xα : α ∈ A > be a monomial ideal. Then a
monomial xβ lies in I if and only if xβ is divisible by xα for some α ∈ A

Solution If xβ is a multiple of xα for some α ∈ A, then xβ ∈ I by definition of
ideal. Conversely, if xβ ∈ I, then xβ =

∑s
i=1 hix

α(i), where hi ∈ K[x1, . . . , xn]
and α(i) ∈ A. If we expand each hi as a linear combination of monomials,
we see that every term on the right side of the equation is divisible by some
xα(i). Hence the left hand side xβ must have the same property

Monomial ideals can always be generated by a finite set of monomials.

Theorem 1.3. Dickson’s Lemma. A monomial ideal I =< xα, A ⊆
Z
n > can be written down in the form I =< xα(1), . . . , xα(s) >, where

α(1), . . . , α(s) ∈ A. In particular, I has a finite basis.

Proof See [3], Chapter 2, section 4, Theorem 5.

Theorem 1.4. For any ideal I ⊆ K[x1, . . . , xn], LT (I) is a monomial ideal.

Proof See [3], Chapter 2, section 5, Proposition 3, part (i).

Theorem 1.5. Fix a monomial order > on K[x1, . . . , xn], and let I ⊆
K[x1, . . . , xn] be an ideal. Then I has a Groebner basis, and furthermore,
any Groebner basis of I is a basis of I.

Proof < LT (I) > is a monomial ideal by Theorem 1.4, hence it has a
finite monomial basis h1 . . . , hs by Theorem 1.3 (Dickson’s Lemma). Since
< LT (I) > is generated by the leading terms of elements of I, expressing each
hi as a combination of leading terms shows that we can find g1, . . . , gt ∈ I
such that h1, . . . , hs ∈< LT (g1), . . . , LT (gt) >. Then

< LT (I) >=< h1, . . . , hs >⊆< LT (g1), . . . , LT (gt) >⊆< LT (I) >,

so that < LT (I) >=< LT (g1), . . . , LT (gt) >. By definition g1, . . . , gt is a
Groebner basis.
It remains to be proved that I ⊆< g1, . . . , gt >. Let f ∈ I. Divide f by
g1, . . . , gt and get f = q1g1 + · · ·+ qtgt + r. We want to prove that r = 0. If
not, r = f − (q1g1 + · · ·+ qtgt) ∈ I − {0}, so that

LT (r) ∈< LT (I) >=< LT (g1), . . . , LT (gt) > .
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This implies that LT (r) is divisible by some LT (gi) by Exercise 1.8, which
is impossible by (1.4) (no term of the reminder is divisible by any of the
LT (gi)’s). Hence r must be zero. �

The same reasoning gives the following result

Theorem 1.6. If g1, . . . , gt is a Groebner basis for I and f ∈ K[x1, . . . , xn],
then f ∈ I if and only if the remainder of f on division by g1, . . . , gt is zero.

This tells us that once we have a Groebner basis for an ideal, we have an
algorithmic method for deciding when a given polynomials lies in the ideal.
Another important property of Groebner Basis is that the remainders are
unique in the following sense.

Proposition 1.1. If g1, . . . , gt is a Groebner basis for I and f ∈ K[x1, . . . , xn],
then f can be written uniquely in the form

f = g + r

where g ∈ I and no term of r is divisible by any LT (gi).

Sketch of Proof Suppose f = g + r and f = g′ + r′. Then r − r′ = g′ − g
and r − r′ belongs to the ideal I. Then its leading term belongs to
LT (I) =< LT (g1), . . . , LT (gt) >, since g1, . . . , gt is a Groebner basis for
I. But no leading term of r and no leading term of r′ is divisible by any of
LT (gi). Hence r − r′ = 0 and g′ = g. �

Remark 1.1. Proposition 1.1 implies that the reminder on division by a
Groebner basis is unique. If we let G = {g1, . . . , gt} be the Groebner basis,
then the reminder of f on division by G will be denoted

r = f
G
.

These reminders can be used to get unique coset representatives for elements
of the quotient ring K[x1, . . . , xn]/I.

These propositions are nice but in order for them to be useful we need to
compute Groebner basis. Furthermore, since the definition of Groebner basis
involves checking LT (f) for all non zero f in the ideal, it is not clear how
to prove that a given basis of an ideal is a Groebner basis. Fortunately,
Buchberger provided algorithms for solving both of these problems. The key
tool is the S-polynomial of f1, f2 ∈ K[x1, . . . , xn], which is defined to be

S(f1, f2) =
xγ

LT (f1)
f1 −

xγ

LT (f2)
f2

where xγ = lcm(LM(f1), LM(f2)). The basic idea of the S-polynomial is
that it is the simplest combination of f1 and f2 which cancels leading terms.
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Exercise 1.9. Let f1 = x3− 2xy and f2 = x2y− 2y2−x. Compute S(f1, f2)
with respect to the lex order with x > y.

Solution x2. Since LT (x2) is divisible by neither LT (f1) nor LT (f2), we see
that f1, f2 is not a Groebner basis of < f1, f2 >.

In general we can use S-polynomials to tell if we have a Groebner basis.

Theorem 1.7. Buchberger’s criterion. A basis G = {g1, . . . , gt} ⊆ I is a
Groebner Basis of I if and only if for all i < j, we have

S(gi, gj)
G

= 0.

Here, S(gi, gj)
G

denotes the remainder of S(gi, gj) on division by G.

Proof see [3]. �

This criterion gives an algorithm for detecting Groebner bases. Moreover it
suggests how to modify a bases to turn it into a Groebner one. Namely, if
F = {f1, . . . , fj} fails because S(fi, fj)

F 6= 0 for some i < j. then we should
add this remainder to the bases and try again.

Example 1.11. Let F = {f1, f2} = {x3 − 2xy, x2y − 2y2 − x}. We know
that this is not a Groebner basis w.r.t lex order with x > y, in fact we know

by Exercise 1.9 that S(f1, f2)
F

= x2 = f3, so that, setting F1 = {f1, f2, f3},
we compute:

S(f1, f2)
F1

= 0

S(f1, f3)
F1

= −2xy = f4

S(f2, f3)
F1

= −x− 2y2 = f5

So we do not have a Groebner basis yet. Adding the non zero remainders to
F1 we get F2 = {f1, f2, f3, f4, f5}, and then we compute

S(f1, f5)
F2

= −4y3

S(f4, f5)
F2

= −2y3

S(fi, fj)
F2

= 0 all others i < j

It sufficies to add f6 = y3 to F2 giving F3 = {f1, f2, f3, f4, f5, f6}. This time
we get

S(fi, fj)
F3

= 0 1 ≤ i < j ≤ 6
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so that a Groebner basis of < x3 − 2xy, x2y − 2y2 − x > for lex order with
x > y is

F3 = {< x3 − 2xy, x2y − x− 2y2, x2,−2xy,−x− 2y2, y3} (1.9)

The general case is similar to the example just completed.

Theorem 1.8. Buchberger’s algorithm. Given {f1, . . . , fs} ⊆ K[x1, . . . , xn],
consider the algorithm which starts with F = {f1, . . . , fs} and then repeats
two steps

• (Compute Step) Compute S(fi, fj) for all 1 ≥ i < j ≥ |F |.

• (Augment Step) Augment F by adding the nonzero S(fi, fj)
F

until the
compute step gives only zero reminders.

This algorithm always terminates and the final value of F is a Groebner basis
of < f1, . . . , fs >.

This crude form of the algorithm can be enhanced in many ways, see [3] and
[1]. The Groebner basis in (1.9) in unnecessarily large. A standard way to
simplify a Groebner basis G = {g1, . . . , gt} is the following: first replace each
gi with its reminder on division by {g1, . . . , gi−1, gi+1, . . . , gt}, then discard
any remainders that are zero, and finally, for those that are left, make the
coefficient of their leading terms equal to 1. This gives what is called a
reduced Groebner basis. For example, the reduced Groebner basis associated
to (1.9) is

G = {x+ 2y2, y3}.
In general, for a fixed monomial order, an ideal has a unique reduced
Groebner basis.

1.4 Groebner basis and symmetric polynomi-

als

We can show now that it is possible to use the division algorithm with respect
to a suitable Groebner basis in order to express a symmetric polynomial as
a polynomial in the symmetric elementary functions. The same approach
can be used to express an invariant polynomial with respect to generators of
more general invariant rings2223.

22Mainly taken from [3]
23One may wonder if also for reflection groups there exists a nattural combinatorial

basis with good Groebner basis properties



1.4. GROEBNER BASIS AND SYMMETRIC POLYNOMIALS 21

Theorem 1.9. In the ring K[x1, . . . , xn, y1, . . . , yn] fix a monomial order
where any monomial involving one of x1, . . . , xn is greater than all monomials
in K[y1, . . . , yn]. Let G be a Groebner basis of the ideal

< σ1 − y1, . . . , σn − yn >⊆ K[x1, . . . , xn, y1, . . . , yn]

.
Given f ∈ K[x1, . . . , xn], let g = f

G
be the remainder of f on division by G.

Then:

• f is symmetric if and only if g ∈ K[y1, . . . , yn].

• If f is symmetric, then f = g(σ1, . . . , σn) is the unique expression of f
as a polynomial in the elementary symmetric polynomials σ1, . . . , σn.

Proof We have
f = A1g1 + · · ·+ Atgt + g

To prove the first claim, suppose that g ∈ K[y1 . . . , yn]. Then for each
i, substitute σi for yi in the above formula for f . This will not affect f
since it involves only x1, . . . , xn. The crucial observation is that under this
substitution, every polynomial in < σ1−y1, . . . , σn−yn > goes to zero. Since
g1, . . . , gt lie in this ideal, it follows that

f = g(σ1, . . . , σn).

Hence f is symmetric.
Conversely, suppose that f ∈ K[x1, . . . , xn] is symmetric, Then f =
g(σ1, . . . , σn) for some g ∈ K[y1, . . . , yn]. We want to show that g is
the remainder of f on division by G. To prove this, first note that in
K[x1, . . . , xn, y1, . . . , yn], a monomial in σ1, . . . , σn can be written as follows:

σα1
1 · · ·σαnn = (y1 + (σ1 − y1))α1 · · · (yn + (σn − yn))αn

= yα1
1 · · · yαnn +B1 · (σ1 − y1) + · · ·+Bn · (σn − yn)

for some B1, . . . , Bn ∈ K[x1, . . . , xn, y1, . . . , yn]. Multiplying by an appropri-
ate constant and adding over the exponents appearing in g, it follows that

g(σ1, . . . , σn) = g(y1, . . . , yn) + C1(σ1 − y1) + · · ·+ Cn(σn − yn)

where C1, . . . , Cn ∈ K[x1, . . . , xn, y1, . . . , yn]. Since f = g(σ1, . . . , σn) we can
write this as

f = C1(σ1 − y1) + · · ·+ Cn(σn − yn) + g(y1, . . . , yn) (1.10)
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We want to show that g is the remainder of f on division by G.
The first step is to show that no term of g is divisible by an element of
LT (G). If this were not so, then there would be gi ∈ G, gi 6= 0, where
LT (gi) divides some term of g. Hence LT (gi) would involve only y1, . . . , yn
since g ∈ K[y1, . . . , yn]. By our hypothesis on the ordering, it would follow
that gi ∈ K[y1, . . . , yn]. Now replace every yi with the corresponding σi.
Since gi ∈< σ1 − y1, . . . , σn − yn >, we conclude that gi 7→ 0 under the
substitution yi 7→ σi. Then gi ∈ K[y1, . . . , yn] would mean gi(σ1, . . . , σn) = 0.
By the uniqueness part of Theorem (1.1), this would imply gi = 0, which is
impossible since gi 6= 0. This proves our Claim.
It follows that in (1.10), no term of g is divisible by an element of < LT (G) >,
and since G is a Groebner basis, g is the remainder of f on division by G 24,
hence we have proved the first part of the Theorem.
The second part follows immediately. �

A minor adaption of the same proof can give us something more.

Theorem 1.10. Suppose that f1, . . . , fm ∈ K[x1, . . . , xn] are given. Fix a
monomial order in K[x1, . . . , xn, y1, . . . , ym] where any monomial involving
one of x1, . . . , xn is greater than all monomials in K[y1, . . . , yn]. Let G be a
Groebner basis of the ideal

< y1 − f1, . . . , ym − fm >⊆ K[x1, . . . , xn, y1, . . . , ym].

Given f ∈ K[x1, . . . , xn], let g = f
G

be the remainder of f on division by G.
Then:

• f ∈ K[f1, . . . , fm] if and only if g ∈ K[y1, . . . , ym].

• If f ∈ K[f1, . . . , fm], then f = g(f1, . . . , fm) is an expression of f as a
polynomial in f1, . . . , fm.

Proof The proof follows closely the proof of Theorem 1.9. If f =
g(f1, . . . fm), arguing as above we get

f = C1(y1 − f1) + · · ·+ Cm(ym − fm) + g(y1, . . . , ym)

Now g needs not to be the remainder of f on division by G, we still need to
reduce some more. Let G′ = G∩K[y1, . . . , ym]. Renumbering if necessary we
can assume G′ = {g1, . . . , gs}. If we divide g by G′ we get

g = B1g1 + · · ·+Bsgs + g′ (1.11)

24See Proposition 1.1.
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where B1, . . . Bs, g
′ ∈ K[y1, . . . , ym] and hence

f = C ′1(y1 − f1) + · · ·+ C ′m(ym − fm) + g′(y1, . . . , ym)

This follows because in (1.11), each gi lies in < y1 − f1, . . . , ym − fm >. We
claim that g′ is the remainder of f on division by G. This will prove that
the remainder lies in g ∈ K[y1, . . . , ym]. Since G is a Groebner basis g′ is
the remainder of f on division by G provided that no term of g′ is divisible
by an element of LT (G). To prove that g′ has this property, suppose that
there is gi ∈ G where LT (gi) divides some term of g′. Then LT (gi) involves
only y1, . . . , ym since g′ ∈ K[y1, . . . , ym]. By our hypothesis on the ordering,
it follows that gi ∈ K[y1, . . . , ym] and hence gi ∈ G′. Since g′ is a remainder
on division by G′, LT (gi) cannot divide any term of g′. This contradiction
shows that g′ is the desired remainder. �

To use Theorem 1.9 we need to compute a Groebner basis for the ideal
< σ1 − y1, . . . , σn − yn >. This is not hard when we use lex order. Given
variables u1, . . . , us, let

hi(u1, . . . , us) =
∑
|α|=i

uα

be the sum of all monomials of total degree i in u1, . . . , us. Then we get the
following Groebner basis.

Theorem 1.11. Fix lex order on K[x1, . . . , xn, y1, . . . , yn] with

x1 > · · · > xn > y1 > · · · yn

Then the polynomials

gk = hk(xk, . . . , xn) +
k∑
i=1

(−1)ihk−i(xk, . . . , xn)yi, k = 1, . . . , n.

form a Groebner basis for the ideal < σ1 − y1, . . . , σn − yn >.

Proof see [3], p.316

1.5 Generators for the Ring of Invariants

Definition 1.4. Given f1, . . . , fn ∈ K[x1, . . . , xn], we let K[f1, . . . , fm]
denote the subset of K[x1, . . . , xn] consisting of all polynomial expressions
in f1, . . . , fm with coefficients in K.
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This means that the elements f ∈ K[f1, . . . , fm] are those polynomials which
can be written in the form

f = g(f1, . . . , fm)

where g is a polynomial in m variables with coefficients in k.
Elements of the ring of invariants K[x1, . . . , xn]G are easily made by means
of the Reynolds operator.

Definition 1.5. Given a finite matrix group G ⊆ Gl(n,k), the Reynolds
operator of G is the map RG : K[x1, . . . , xn] → K[x1, . . . , xn] defined by the
formula

RG(f)(x) =
1

|G|
∑
A∈G

f(A · x)

for f(x) ∈ K[x1, . . . , xn].

One can think of RG(f) as averaging the effect of G on f .
The following properties are easy to prove and are left as an exercise.

Proposition 1.2. 1. RG is k-linear in f .

2. If f ∈ K[x1, . . . , xn], then RG(f) ∈ K[x1, . . . , xn]G

3. If f ∈ K[x1, . . . , xn]G, then RG(f) = f

Example 1.12. Consider the cyclic matrix group C4 ⊆ Gl(2, k) of order 4
generated by (

0 −1
1 0

)
Obviously

K[x, y]C4 = {f ∈ K[x, y] : f(x, y) = f(−x, y)}.
One can easily check that the Reynolds operator is given by

RC4(f)(x, y) =
1

4
(f(x, y) + f(−y, x) + f(−x,−y) + f(y,−x))

By Proposition (1.2), we can compute some invariants as follows:

RC4(x2) =
1

4
(x2 + (−y)2 + (−x)2 + y2) =

1

2
(x2 + y2)

RC4(xy) =
1

4
(xy + (−y)x+ (−x)(−y) + y(−x)) = 0

RC4(x3y) =
1

4
(x3y + (−y)3x+ (−x)3(−y) + y3(−x)) =

1

2
(x3y − xy3)

RC4(x2y2) =
1

4
(x2y2 + (−y)2x2 + (−x)2(−y)2 + y2(−x)2) = x2y2
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It will be shown in Theorem 1.12 that these three invariants generate in
K[x, y]C4 .

It is easy to prove that, for any monomial xα, the Reynolds operator gives
a homogeneous invariant of total degree |α| whenever it is non zero. The
following theorem of Emmy Noether shows that we can always find finitely
many of these invariants that generate K[x1, . . . , xn].

Theorem 1.12. Given a finite matrix group G ⊆ Gl(n,k), we have

K[x1, . . . , xn]G = K[RG(xβ) : |β| ≤ |G|]

In particular, K[x1, . . . , xn]G is generated by finitely many homogeneous
invariants.

Proof Let f =
∑

α cαx
α ∈ K[x1, . . . , xn]G. Then

f = RG(f) =
∑
α

cαRG(xα).

Hence, every invariant is a linear combination of the RG(xα). It remains to
be proved that RG(xα) is a polynomial in RG(xβ), |β| ≤ G. Let

(x1 + · · ·+ xn)k =
∑
|α|=k

aαx
α. (1.12)

where cα are the multinomials coefficients

cα =

(
k

α

)
=

k!

α1!α2! · · ·αn!

Let x be the column vector of variables x1, . . . , xn and let u be the column
vector of variables u1, . . . , un. Then (u · x)k =

∑
|α|=k cαu

αxα. If A ∈ G

(uA · x)k =
∑
|α|=k

cαu
α(A · x)α (1.13)

If we sum both members of (1.13) over all A’s in G, we obtain

∑
A∈G

(uA · x)k =
∑
|α|=k

cαu
α

(∑
A∈G

(A · x)α

)
(1.14)

The right hand side of (1.14) is∑
|α|=k

|G|cαuαRG(xα)
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Note how the sum on the right encodes all RG(xα) with |α| = k. This is why
we use the variables u1, . . . , un: they prevent any cancellation from occurring.
The left hand side of (1.14) is the k-th power sum Sk of the |G| quantities
UA = (uA · x). We write this as Sk = Sk(UA : A ∈ G). By Theorem 1.2 of
Section 1.2, every symmetric function in the |G| quantities UA is a polynomial
in S1, . . . , S|G|. Since Sk is symmetric in the UA, it follows that

Sk = F (S1, . . . , S|G|) (1.15)

for some polynomial F with coefficients in k. Substituting Sh =
∑

A∈G(uA ·
x)h in (1.15), we obtain

∑
|α|=k

bαRG(xα)uα = F

∑
|β|=1

bβRG(xβ)uβ, . . . ,
∑
|β|=|G|

bβRG(xβ)uβ


Expanding the right side and equating the coefficients of uα, it follows that

bαRG(xα) = a polynomial in the RG(xβ), |β| ≤ |G|.

Since k has characteristic zero, the coefficient bα = |G|aα is not zero in k,
and, hence, RG(xα) has the desired form. �

1.6 Elimination theory

We begin with an example25.

Example 1.13. To eliminate y from the system of equations{
x− y = 0

xy − 3x+ 2 = 0

consider the polynomial consequence

x · (x− y) + 1 · (xy − 3x+ 2) = x2 − 3x+ 2 = 0

This eliminates y and allow us to find the x values of the solutions. In terms
of ideals, we can write this as

x2 − 3x+ 2 ∈< x− y, xy − 3x+ 2 > ∩K[x]

25The first example should be a system of linear equations solved with Gaussian
elimination
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Note that < x− y, xy− 3x+ 2 > ∩K[x] gives all possible way of eliminating
y from our system of equations.
In general, given equations 

f1 = 0
...

fs = 0

with f1, . . . , fs ∈ K[x1, . . . , xn], we can form the ideal I =< f1, . . . , fs > and
then successively eliminate variables by considering the intersections

I ∩K[x2, . . . , xn] which eliminates x1;

I ∩K[x3, . . . , xn] which eliminates x1, x2;
... (1.16)

I ∩K[xn] which eliminates x1, x2, . . . , xn;

These are called elimination ideals and one of the goals of elimination theory
is to find elements (preferably generators) of each I ∩K[xk, . . . , xn]

Amazingly, we can find basis of all of these ideals simultaneously by using a
lexicographic Groebner basis. Here is the precise result.

Theorem 1.13. (Elimination theory) If I =< f1, . . . , fs >⊆ K[x1, . . . , xn]
is an ideal and G = {g1, . . . , gt} is a Groebner basis for I for lex order with
x1 > x2 > · · · > xn, then for each k between 2 and n, the set

G ∩K[xk, . . . , xn]

is a Groebner basis for the elimination ideal

I ∩K[xk, . . . , xn]

Proof Given any f 6= 0 in I ∩ K[xk, . . . , xn], we have f ∈ I, so that LT (f)
is divisible by LT (gi) for some gi ∈ G by definition of Groebner basis. Since
f ∈ K[xk, . . . , xn], its leading term LT (f) does not involve x1, . . . , xk−1.
Hence the same is true for LT (gi) Because of our hypothesis on the order,
LT (gi) ∈ K[xk, . . . , xn] implies gi ∈ K[xk, . . . , xn]. Hence we have proved
that for any f 6= 0 ∈ I ∩K[xk, . . . , xn], LT (f) is divisible by LT (gi) for some
gi ∈ G ∩K[xk, . . . , xn] and we are done for the definition of Groebner basis.

Example 1.14. Suppose we want to find the minimum and maximum values
of the function f(x, y, z) = x3 + 2xyz− z2 subject to the constraint equation
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g(x, y, z) = x2 + y2 + z2 − 1 = 0. This is a typical constrained min-max
problem. By the method of Lagrange multipliers, we get the equations{

∇f = λ∇g
g = 0

which can be written in the form
3x2 + 2yz − 2xλ = 0
2xz − 2yλ = 0
2xy − 2z − 2zλ = 0
x2 + y2 + z2 − 1 = 0

The four polynomials which appears in the left hand side of the above
equations can be turned into a Groebner basis with respect to the lex order
with λ > x > y > z. We obtain

λ− 3

2
x− 3

2
yz − 167616

3835
z6 − 36717

590
z4 − 134419

7670
z2 = 0 (1.17)

x2 + y2 + z2 − 1 = 0 (1.18)

xy − 19584

3835
z5 +

1999

295
z3 − 6403

3835
z = 0 (1.19)

xz + yz2 − 1152

3835
z5 − 108

295
z3 +

2556

3835
z = 0 (1.20)

y3 + yz2 − y − 9216

3835
z5 +

906

295
z3 − 2562

3835
z = 0 (1.21)

y2z − 6912

3835
z5 +

827

295
z3 − 3839

3835
z = 0 (1.22)

yz3 − yz − 576

59
z6 +

1605

118
z4 − 453

118
z2 = 0 (1.23)

z7 − 1763

1152
z5 +

655

1152
z3 − 11

288
z = 0 (1.24)

The last equation involves only z, and it factors as

z(z2 − 1)(z2 − 4

9
)(z2 − 11

128
) = 0

which implies

z = 0 ± 1 ± 2

3
±
√

11

8
√

2

This solves (1.24). (1.21), (1.22) and (1.23) involve only y and z. Thus by
setting z equal to each of the values we obtained by solving (1.24), we can
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solve for the corresponding y. Continuing this way, we can find the values
for x (and λ, which are not needed). They are

z = 0 y = 0 x = ±1
z = 0 y = ±1 x = 0
z = ±1 y = 0 z = 0
z = 2/3 y = 1/3 x = −2/3
z = −2/3 y = −1/3 x = −2/3

z =
√

11/8
√

2 y = −3
√

11/
√

2 x = −3/8

z = −
√

11/8
√

2 y = 3
√

11/
√

2 x = −3/8

The code for computing the Groebner basis in example 1.14 with CoCoA is

Use R::=Q[l,x,y,z];

F:=x^3+2x*y*z-z^2;

G:=x^2+y^2+z^2-1;

MJ:=Jacobian([F])-l*Jacobian([G]);

ListPol:=MJ[1];

Append(ListPol,G);

Id:=Ideal(ListPol);

Set Indentation;

GB:=GBasis(Id);

GB;

1.7 Relations among the Generators for the

Ring of Invariants

In Section 1.5 we have seen (in principle) how to find generators F =
{f1, . . . , fm} for the ring of polynomial invariants of a finite group, i.e.
elements of K[x1, . . . , xn] such that

K[x1, . . . , xn]G = K[f1, . . . , fm].

In this section we want to discuss how to produce all relations between these
generators, i.e. all polynomials h ∈ K[y1, . . . , ym] such that h(f1, . . . , fm) = 0.
If we call this set IF , it is easy to prove that IF is a prime ideal of
K[y1, . . . , ym]26

We call IF the ideal of relations for F = {f1, . . . , fm} or the first syzygy ideal.

26see [4], chap 7, par 4, proposition 1
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Exercise 1.10. If K[x1, . . . , xn]G = K[f1, . . . , fm], let IF ⊆ K[y1, . . . , ym] the
ideal of relations. Then there is a ring isomorphism

K[y1, . . . , ym]/IF ∼= K[x1, . . . , xn]G

We can compute IF explicitly using elimination theory.

Theorem 1.14. If K[x1, . . . , xn]G = K[f1, . . . , fm], consider the ideal

JF =< f1 − y1, . . . , fm − ym >⊆ K[x1, . . . , xn, y1, . . . , ym].

1. IF is the n-th elimination ideal of JF . Thus IF = JF ∩K[y1, . . . , yn]

2. Fix a monomial order in K[x1, . . . , xn, y1, . . . , ym] where any monomial
involving one of x1, . . . , xn is greater than all monomials inK[y1, . . . , ym]
and let G be a Groebner basis of JF . Then G ∩ K[y1, . . . , ym] is a
Groebner basis for IF in the monomial order induced on K[y1, . . . , ym].

Proof To relate JF to the ideal of relations IF , we will need the following
characterization of JF : if p ∈ K[x1, . . . , xn, y1, . . . , ym], then we claim that

p ∈ JF ⇐⇒ p(x1, . . . , xn, f1, . . . , fm) = 0 in K[x1, . . . , xn]. (1.25)

One implication (=⇒) is obvious since the substitution yi 7→ fi takes all
elements of JF =< f1− y1, . . . , fm− ym > to zero. On the other hand, given
p ∈ K[x1, . . . , xn, y1, . . . , ym], if we replace each yi in p by fi − (fi − yi) and
expand, we obtain

p(x1, . . . , xn, y1, . . . , ym) = p(x1, . . . , xn, f1, . . . , fm)+
+B1(f1 − y1) + · · ·+Bm(fm − ym)

for some B1, . . . , Bm ∈ K[x1, . . . , xn, y1, . . . , ym]. In particular, if

p(x1, . . . , xn, f1, . . . , fm) = 0,

then

p(x1, . . . , xn, y1, . . . , ym) = B1(f1 − y1) + · · ·+Bm(fm − ym) ∈ JF .

This completes the proof of (1.25).
Now intersect each side of (1.25) with K[y1, . . . , ym]. For p ∈ K[y1, . . . , ym]
this proves

p ∈ JF ∩K[y1, . . . , ym] ⇐⇒ p(f1, . . . , fm) = 0 in K[x1, . . . , xn],

so that JF ∩K[y1, . . . , ym] = IF by definition of IF . Thus, point 1) is proved
and point 2) is then an immediate consequence of the elimination theory of
Section 1.6
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Example 1.15. In Example 1.2 we saw that the ring of invariants of C2 =
{±I2} ⊆ GL(2, k) is given by K[x, y]C2 = K[x2, y2, xy]. Let F = (x2, y2, xy)
and let the new variables be u, v, w. Then the ideal of relations is obtained
by eliminating x, y from the equations

u = x2

v = y2

w = xy

If we use lex order with x > y > u > v > w, than a Groebner basis for the
ideal JF =< u− x2, v − y2, w − xy > consists of the polynomials

x2 − u, xy − w xv − yw xw − yu y2 − v, uv − w2.

It follows from Proposition 1.14 that

IF =< uv − w2 > .

This says that all relations between x2, y2 and xy are generated by the
obvious relations x2 · y2 = (xy)2. The the ring of invariants is therefore

K[x, y]C2 ∼= K[u, v, w]/ < uv − w2 >

1.8 Hilbert series and Molien theorem

In this Section, we prove some results about Hilbert series of rings and some
applications to rings of invariants27.

Definition 1.6. For a graded vector space V = ⊕∞d=kVd with Vd finite
dimensional for all d we define the Hilbert series of V as the formal Laurent
series

H(V, t) =
∞∑
d=k

dim(Vd)t
d

In the literature, Hilbert series are sometimes called Poincaré series. In our
applications, V will always be a graded algebra or a graded module.

Example 1.16. Let us compute the Hilbert series of K[x1, . . . , xn]. There
are

(
n+d−1
n−1

)
monomials of degree d, therefore the Hilbert series is

H(K[x1, . . . , xn], t) =
∞∑
d=0

(
n+ d− 1

n− 1

)
td

This is exactly the power series expansion of (1− t)−n.

27I should define the concept of graded algebra and graded moduli first, discuss only the
behaviour of Hilbert series w.r.t. symmetric products, look at the examples in Sloane.
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Remark 1.2. If V and W are two graded vector spaces, then the tensor
product V ⊗W has also a natural grading, namely

(V ⊗W )d = ⊕d1+d2=dVd1 ⊗Wd2

It is obvious from this formula that H(V ⊗W, t) = H(V, t)H(W, t). Suppose
that R = K[x1, . . . , xn] and xi has degree di > 0. Then we have R =
K[x1] ⊗ K[x2] ⊗ K[xn] as graded algebras and H(K[xi], t) = (1 − tdi)−1. It
follows that

H(R, t) =
1

(1− td1) · · · (1− tdn)
(1.26)

Remark 1.3. If

0→ V (1) → V (2) → · · · → V (r) → 0 (1.27)

is an exact sequence of graded vector spaces (all maps respect degree) with

V
(i)
d finite dimensional for all i and d, then

r∑
i=1

(−1)iH(V (i), t) = 0

This is clear because the degree d part of (1.27) is exact for all d.

Theorem 1.15. (Hilbert) If R = ⊕∞d=0Rd is a finitely generated graded
algebra over a field k = R0, then H(R, t) is the power series of a rational
function. The radius of convergence of this power series is at least one.
Moreover, if M = ⊕∞d=kMd is a finitely generated graded R-module, the
H(M, t) is the Laurent series of a rational function (which may have a pole
at 0).

Proof Let A = K[x1, . . . , xn] be the polynomial ring, graded in such a way
that deg(xi) = di > 0. Then H(A, t) is a rational function by equation (1.26)
and the radius of convergence of the power series is 1 if n > 0 and∞ if n = 0.
For any integer e, we define the A-module A(e) by A(e) = ⊕∞d=−eA(e)d with
A(e)d := Ae+d. It is clear that H(A(e), t) = t−eH(A, t) is again a rational
function. A module is free if it is isomorphic to a direct sum A = ⊕iA(i),
hence the Hilbert series of a finitely generated free module M is a rational
function. If M is a finitely generated A-module, then by Hilbert’s syzygy
theorem (see [7], thm 31.13), there exists a resolution

0→ F (r) → F (r−1) → · · · → F 1 → F (0) →M → 0 (1.28)
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where F (i) is finitely generated free A-module for all i, and the sequence is
exact. It follows from Remark 1.3 that

H(M, t) =
r∑
i=0

(−1)iH(F (i), t) (1.29)

so H(M, t) is a rational function. If M is non-negatively graded, then the
same is true for all F (i), so the radius of convergence of H(M, t) is at least 1.
Let R be an arbitrary finitely generated graded algebra over k = R0. Then,
for some n and some d1, . . . , dn > 0, there exists a homogeneous ideal I ⊆ A
such that A/I ∼= R. Hence R is a finitely generated, not negatively graded
A-module, and the claim follows. Moreover, any finitely generated graded
R-module M is also a finitely generated graded A-module. �

We consider now the Hilbert series of the ring of invariants, which is also
called the Molien series. If T ∈ Gl(n,K), then T acts on K[x1, . . . , xn] and
T restricts to a linear transformation on each K[x1, . . . , xn]d which is finite
dimensional. We shall write trdT for the trace of T |K[x1, . . . , xn]d.

28

Proposition 1.3. If T ∈ Gl(n) then
∑∞

d=0(trdT )td = det(1− tT )−1.

Proof It will be convenient for the proof to extend the base field to its
algebraic closure, to have access to eigenvalues. Then we may choose a basis
{x1, . . . , xn} for kn so that T is represented by a triangular matrix, with
eigenvalues λ1, . . . , λn. Also

∏n
i=1 x

ai
i : (a1, . . . , an) ∈ Zn+,

∑
i ai = d} is a

basis for K[x1, . . . , xn]d, and if that basis is ordered lexicographically then
T |K[x1, . . . , xn]d is also represented by a triangular matrix with eigenvalues
{
∏n

i=1 λ
ai
i : (a1, . . . , an) ∈ Zn+,

∑
i ai = d}. Thus

(trdT )td =
∑
{
n∏
i=1

(λit)
ai : (a1, . . . , an) ∈ Zn+,

∑
i

ai = d}

and
∞∑
d=0

(trdT )td =
∑
{
n∏
i=1

(λit)
ai : (a1, . . . , an) ∈ Zn+, }

Now note that (1− λit)−1 =
∑∞

a=0(λit)
a, so∏n

i=1(1− λit)−1 =
∏n

i=1

∑∞
ai=0(λit)

ai

=
∑
{
∏n

i=1(λit)
ai : (a1, . . . , an) ∈ Zn+, }

=
∑∞

d=0(trdT )td

28This section is taken from [2]
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To complete the proof observe that

n∏
i=1

(1− λit)−1 =
1

det(1− tT )

�

Corollary 1.1.
∑∞

d=0(dim(K[x1, . . . , xn]))td = (1− t)−n

Proof Take T = 1.

Proposition 1.4. Suppose W is a subspace of V and P is a projection of V
onto W , i.e. PV = W and P 2 = P . The dim(W ) = tr(P )

Proof Let W ′ = (1−P )V . Hence, V = W ⊕W ′ and the restriction of P to
W ′ is zero, so by choosing a suitable basis we can represent P by the matrix(

IdW 0
0 0

)
(1.30)

and dim(W ) = tr(P ) .

Let G ⊆ Gl(n) be a finite group and let I = K[x1, . . . , xn]G be the algebra
of invariants of G. The Molien series of G is the Hilbert series of I i.e. is
the power series

Φ(t) :=
∞∑
d=0

(dimId)td

Proposition 1.5. If G ⊆ GL(V ) is finite then dim(Id) = 1
|G|
∑
{trdT : T ∈

G}

Proof Let Td be the restriction of T ∈ G to K[x1, . . . , xn+d. The restriction
to K[x1, . . . , xn+d of the Reynolds operator, Rd := 1

|G|
∑

T∈G Tr(Td)is a
projection. Hence by proposition 1.4

dimId = Tr(Rd) =
1

|G|
∑
{trdT : T ∈ G}

Theorem 1.16. (Molien’s theorem) If G ⊆ GL(n,K) is finite then its Molien
series is

Φ(t) =

∑
T∈G det(1− tT )−1

|G|
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Proof

Φ(t) =
∞∑
d=0

dim(Id)td =
∞∑
d=0

1

|G|
∑
{trdT : T ∈ G} =

=
1

|G|
∑
T∈G

(
∞∑
d=0

(trdT )td)

=
1

|G|
∑
T∈G

1

det(1− tT )

Example 1.17. Let G be the dihedral group over 3 elements. The matrices

T1 =

(
1 0
0 1

)
T2 =

(
1 0
0 −1

)
T3 =

(
−1/2 −

√
3/2√

3/2 −1/2

)
are representatives of the conjugacy classes, of respective sizes 1, 3 and 2.
We have

det(Id− tT1) = (1− t)2

det(Id− tT2) = 1− t2

det(Id− tT3) = 1 + t+ t2

and thus

φ(t) =
1

6

(
1

(1− t)2
+

3

1− t2
+

2

1 + t+ t2

)
We recall that

1

1− t
= 1 + t+ t2 + t3 + . . . (1.31)

By setting t = t2 in (1.31) we get

1

1− t2
= 1 + t2 + t4 + t6 + . . .

whose coefficients follows the pattern

1 0 1 0 1 0 1 0 1 . . . (1.32)

By differentiating (1.31) we get

1

(1− t)2
= 1 + 2t+ 3t2 + 4t3 + . . .

whose coefficients follows the pattern

1 2 3 4 5 6 7 8 9 . . . (1.33)
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Notice moreover that

1

1 + t+ t2
=

1− t
1− t3

= (1− t)(1 + t3 + t6 + t9 + . . . )

= (1− t) + (t3 − t4) + (t6 − t7) + (t9 − t10)

whose coefficients follows the pattern

1 − 1 0 1 − 1 0 1 − 1 0 . . . (1.34)

Hence, the pattern of coefficients of φ(t) is

1 0 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 . . . (1.35)

Hence we get; at degree zero, the constants; at degree one, no invariants; at
degree 2, the invariant f2 = x2 +y2, which is invariant for the whole O(2,R);
at degree 3 the invariant f3 = . . . , that can be computed by applying the
Reynold operator to monomial of degree 3; in degree 4, the invariant f4 = f 2

2 ;
in degree 5, the invariant f5 = f2f3. In degree 6 we have f6 = f 3

2 and g6 = f 2
3 .

Since f2 and f3 are irreducible, f6 and g6 are independent. Hence, by Noether
theorem, K[x1, x2]G is generated by f2 and f3, which are independent.

The group of the example is a Coxeter group, i.e. a finite effective subgroup
of O(Rn) which is generated by reflections. For these groups the following
facts hold29.

Theorem 1.17. Let G ⊆ O(Rn) be a Coxeter group. Then there exist n
algebraically independent polynomials f1, . . . , fn ∈ R[x1, . . . , xn] such that

R[x1, . . . , xn]G ∼= R[f1, . . . , fn]

Moreover, G has no invariant of degree one while it has always the obvious
degree two invariant x2

1 + · · ·+ x2
n.

The basic generators f1, . . . , fn are not uniquely determined, but their degrees
d1, . . . , dn are. These degrees satisfy the following properties

1. |G| =
∏n

i=1 di

2. The total number of reflections in G is
∑n

i=1(di − 1)

We close this section with a table (Table 1.1), taken from [2], in which the
degrees of the basic generators are given for each Coxeter group.

29We refer to [2] for their proofs.
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G d1, . . . , dn
An 2, 3, . . . , n+ 1
Bn 2, 4, . . . , 2n
Dn 2, 4, . . . , n− 2, n, n, n, n+ 2, . . . , 2n− 2 (n even)

2, 4, . . . , n− 1, n, , n+ 1, . . . , 2n− 2 (n odd)
Hn

2 2, n
G2 2, 6
F4 2, 6, 8, 12
I3 2, 6, 10
I4 2, 12, 20, 30
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30

Table 1.1: Degree of basic generators of Coxeter groups
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Appendix A

Tensor product

We shall denote by K a numeric field.

Definition A.1. Let U V and W be three dimensional vector spaces over
K. A bilinear map φ : U ×V →W is a function φ which is linear in u for
each v ∈ V and linear in v for each u ∈ U.

The set Bil(U×V,W) of bilinear maps is a vector space.

Definition A.2. A bilinear map φ : U ×V → W is the tensor product of
V and W if it has the following universal property. For every vector space
Z and every bilinear application g : U×V→ Z there exists a unique linear
map h : W→ Z such that g = h ◦ φ, i.e. such that the following diagram is
commutative

U×V −→ W
g ↘ ↙ h

Z

.
The universal property defines the tensor product uniquely modulo natural
isomorphisms. In fact, let φ and φ′ two tensor products U and V. Then,
by the universal property of φ there exists one and only one linear map h
such that h ◦ φ = φ′ and by the universal property of φ′ there exists one
and only one linear map h′ such that h′ ◦ φ′ = φ. Hence, h′ ◦ h ◦ φ = φ and
h ◦ h′ ◦ φ′ = φ′. By the universal property of φ, h′ ◦ h coincides with the
identity and by the universal property of φ′, h◦h′ coincides with the identity.
We give now a concrete way to build the tensor product of two finite
dimensional vector spaces.

Proposition A.1. Let e1, . . . , en be a basis of U and let f1, . . . , fm be a
basis of V. Let W be the free vector space over the symbols ui ⊗ vj. The
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bilinear function φ : U×V→W defined by

φ(
n∑
i=1

aiei,
m∑
j=1

bifi) :=
∑
i,j

aibjui ⊗ vj

is a tensor product of U and V

Proof Let g : U×V → Z be a bilinear function. Let us define h : W → Z
by

h(
∑

ci,jui ⊗ vj) = ci,j
∑

g(ei, bj)

It is immediate to check that h is linear. Moreover h ◦ φ = g. In fact

(h ◦ φ)(
∑
aiei,

∑
bjfj) = h(φ(

∑
aiei,

∑
) =

h(
∑
aibjφ(ei, fj)) =

∑
aibjh(ui ⊗ vj) =∑

aibjg(ei, fj) = g(
∑
aiei,

∑
bjfj)

(A.1)

If h is a linear function W → Z such that h ◦ φ = g, then h(ui ⊗ wj) =
h(ui ⊗ wj) and since ui ⊗ vj is a basis, h = h. �
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