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1 This chapter is discussion 
about the goals of this 
book.

Section 1 tells what the 
book is about and section 2 
talks about some of the 
background the reader will 
need to know to do the 
exercises.

Introduction
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Mini-Mathematical Monographs
This book is a short introduction to generating functions from a 
a computational perspective.  It is an experiment with new tech-
nology.

My goal is to cover only the topic of ordinary generating func-
tions and only a quick introduction.  It does not extend beyond 
the computational aspects and does not cover more combinato-
rial applications of generating functions.  These are topics that I 
hope to cover in other short books.

I would like this ebook to be a model for what can be done for 
explaining mathematics.  What I am trying to develop here that 
is different than most texts:

1. brief and focused

2. visual

3. an introduction to the use of computers (in particular, Sage)

This is not a textbook in the usual sense where a large body of 
mathematics is summarized and contextualized.  One aspect 
that I am attempting to experiment with in this textbook is to pre-
sent a topic that one can potentially read and understand in a 
single day.  The video summaries of each of the sections are 
supposed to facilitate this.

Section 1

About this ebook

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary11.mov

For a video summary of this section:

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary11.mov
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary11.mov
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I am using Apple’s iBook Author technology to write this book 
because I would like to use some of the aesthetic and video 
technology that this program offers.  I realize that there is a 
great risk of obsolescence and limitations in the availability of 
the format, but it is an experiment.

This is a topic that I have covered in a number of courses that I 
teach at York University (in Toronto, Canada).  In particular, this 
topic appears in an expanded form a course on number theory 
and combinatorics for teachers in a part time M.A. program for 
Teachers offered at York University.  It is also a topic that I usu-
ally cover in a 4th year combinatorics class.  At most this mate-
rial might cover what I do over a period of 1-3 weeks of a 
course.

This topic is appropriate for any student that has basic algebra 
and (some) calculus skills.  Generating functions are an impor-
tant tool for manipulation of all kinds of sequences.  This book 
might be appropriate for an advanced high school student.

I am not looking to do a comprehensive introduction to generat-
ing functions.  Instead I would like a presentation which will 
serve as an introduction and give the reader the ability to under-
stand and compute several advanced examples.

The main goal is to summarize the subject of generating func-
tions so that the reader is able to prove all of the summation for-
mulas in the last chapter and more generally recognize that 

summation formulas can be proven by using generating func-
tions using a method which is even more systematic than induc-
tion.

In most of my courses where I cover generating functions, I 
would cover at least a “Part II” to this book which is a bridge be-
tween combinatorics and generating functions which would be 
an additional 1-3 weeks.  More advanced topics would require 
at least two additional parts.

I hope to do something different than the usual mathematics 
textbook by adding video animations which summarize the text.
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This section is mainly written with my students in mind.  I know 
that before introducing this topic to my first and second year un-
dergraduate students I would spend some time introducing nota-
tion and ensuring that they have the requisite background.

I won’t cover that material here, just recall what background I 
expect students to have before beginning.

Algebra, Symbolic notation and Pattern 
Matching
To my eye, one of the most important skills that a reader will 
have to have in order to appreciate the contents of this book is 
the skill to manipulate algebraic and symbolic expressions.

University level mathematics requires (often unspoken) skills of 
unpacking, packing and parsing symbolic expressions.  This is 
a skill that teachers try to transmit starting in grade school and 
by university level we expect students to have mastered recog-
nizing formulas. These skills are challenging to develop.  Moreo-
ver they mainly taught indirectly by providing example after ex-
ample.

For example, we will use summation notation

(1.2.1.1)! ! ! ∑
i≥0

ai = a0 + a1 + a2 + a3 + ⋯!

Section 2

Notes about 
recommended 
background of the reader

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary12.mov

For a video summary of this section:

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary12.mov
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary12.mov
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where the ai represents some expression which depends on the 
index i.

Now, say that we were to encounter the following sum:

(1.2.2.2)! ! ! 1 ⋅ 2 − 2 ⋅ 3x + 3 ⋅ 4x2 − 4 ⋅ 5x3 + ⋯

To say that this is an expression of the same form as the right 
hand side of equation (1.2.1.1) means that

a0 = 1 ⋅ 2, a1 = − 2 ⋅ 3x, a2 = 3 ⋅ 4x2, a3 = − 4 ⋅ 5x3, …

and arriving at a formula for ai in general is not necessarily obvi-
ous.

Asking someone to turn this into an expression involving a sum-
mation notation requires a lot of practice and intuition (and an 
answer is not at all unique either).  A reader would need to no-
tice that in order to make the terms alternate between positive 
and negative values they might need to know that (−1)i is 1 if i 
is even and -1 if i is odd.  In which case, a more compact way 
of writing the sum in equation (1.2.2.2) is

(1.2.2.3)! ! ! ∑
i≥0

(−1)i(i + 1)(i + 2)xi.

There are an infinite number of ways of writing the same expres-
sion and another person might find it equally helpful to write 
equations (1.2.2.2) or (1.2.2.3) as

(1.2.2.4)! ! ! ∑
n≥1

(n2 + n) ⋅ cos((n + 1)π)xn−1.

Do you see how these two expressions are equal?  If the an-
swer is yes, then you probably know enough algebra to pro-
ceed in this book.  If not, beware!  There are algebra skills 
which will be used in the rest of this book that may be challeng-
ing.
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Calculus and Taylor series
Calculus is the study of the infinite and the infinitesimal.

We will be studying manipulations of infinite series and al-
though we won’t be asking the same questions that one would 
ask about series in a calculus class (we will not at all be con-
cerned about the convergence of such series), we will be using 
operations that one learns in a calculus class.

In order to manipulate generating functions we will on occasion 
use the derivative and integral operators.  We won’t use all of 
their properties, but we will need to know the derivatives of ba-
sic functions such as xn, the product rule, the chain rule, partial 
fraction decomposition.  Maybe if you are clever you will see a 
way of using integration by parts in some of the exercises.

More frequently we will require the single variable Taylor’s theo-
rem.  It relates the coefficient of xn in the series expansion of 
f (x) and the nth derivative of the function evaluated at 0 (which 
is denoted f (n)(0)).  Taylor’s theorem states that a function f (x) 
has a series expansion in the variable x expanded about the 
point x = 0 given by

! ! ! f (x) = ∑
n≥0

f (n)(0)
n!

xn or

(1.2.2.1)! f (x) = f (0) + f′�(0)x +
f′�′�(0)

2
x2 +

f′ �′�′�(0)
6

x3 + ⋯ .

In this form the theorem is sometimes called the Maclaurin ex-
pansion of a function.

Geometric series
The starting point for many of the generating functions that we 
will consider in this book is the geometric series

(1.2.3.1)! ! ! 1
1 − x

= 1 + x + x2 + x3 + ⋯!

This is probably the first infinite series that most people will en-
counter.  If you are not familiar with this series, you should ask 
yourself why the left hand side of equation is equal to the right 
hand side.

The formal proof of this fact starts by assuming that the right 
hand side makes sense.  That is, 

Step 1: Let A(x) = 1 + x + x2 + x3 + ⋯

Step 2: Multiply A(x) by (1 − x) and expand the expression

(1 − x) ⋅ A(x) = (1 − x) + (1 − x)x + (1 − x)x2 + (1 − x)x3 + ⋯

Step 3: Expand the expression further and cancel terms

1 − x + x − x2 + x2 − x3 + x3 − x4 + ⋯ = 1

Conclude: (1 − x) ⋅ A(x) = 1, hence A(x) =
1

1 − x
.
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The proof above is a bit disingenuous.  It ignores the fact that 
sometimes when we do an infinite number of manipulations of 
symbols (as we have done) that sometimes things go very 
wrong.  The proof above implicitly assumed that it is possible to 
do an infinite number of regrouping of terms (applications of the 
associative law) and an infinite number of cancellations and the 
result is what we expect it to be.

WARNING: It is not always the case that you can perform an infi-
nite number of operations in two different ways and get the 
same answer.

For instance, consider 

ln 2 = 1 −
1
2

+
1
3

−
1
4

+ ⋯!

Now add two times the negative terms and subtract off just as 
much

= (1 +
1
2

+
1
3

+
1
4

+ ⋯) − 2 ( 1
2

+
1
4

+
1
6

+ ⋯)
now expand the second sum and this is

= (1 +
1
2

+
1
3

+
1
4

+ ⋯) − (1 +
1
2

+
1
3

+
1
4

+ ⋯) = 0

Therefore ln 2 = 0 and we have a serious problem.  However, if 
you payed close attention to the operations, you will notice that 

we added and subtracted a sum which was infinite so it 
shouldn’t be surprising that something went wrong.

What we are subtly doing when we work with generating func-
tions is grading the operations that we do into parts of finite de-
gree and then working on just the parts of a finite degree and 
then saying that we are doing those operations on all degrees.  
It saves us from doing infinite operations that break mathemati-
cal rules.

A more general form of the geometric series is with real num-
bers a and b that we will encounter many times is the expres-
sion

(1.2.3.2)! ! a
1 − bx

= a + abx + ab2x2 + ab3x3 + ⋯.

It is probably a good idea to go through the proof in the case 
that a = b = 1 that we have stated above to see that it also 
works for any a and b.

Computers - Sage!
One feature I would like this book to have is a lot of examples 
that can be computed by hand, and a number of examples that 
require computations which cannot easily be done by hand and 
are more suited to a computer.

Computer Algebra Systems (CAS) are advanced calculators.  
They are computer languages wrapped around functionality 
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that one would like to have in order to do calculations in mathe-
matics.

Fortunately there is an open source mathematical software 
package called Sage available that will do the types of calcula-
tions that we would like to for this book.  The examples that I 
will put in the text will all be in this language but similar com-
mands will work in Maple, Mathematica or other CAS.

I find that many of my students shy away from the computer.  
Many students have expressed to me that they are intimidated 
by programming languages or computers beyond the use of the 
internet.  These are technical skills that require a large invest-
ment of time to gain.

I have two answers to this:

(1) you don’t need to be an expert to use a computer to do cer-
tain calculations, but you have to be willing to experiment. 
(2) the computer skills are worth your investment of time.  Start 
here and now.  Pick something you would like to do with a com-
puter and learn to do it.  The most important skill you can learn 
is how to learn on your own.

At the very least follow the examples in the book, parse the in-
put commands and copy them into a running copy of Sage and 
verify that you get the same answer.  Next, try to change the in-

put and do a few calculations of your own and some of the exer-
cises.

Sage is freely available and there are hundreds of mathemati-
cians working to improve it’s capabilities.  It is a fantastic way of 
sharing mathematical programs for computation.

It is not necessary to learn a lot to start using Sage as a calcula-
tor.  Do a computer search for “sage mathematics” and you will 
find the site for the open source mathematics program Sage.  
You can either download the program onto your computer or 
log into an online site and enter the commands in the white 
boxes in the text.

In the white text the word sage:  indicates this is the computer 
prompt at the beginning of the line.  It is there to express “Sage 
is waiting for you to enter text.”  You do not need to type this 
word.  You may not see this in the version of Sage you are us-
ing unless you are  running it from the command line, but it is a 
convenient way of indicating to a reader that the command 
starts here.

The bold face text that follows can be entered in the text box.  

Except for very few examples the text will be commands to ex-
pand the Taylor series of some expression.  The text

taylor(expression, x, 0, 10)  indicates to the program Sage that it 
should compute the Taylor expansion of the “expression” in the 
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variable x up to degree 10 (so that there 11 terms in total).  If 
you change the 0 to another value a you will see that it will ex-
pand the series about the variable x − a.

The text that is not in bold in the white box examples is what 
Sage will respond with once the command is evaluated.  For ex-
ample, if I want to find the expansion of the first 10 terms of the 

generating function 
1 − 1 − 4x

2x
.  

To do this you give Sage the command to give the Taylor expan-
sion of this function.

sage: taylor((1-sqrt(1-4*x))/(2*x),x,0,10)  
16796*x^10 + 4862*x^9 + 1430*x^8 + 429*x^7 + 132*x^6 + 42*x^5 + 
14*x^4 + 5*x^3 + 2*x^2 + x + 1

This happens to be the generating function for the Catalan num-
bers.  This sequence is one of the most important in combinator-
ics.  If you read of the coefficients you see that they are

1, 1, 2, 5, 14, 42, 132, 429, …

and this sequence is called the Catalan numbers.  We will see 
this sequence again in Section 4.1.2.

There are some disadvantages to using Sage over commercial 
software.  The error messages probably leave something to be 
desired, and the language has a steep learning curve.  How-

ever, if you are just doing a few short computations there are 
only a few things that will go wrong.  

If you are willing to experiment and read the error messages 
carefully, Sage is a great program to begin to learn how comput-
ers are used to do mathematics.



2 This chapter includes a 
gentle introduction to the 
topic of this book.

The first section is a 
discussion about what 
generating functions are 
good for, the second has 
four starter examples.

Generating functions neither 
generate, nor are they 
functions
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What?
Say that

a0, a1, a2, a3, …

is a sequence of numbers, then the generating function of this 
sequence in the formal parameter x is 

a0 + a1x + a2x2 + a3x3 + ⋯

When?
Whenever you have any sequence of numbers make the gener-
ating function and see if you can find a formula for the series.

Why?
One motivating question that I encounter all the time is the fol-
lowing formula that my students see in high school or their first 
year proofs class:

12 + 22 + 32 + ⋯ + n2 =
n(n + 1)(2n + 1)

6
.

They see this equation and say “I can prove this by induction 
after you give me the right hand side of the equation, but I don’t 
think that I could have guessed at the right hand side of the 
equation myself and I don’t see how to derive it.”  The same ap-
plies for any of dozens of summation formulas that I throw at 

Section 1

The three W’s of 
generating functions

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary21.mov

For a video summary of this section:

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary21.mov
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary21.mov
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them when we learn induction.  While induction shows them 
that the equation is true, it doesn’t show them how to come up 
with what the sum is equal to.

My answer to their question is “give me 2 hours to teach you 
generating functions and you will be able to arrive at this for-
mula yourself.” (Note: the answer to their question is in Section 
3.2.5)

Because the generating function is an algebraic expression that 
encodes the sequence and allows you to manipulate it in ways 
that are not possible in other forms.  Many times if the se-
quence you are looking at is “interesting” (and this word has 
lots of interpretations), the generating function has a short sim-
ple form.

The generating function allows you to derive formulas for the se-
quence, identities involving the sequence, estimate the values 
and so much more.

The real answer to “why?” will come after seeing many exam-
ples and the power of what generating functions are able to do.  
Once you learn just a few basic skills you should be able to do 
the exercises in Chapter 4 and you will be able to derive and 
prove all sorts of mathematical identities.

Think of a sequence...
If you write down the generating function for a sequence that fol-
lows a pattern, it very likely has a relatively simple generating 
function.

1, 9, 25, 49, 81, 121, …

The generating function for this sequence is

1 + 9x + 25x2 + 49x3 + 81x4 + 121x5 + ⋯

If you think about it, you will probably be able to guess at the 
next terms in the sequence for a number of reasons.  The differ-
ences between consecutive ones follows a nice pattern and if 
you try and factor the terms you might guess at a formula for an.

There is also a nice formula for the generating function (which 
we will learn to calculate in later chapters) because it is equal to

1 + 6x + x2

(1 − x)3
.

We can verify that the first few terms of this sequence agree by 
computing the Taylor series of this expression using Sage.

sage: taylor((1+6*x+x^2)/(1-x)^3,x,0,6)  
169*x^6 + 121*x^5 + 81*x^4 + 49*x^3 + 25*x^2 + 9*x + 1
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On the other hand, lets say that I were to consider the se-
quence

3, 7, 1.1, − 2, π, 2011, 8, 1, − 3, …

which really doesn’t have any pattern or formula.  The generat-
ing function is equal to

3 + 7x + 1.1x2 − 2x3 + πx4 + 2011x5 + 8x6 + x7 − 3x8 + ⋯.

This generating function exists, but is unlikely to have a more 
compact formula.

One thing to never forget
The generating function is not the sequence and the sequence 
is not the generating function.  They are not the same thing.  
One is a sequence, the other is an algebraic expression.

sequence ≠ generating function

If you have a sequence you can say “the generating function of 
the sequence” to refer to the algebraic object.  If you have a 
generating function you might say “the sequence of coefficients 
of the generating function” in order to refer to the sequence.

I emphasize this because it is easy to think about the sequence 
and exchange it with the generating function and vise versa, but 
they are two entirely different things.

I was only joking
The title of this chapter is a quote that I often use about generat-
ing functions.  I say it to indicate that there is something mis-
leading about the name because they don’t really “generate” 
anything (at least not in any normal sense of the word).

We also don’t really think of them as functions, although some-
times we specialize the parameter x and use algebraic opera-
tions as if they were functions.  They are sometimes called ‘for-
mal power series’ (but only very rarely).

So what are generating functions?  I like to think of them as an 
infinite storage device for sequences of numbers.  There is a 
good analogy that they are a clothesline for sequences of num-
bers where each power of xn is a place to pin a number.

Lets just call them by their name and move on.
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By the end of this chapter we would like to build up a library of 
examples that we can use and reuse.  In this section I will give 
four examples which use some typical techniques for finding a 
formula for a generating function for a sequence.

In general, there isn’t one technique that will work.  In fact, for 
any random sequence it will not always be clear that there is a 
‘nice’ formula for a generating function.  The examples might be 
misleading in this way since they are chosen because for these 
sequences is possible to find a very simple and compact for-
mula, while for a random sequence such a formula might not be 
possible.

In the first couple of examples we start with the geometric se-
ries and build up other examples by using differentiation and 
multiplication by x.  In the last example of this section we use a 
typical technique to find a equation satisfied by a generating 
function and then use algebra to arrive at a formula.

A sequence of 1’s
Lets try a simple example, the sequence consisting of all 1’s:

(2.2.1.1)! ! ! ! 1,1,1,1,1,…

The generating function is the geometric series

(2.2.1.2)! ! 1 + x + x2 + x3 + … =
1

1 − x

Section 2

Examples

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary22.mov

For a video summary of this section:

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary22.mov
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary22.mov
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In general, whenever we have a sequence that can be obtained 
by specializing the values a and b in the sequence

(2.2.1.3)! ! ! ! a, ab, ab2, ab3, …

then the generating function will be

(2.2.1.4)! ! a + abx + ab2x2 + ab3x3 + ⋯ =
a

1 − bx
.

While most generating functions have an infinite number of 
terms, a computer can help us to compute a finite number of 
those to verify the the sequences of coefficients is correct up to 
a certain point, or to calculate a single coefficient.

sage: taylor(1/(1-x),x,0,10)  
x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

sage: taylor(2/(1-3*x),x,0,10)  
118098*x^10 + 39366*x^9 + 13122*x^8 + 4374*x^7 + 1458*x^6 + 
486*x^5 + 162*x^4 + 54*x^3 + 18*x^2 + 6*x + 2

sage: taylor(2/(1-3*x),x,0,100).coefficient(x,100) 
1030755041464022662072922259531242545404215044002

sage: 2*3^100  
1030755041464022662072922259531242545404215044002

The first command in the example above asks the computer to 
determine the first 11 terms (up to degree 10) of the series de-
fined by 1/(1-x).  The second command asks the computer 
to determine the first 11 terms in the expansion of the generat-

ing function 2/(1-3*x).  This second example is equation 
(2.2.1.4) with a = 2 and b = 3.

Both of these calculations are easy enough to do by hand be-
cause I know for instance that the coefficient of x10 in the gener-

ating function 2
1 − 3x

 is equal to 2 ⋅ 310, but it might take me a 

while to work out what that number is without a calculator.

The computer is particularly useful for computing single coeffi-
cients.  We will also use it regularly to test that the intuition we 
develop about generating agrees with direct calculations.
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The positive integers
The next simplest example would be the positive integers:

(2.2.2.1)! ! ! ! 1,2,3,4,5,…

This has a generating function

(2.2.2.2)! ! ! 1 + 2x + 3x2 + 4x3 + …

Now observe that the derivative of the left hand side of equation 
(2.2.1.2) is equal to equation (2.2.2.2). This means we can say 
that equation (2.2.2.2) is equal to

! !
d

dx
1

1 − x
= 1 + 2x + 3x2 + 4x3 + ⋯.

We conclude that

(2.2.2.3)! ! ! 1
(1 − x)2

= ∑
n≥0

(n + 1)xn

We’ve used a little calculus to show that the generating function 

for the sequence of positive integers is 1
(1 − x)2

 .  Now lets use 

the computer to verify that this is really the case for the first 9 
terms.

sage: taylor(1/(1-x)^2,x,0,8)  
9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1
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The squares of the positive integers
We can’t use the exactly same trick to figure out the generating 
function for the sequence

1,4,9,16,25,…

because if we take the derivative of equation (2.2.2.2) then we 
do not quite have the square integers.  But the clever reader 
will notice that if we first multiply equation (2.2.2.2) by x and 
then take the derivative then we have by equation (2.2.2.3) that

1 + 4x + 9x2 + 16x3 + ⋯ = 12 + 22x + 32x2 + 42x3 + ⋯

! ! =
d

dx
(x + 2x2 + 3x3 + 4x4 + ⋯)

! ! =
d

dx
(x(1 + 2x + 3x2 + 4x3 + ⋯))

! ! =
d

dx ( x
(1 − x)2 ) .

Therefore,

(2.2.3.1)! ! ∑
n≥0

(n + 1)2xn =
1 + x

(1 − x)3
.

Lets briefly check that we have done this correctly by comput-
ing the first 11 terms of this series on the computer.

sage: taylor((1+x)/(1-x)^3,x,0,10)  
121*x^10 + 100*x^9 + 81*x^8 + 64*x^7 + 49*x^6 + 36*x^5 + 25*x^4 + 
16*x^3 + 9*x^2 + 4*x + 1
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The Fibonacci numbers
A non-trivial example that one encounters when thinking about 
possible sequences is the one where F0 = F1 = 1 and then each 
subsequent integer is the sum of the previous two.

1,1,2,3,5,8,13,21,34,55,…

This sequence is named in honor of a mathematician and 
banker who was instrumental in introducing the arabic number-
ing system to western society.

We will give the generating function for this sequence a name 
F(x) so then

F(x) = ∑
n≥0

Fnxn = 1 + x + 2x2 + 3x3 + 5x4 + ⋯

where F0 = F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.  Then we can 
see that

F(x) = 1 + x + ∑
n≥2

Fnxn = 1 + x + ∑
n≥2

(Fn−1 + Fn−2)xn

! = 1 + x + ∑
n≥2

Fn−1xn + ∑
n≥2

Fn−2xn

! = 1 + x + (x2 + 2x3 + 3x4 + ⋯) + (x2 + x3 + 2x4 + 3x5 + ⋯)

! = 1 + xF(x) + x2F(x)

Since we have figured out that F(x) = 1 + xF(x) + x2F(x), then

! ! ! F(x) − xF(x) − x2F(x) = 1

and this can be rewritten as

! ! ! ! F(x)(1 − x − x2) = 1

and hence

(2.2.4.1) ! ! ! ! F(x) =
1

1 − x − x2
.

It was always surprising to me that the generating function for 
the Fibonacci numbers has such a compact formula.  In fact, 
even after I see the derivation I feel like maybe something isn’t 
right and that somehow the Fibonacci numbers have disap-
peared.  It helps me to see that they are still there by computing 
terms of this sequence and observe that we do see the Fibo-
nacci numbers appearing in the expansion of the Taylor series.

sage: taylor(1/(1-x-x^2),x,0,10)  
89*x^10 + 55*x^9 + 34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3  
+ 2*x^2 + x + 1



3 In this chapter we start to 
develop techniques for 
arriving at formulas for 
generating functions.

In the first section we look 
at the effect of algebraic 
operations on generating 
functions and then look at 
some examples.

Getting the most out of your 
generating functions
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It is not enough to go from the sequence to the generating func-
tion, one must also do the return trip.

Our goal is to manipulate a sequence by figuring out the gener-
ating function, perform algebra on the generating function and 
then recover the sequence.

Use the library
We have only a couple of examples under our belt, but we will 
start to make a list so that when we encounter a generating 
function of the form in our list, then we know what the coeffi-
cient of xn is equal to.

a
1 − bx

= ∑
n≥0

abnxn from (2.2.1.4)

1
(1 − x)2

= ∑
n≥0

(n + 1)xn from (2.2.2.3)

1 + x
(1 − x)3

= ∑
n≥0

(n + 1)2xn from (2.2.3.1)

1
1 − x − x2

= ∑
n≥0

Fnxn from (2.2.5.1)

Section 1

Back and forth 

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary31.mov

For a video summary of this section:

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary31.mov
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary31.mov
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In the next chapter there is a sequence of exercises that will 
help us build up this library.  Once you do the exercises you will 
have a more complete list of generating functions to put to use.

New generating functions from old
If you have two generating functions A(x) = ∑

n≥0

anxn and 

B(x) = ∑
n≥0

bnxn for two sequences of integers a0, a1, a2, a3, … and 

b0, b1, b2, b3, … then there are several ways that we can combine 
the sequences and get new generating functions for new se-
quences.

SUM: If we add the generating functions we have that 
A(x) + B(x) = ∑

n≥0

(an + bn)xn is a generating function for the se-

quence

(3.1.2.1)! ! a0 + b0, a1 + b1, a2 + b2, a3 + b3, …

PRODUCT: However if we multiply the the two generating func-
tions we have that

A(x)B(x) = (a0 + a1x + a2x2 + a3x3 + ⋯)(b0 + b1x + b2x2 + b3x3 + ⋯) 
! ! = a0b0 + (a1b0 + a0b1)x + (a2b0 + a1b1 + a0b2)x2 + ⋯

! ! = ∑
n≥0

(anb0 + an−1b1 + ⋯ + a0bn)xn.

This can be summarized in the expression

(3.1.2.2)! ! A(x)B(x) = ∑
n≥0 (

n

∑
i=0

an−ibi) xn.
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One useful special case of this is the generating function xr A(x) 
(since this is the product of a generating function for the se-
quence 0,0,…,0,1,0,0,… (where the 1 is in the rth position of a se-
quence of zeros) and the generating function for a0, a1, a2, a3, ….  
The product has the effect of shifting the entries in the se-
quence by r entries higher in the sequence.  More specifically

xr A(x) = a0xr + a1xr+1 + a2xr+2 + a3xr+3 + ⋯
= ∑

n≥r

an−rxn = ∑
m≥0

amxr+m.

Another special case of the product of generating function is the  

product 1
1 − x

A(x).  It is the product of two generating functions, 

the first one is the generating function in equation (2.2.1.2).  By 
equation (3.1.2.2) the product of these is a generating function 
for the sequence

(3.1.2.3)! ! a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3, ….

One might ask what the generating function for the sequence 
a0b0, a1b1, a2b2, a3b3, … is in terms of the generating functions 
A(x) and B(x).  Sometimes this is possible to do, but there is not 
always a really good answer for this question.

DERIVATIVE: We have already seen a couple examples of the 
use of the derivative in previous examples.  If we take the de-
rivative once of A(x) then

A′�(x) = a1 + 2a2x + 3a3x2 + 4a4x3 + 5a5x4 + ⋯.

If we multiply the generating function by x then as a total effect 
it multiplies the coefficient of xn which is an by n.  Therefore

(3.1.2.4)!  x A′�(x) = 0a0 + 1a1x + 2a2x2 + 3a3x3 + ⋯ = ∑
n≥0

nanxn

and, in case we want to multiply each term by n + 1 instead,

(3.1.2.5) ! x A′�(x) + A(x) =
d

dx
(x A(x)) = ∑

n≥0

(n + 1)anxn.

We could repeatedly take the derivative and multiply our gener-
ating function by x to multiply the coefficient of xn by n2, n3 or 
higher powers of n.

In fact, equation (3.1.2.5) says that the generating function for 
the sequence 1r,2r,3r,4r,5r, … is

(3.1.2.6)! ! ! ( d
dx

x)
r

( 1
1 − x ) = ∑

n≥0

(n + 1)rxn.

So lets use the computer (partly to show how to do the calcula-
tion and partly because it is not easy to show the steps in text) 
to figure out what the generating function for the cubes of the 

positive integers is.  We multiply x times 1 + x
(1 − x)3

 and then differ-

entiate then we should get the generating function for the posi-
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tive integers cubed.  We can then check that result by taking 
the Taylor expansion of the result.

sage: factor(diff(x*(1+x)/(1-x)^3,x))  
(x^2 + 4*x + 1)/(x - 1)^4  
sage: taylor((1+4*x+x^2)/(1-x)^4,x,0,6)  
343*x^7 + 216*x^6 + 125*x^5 + 64*x^4 + 27*x^3 + 8*x^2 + x

This computer computation shows that

(3.1.2.7)! ! ! 1 + 4x + x2

(1 − x)4
= ∑

n≥0

(n + 1)3xn.

INTEGRAL: The inverse operation of derivation is integration 
and we will need to know that

∫ A(x)dx = c + a0x +
a1

2
x2 +

a2

3
x3 +

a3

4
x4 + ⋯!

for some constant c.  One example of an equation that we will 
use in some of the exercises is the case when ai = 1.  From cal-
culus and equation (2.2.1.2),

(3.1.2.8)! ∫ 1
1 − x

dx = − ln(1 − x) = x +
x2

2
+

x3

3
+

x4

4
+ ⋯

These operations can be combined with operations such as 
shifting the indices ‘up’ by one with

(3.1.2.9) (A(x) − a0)/x = a1 + a2x + a3x2 + a4x3 + ⋯ = ∑
n≥0

an+1xn

and shifting ‘down’ by one with

(3.1.2.10) x A(x) = a0x + a1x2 + a2x3 + a3x4 + ⋯ = ∑
n≥1

an−1xn.

to multiply and divide coefficients by a factor of n as we did in

equation (3.1.2.5).
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Picking out the even and the odd terms 
from the generating function for a se-
quence
A useful technique is to build the generating function for the 
even terms in a sequence from the generating function for the 
whole sequence.

That is, take the generating function

! ! ! ! A(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + ⋯

if we replace x with −x then

! ! ! ! A(−x) = a0 − a1x + a2x2 − a3x3 + a4x4 + ⋯

If we add these two generating functions we have

A(x) + A(−x) = 2a0 + 2a2x2 + 2a4x4 + ⋯!

if we then divide both sides of the equation by 2, then we have

A(x) + A(−x)
2

= a0 + a2x2 + a4x4 + ⋯!

but this is the generating function for the sequence 
a0, 0, a2, 0, a4, 0, ….  If we then replace x with x then we have 
the generating function

! ! ! = a0 + a2x + a4x2 + a6x3 + a8x4 + ⋯.

Therefore we have

(3.1.3.1)! !
A( x) + A(− x)

2
= ∑

n≥0

a2nxn!

which is the generating function for the sequence 
a0, a2, a4, a6, a8, ….  

By taking the difference of A(x) and A(−x) and divide by 2 we 
have

! ! = a1x + a3x3 + a5x5 + a7x7 + a9x9 + ⋯

so then divide this generating function by x and then replace x 
with x to get the function

! ! = a1 + a3x + a5x2 + a7x3 + a9x4⋯.

The result is that

(3.1.3.2)! !
A( x) − A(− x)

2 x
= ∑

n≥0

a2n+1xn

is the generating function for the odd terms.  What is surprising 
is that when you do some algebraic computation that involves 
square roots then we should expect the result to also contain 
square roots, but usually if A(x) doesn’t, then neither will either 
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of 
A( x) + A(− x)

2
 or 

A( x) − A(− x)

2 x
 after the equations are 

simplified.

For example, if we want the generating function for the odd inte-
gers we can use equation (2.2.2.3) and (2.2.1.2) to arrive at a 
formula.

(3.1.3.3)! ∑
n≥0

(2n + 1)xn = 2∑
n≥0

(n + 1)xn − ∑
n≥0

xn

! ! ! ! = 2
1

(1 − x)2
−

1
1 − x

 .

But then we can also use equation (3.1.3.1) and apply it to 
(2.2.2.3) and then we conclude

(3.1.3.4)! ! ∑
n≥0

(2n + 1)xn =
1
2

1

(1 − x)
2 +

1

(1 + x)
2 .

It may not necessarily be clear (3.1.3.3) and (3.1.3.4) are equal 
and this can also be shown by finding using a bit of algebra or 
by using the computer.

sage: A = 2/(1-x)^2 - 1/(1-x)  
sage: B = (1/(1-x^(1/2))^2 + 1/(1+x^(1/2))^2)/2 
sage: factor(A-B)  
0

The Computer and Taylor’s theorem
Another way that we have to take the coefficient of xn in a gener-
ating function is to use the formula in terms of the derivative of 
the function.  We know by Taylor’s theorem it will be equal to

f (n)(0)
n!

where the f (n) is the nth derivative of the function f and then this 
is evaluated at x = 0 .

Sometimes finding a formula for the nth derivative is not really 
possible, but it is how the computer can be used to determine a 
coefficient in a series.

So for instance if I wanted to compute the Fibonacci number F30 
(the 31st Fibonacci number) then I could do this on the computer

with the following commands.

sage: diff(1/(1-x-x^2),x,30).subs(x=0)/factorial(30) 
1346269  
sage: diff(1/(1-x-x^2),x,5).subs(x=0)/factorial(5) 
8

The first command takes the 30th derivative of the generating 
function for the Fibonacci numbers and evaluates it at x = 0 and 
then divides by 30!.  Since we don’t know the value of F30 , this 
answer might not be right.  We shouldn’t trust the computer and 
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our calculations implicitly.  But we can at least convince our-
selves that that we are on the right track, the second command 
just computes the 5th Fibonacci number, F4, which we can com-
pute by hand and check the second command clearly agrees 
and so the first one probably does too.

We can compare our value of F30 that we computed using Tay-
lor’s theorem to another formula that we will arrive at in Section 
3.2.2.
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We have enough to build on now to use generating functions to 
prove results about sequences.

Sum the integers 1 through n+1
By equations (2.2.2.3) we know that 

1
(1 − x)2

= 1 + 2x + 3x2 + 4x3 + ⋯!

is the generating function for the positive integers where the co-
efficient of xn is (n + 1), therefore by equation (3.1.2.3) we know 

that 1
(1 − x)

1
(1 − x)2

 is a generating function for the sequence of 

the sum of the first n positive integers,

! ! ! 1,1 + 2,1 + 2 + 3,1 + 2 + 3 + 4,….  

In particular, the coefficient of xn is 1 + 2 + 3 + ⋯ + n + (n + 1).

We also know by taking the derivative of (2.2.2.3) that

d
dx

1
(1 − x)2

=
2

(1 − x)3
= 2 ⋅ 1 + 3 ⋅ 2x + 4 ⋅ 3x2 + 5 ⋅ 4x3 + ⋯

Therefore if we divide this equation by two we have

(3.2.2.1)! ! 1
(1 − x)3

= ∑
n≥0

(n + 1)(n + 2)
2

xn. 

Section 2

Examples

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary32.mov

For a video summary of this section:

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary32.mov
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary32.mov
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It must be that the coefficient of xn in 1
(1 − x)3

 is equal to 

(n + 1)(n + 2)/2, and it is equal to the sum of the first n + 1 inte-
gers, so

(3.2.2.2)! 1 + 2 + 3 + ⋯ + n + (n + 1) =
(n + 1)(n + 2)

2
.

Take that Gauss!

An explicit formula for Fibonacci num-
bers
We know how to calculate any given Fibonacci number recur-
sively by adding the sum of the previous two Fibonacci num-
bers, so then we need the two before that, and the two before 
that, and so on...  We stop at some point because we know that  
F0 = F1 = 1.  That means in order to calculate the nth Fibonacci 
number we kind of need to calculate all the Fibonacci numbers 
that come before.

Without explaining how to derive the algebra behind it, we note 
that if

ϕ =
1 + 5

2
 and ϕ =

1 − 5
2

then

(1 − ϕx)(1 − ϕx) = 1 − x − x2.

If we work to find the partial fraction decomposition of

1
1 − x − x2

=
1

(1 − ϕx)(1 − ϕx)
=

A
1 − ϕx

+
B

1 − ϕx

then a little algebra shows that

http://dx.doi.org/10.1511/2006.3.200
http://dx.doi.org/10.1511/2006.3.200
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ϕ
1 − ϕx

−
ϕ

1 − ϕx
= ( ϕ − ϕϕx − ϕ + ϕϕx

(1 − ϕx)(1 − ϕx) ) =
5

1 − x − x2
.

The coefficient of xn in the right hand side of the equation is 
equal to 5Fn.  The coefficient of the left hand side (since it is 
the sum of two geometric series, we can use equations 
(2.2.1.4) and (2.2.4.1)) is equal to ϕn+1 − ϕn+1.

This gives a formula for the nth Fibonacci number which does 
not require us to calculate all of them in order order to calculate 
it, namely

Fn =
ϕn+1 − ϕn+1

5
.

To demonstrate that this formula works as we say it does, we 
can use Sage to calculate the first 10 terms.

sage: phi = (1+sqrt(5))/2  
sage: float(phi)  
1.618033988749895  
sage: phib = (1-sqrt(5))/2  
sage: float(phib)  
-0.6180339887498949  
sage: [expand(phi^(n+1) - phib^(n+1))/sqrt(5) for n in range(10)] 
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]  
sage: expand(phi^(31) - phib^(31))/sqrt(5)  
1346269

You should notice that no induction was harmed in the making 
of this formula.  One advantage of using generating functions is 
that it often allows us to use an explicit computation in place of 
an induction argument.

FIGURE 3.1 Pascal’s triangle: The table of binary 
coefficients
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Binomial coefficients
Pascal’s triangle is a diagram like the one below where the first 
and last entry in each row is a 1 and the entries in the middle of 
the triangle are determined by adding the value immediately 
above and the one above and just to the left.

The diagram continues in rows below the ones that are shown 
here.  The numbers in this triangle are often referred to as “bino-
mial coefficients” but they sometimes go by other names as 
well.

This triangle is also expressed symbolically so that the first row 
is C0,0 = 1 and the (n + 1)st row is Cn,0, Cn,1, Cn,2, ⋯, Cn,n where 
Cn,0 = Cn,n = 1 and Cn,k = Cn−1,k−1 + Cn−1,k if 0 < k < n.  Instead of 
saying “the binomial coefficient indexed by n and k” it is more 
common to shorten the reference to Cn,k as “ n choose k.”

Notice that if we compute by expanding the following powers of 
(1 + x) on the left hand side that we see the numbers which ap-
pear in Pascal’s triangle on the right hand side.

Lets fix n and write down a generating function for the (n + 1)st 
row of this table:

Cn(x) = Cn,0 + Cn,1x + Cn,2x2 + ⋯ + Cn,nxn.  For a convention we 
can assume that Cn,K = 0 if K > n.  Then direct calculation 
shows that if n > 0, 

! ! ! Cn(x) = 1 +
n−1

∑
k=1

Cn,kxk + xn

! ! ! ! = 1 +
n−1

∑
k=1

(Cn−1,k−1 + Cn−1,k)xk + xn

! ! ! = 1 +
n−1

∑
k=1

Cn−1,kxk +
n−1

∑
k=1

Cn−1,k−1xk + xn

! ! ! = Cn−1(x) + xCn−1(x)

We conclude that

! ! ! ! Cn(x) = (1 + x)Cn−1(x).

Now we can do some algebra because if we define

! ! ! C(x, y) := ∑
n,k≥0

Cn,kynxk, 

then this is what we would call a multivariate generating func-
tion.  It works just as the other generating functions we have 
previously worked with except that it has two parameters.

In fact, each coefficient of yn is itself a generating function Cn(x) 
and each coefficient of xk is also a generating function.  So we 
can compute

! ! ! C(x, y) = ∑
n≥0

∑
k≥0

Cn,kynxk

figure:EDF14E92-773A-413A-8D4C-3212A577E182
figure:EDF14E92-773A-413A-8D4C-3212A577E182
figure:EDF14E92-773A-413A-8D4C-3212A577E182
figure:EDF14E92-773A-413A-8D4C-3212A577E182
figure:EDF14E92-773A-413A-8D4C-3212A577E182
figure:EDF14E92-773A-413A-8D4C-3212A577E182
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! ! ! ! = ∑
n≥0

Cn(x)yn

! ! ! ! = 1 + ∑
n≥1

Cn(x)yn

! ! ! ! = 1 + ∑
n≥1

(1 + x)Cn−1(x)yn−1y.

We can then factor out (1 + x)y from the summation and see

! ! ! ! C(x, y) = 1 + y(1 + x)C(x, y).

Therefore,

! ! ! ! (1 − y(1 + x))C(x, y) = 1

and hence

(3.2.3.1)! ! ! C(x, y) =
1

1 − y(1 + x)
.

This expression is of the form (2.2.1.4) and so we have the ex-
pansion,

! ! ! C(x, y) = ∑
n≥0

(1 + x)nyn = ∑
n≥0

∑
k≥0

Cn,kynxk .

The expression C(x, y) is a generating function for the binomial 
coefficients which are not just indexed by a single integer, but 
by a pair of integers.

To see this generating function using the computer we can take 
the Taylor expansion of this function about both the x and the y 
variable.

sage: y = var(“y”) # we have to declare variables other than x

sage: taylor(taylor(1/(1-y*(1+x)),x,0,10),y,0,5) 
(x^5 + 5*x^4 + 10*x^3 + 10*x^2 + 5*x + 1)*y^5 + (x^4 + 4*x^3 + 6*x^2 
+ 4*x + 1)*y^4 + (x^3 + 3*x^2 + 3*x + 1)*y^3 + (x^2 + 2*x + 1)*y^2 + 
(x + 1)*y + 1

In particular, we look at the coefficient of yn on both sides of this 
last equality and we see that

(3.2.3.2)! ! ! (1 + x)n = ∑
k≥0

Cn,kxk.

That is, if we expand the first few powers of (1 + x) then we will 
see the numbers in the table of Pascal’s triangle appearing in 
as the coefficients in the expansion.

(1 + x)2 = 1 + 2x + x2

(1 + x)3 = 1 + 3x + 3x2 + x3

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

(1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5

(1 + x)6 = 1 + 6x + 15x2 + 20x3 + 15x4 + 20x5 + x6
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The usual way to show this in a mathematics course would be 
to use induction.  However this is a simple example where it is 
possible to use direct calculation with generating functions to 
avoid induction.

Taylor’s theorem says how to get a formula for Cn,k.  If we take 
the kth derivative of (1 + x)n then we get

dk

dxk
(1 + x)n = n(n − 1)⋯(n − k + 1)(1 + x)n−k.

Taylor’s Theorem says that if we evaluate this at x = 0 and di-
vide by k! then I have a formula for Cn,k. That is,

Cn,k =
n(n − 1)⋯(n − k + 1)

k!
=

n!
(n − k)!k!

.

If we want to give the generating function for the sequences 
where the k is fixed in the Cn,k then this will be the coefficient of 
xk in 

(3.2.3.3)! ! C(x, y) = ∑
n≥0

∑
k≥0

Cn,kynxk =
1

1 − y(1 + x)
.

Using a bit of algebra we see that

C(x, y) =
1

1 − y − yx
=

1
1 − y

1 − yx
1 − y

!.

Now this is another geometric series (see that it has the form of 

equation (2.2.1.4)) where a =
1

1 − y
 and b =

y
1 − y

.  That means 

that the coefficient of xk is equal to

! ! ! 1
1 − y

yk

(1 − y)k
=

yk

(1 − y)k+1
= ∑

n≥0

Cn,kyn.

Therefore if we just want the numbers in the column of the table 
in Figure 3.1 starting with the first 1, we have

(3.2.3.4)! ! 1
(1 − y)k+1

= ∑
n≥k

Cn,kyn−k = ∑
n≥0

Cn+k,kyn.

In particular, the first column of Pascal’s triangle is

! ! 1
1 − y

= 1 + y + y2 + y3 + y4 + y5 + y6 + ⋯,

but we knew this because it is a geometric series and we saw it 
before in (2.2.1.2).

The next column is given by

1
(1 − y)2

= 1 + 2y + 3y2 + 4y3 + 5y4 + 6y5 + ⋯ = ∑
n≥0

Cn+1,1yn.

figure:EDF14E92-773A-413A-8D4C-3212A577E182
figure:EDF14E92-773A-413A-8D4C-3212A577E182
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From equation (2.2.2.3), this is the generating function for the 
positive integers so we can conclude that Cn+1,1 = n + 1.

If we set k = 3 in equation (3.2.3.4), we have

1
(1 − y)3

= 1 + 3y + 6y2 + 10y3 + 15y4 + 21y5 + ⋯ = ∑
n≥0

Cn+2,2yn.

This is the generating function that we saw in equation (3.2.2.1) 

so we can conclude that Cn+2,2 =
(n + 1)(n + 2)

2
.

We have derived all of the basic facts about binomial coeffi-
cients and Pascal’s triangle using generating functions starting 
from just the definition Cn,0 = Cn,n = 1 and Cn,k = Cn−1,k−1 + Cn−1,k 
if 0 < k < n.

A formula relating Fibonacci numbers 
and binomial coefficients
Notice that if we set x = y in equation (3.2.3.1) we see that

(3.2.4.1)! ! 1
1 − x − x2

= ∑
n≥0

∑
k≥0

Cn,kxn+k.

We have already seen in equation (2.2.5.1) that the left hand 
side of this equation is the generating function for the Fibonacci 
numbers.  Therefore if we take the coefficient of xr on the left 
hand side we have the Fibonacci number Fr and on the right 
hand side we get a sum of binomial coefficients.

That is,

! ! ! ! ! Fr = ∑
n+k=r

Cn,k

where the sum is over all non-negative integers n and k that 
add up to r.  By our convention that we used to define C(x, y) 
we have that Cn,k = 0 if k > n so we can express the right hand 
side as the sum

Fr =
⌊r/2⌋

∑
k=0

Cr−k,k .
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The Fibonacci numbers are not obviously related to the bino-
mial coefficients so this formula should be at least a little surpris-
ing.

For example,

! ! ! F8 = C8,0 + C7,1 + C6,2 + C5,3 + C4,4

! ! ! = 1 + 7 +
6 ⋅ 5

2
+

5 ⋅ 4 ⋅ 3
3 ⋅ 2

+ 1 

! ! ! = 1 + 7 + 15 + 10 + 1 = 34.

Of course we already have other formulas for Fibonacci num-
bers, but this one is unexpected and follows very simply from 
the formulas that we needed for other applications.

We can use the computer to find the right hand side for the first 
10 values of r and for F30 to see if it agrees with our other 
formulas.
sage: [sum(binomial(r-d,d) for d in range(r+1)) for r in range(10)] 
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

sage: sum(binomial(30-d,d) for d in range(16)) 
1346269

The first command in the box above creates a list of the sums 
of binomial coefficients Cr−d,d where d is in the range from 0 to r.  
In this case if d is larger than r /2, then Cr−d,d = 0.

The second command adds C30−d,d where d is in the range from 
0 to 15.  This is a formula for F30 and agrees with our previous 
computations of this value.
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The sum of the squares of positive inte-
gers
I also promised in Section 2.1.3 that I would show how to derive 
the equation

(3.2.5.1)! ! 12 + 22 + 32 + ⋯ + n2 =
n(n + 1)(2n + 1)

6

and I will be able to show that it is true without using induction.

Recall from equation (2.2.3.1) that

1 + x
(1 − x)3

= 12 + 22x + 32x2 + 42x3 + ⋯ = ∑
n≥0

(n + 1)2x2.

That means by equation (3.1.2.3) that

1
1 − x

1 + x
(1 − x)3

= 12 + (12 + 22)x + (12 + 22 + 32)x2 + (12 + 22 + 32 + 42)x3 + ⋯ 

! ! ! = ∑
n≥0

(12 + 22 + ⋯ + (n + 1)2)xn.

Now by equation (3.2.3.4),

! 1 + x
(1 − x)4

=
1

(1 − x)4
+

x
(1 − x)4

= ∑
n≥0

Cn+3,3xn + ∑
n≥0

Cn+2,3xn

so that we have by taking the coefficient of xn that

(3.2.5.2)! ! 12 + 22 + 32 + ⋯ + (n + 1)2 = Cn+3,3 + Cn+2,3

! ! ! =
(n + 1)(n + 2)(n + 3) + n(n + 1)(n + 2)

6

! ! ! =
(n + 1)(n + 2)(2n + 3)

6

and this is more clearly equivalent to equation (3.2.5.1) if we re-
place n by n − 1.

We can check this for a few values on the computer to make 
sure that all of our calculations are correct.

sage: taylor((1+x)/(1-x)^3,x,0,10)  
121*x^10 + 100*x^9 + 81*x^8 + 64*x^7 + 49*x^6 + 36*x^5 + 25*x^4 + 
16*x^3 + 9*x^2 + 4*x + 1  
sage: taylor((1+x)/(1-x)^3/(1-x),x,0,10)  
506*x^10 + 385*x^9 + 285*x^8 + 204*x^7 + 140*x^6 + 91*x^5 + 55*x^4 + 
30*x^3 + 14*x^2 + 5*x + 1  
sage: [sum(r^2 for r in range(1,n+2)) for n in range(0,10)] 
[1, 5, 14, 30, 55, 91, 140, 204, 285, 385]  
sage: [(n+1)*(n+2)*(2*n+3)/6 for n in range(0,10)] 
[1, 5, 14, 30, 55, 91, 140, 204, 285, 385]



4 This is the chapter where 
you show off how much 
you learned from the rest 
of this book.

It includes a summary of 
the examples we have seen 
so far, exercises to fill in a 
more complete library, then 
more exercises that put the 
dictionary to good use.

Examples and 
exercises
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A few warm ups
Verify that the answers to the following warm up exercises are 
correct in three ways

(a) by explicit computation and 

(b) by using the computer, 

(c) by comparing your answer to the table in Section 4.1.3.

You should be able to verify that all three answers agree.

(1) The Odd Square Positive Integers
Use the generating function for the square positive integers in 
equation (2.2.3.1) and the formula to pick out the even terms in 
that sequence (3.1.3.1) to give a formula for the generating func-
tion

(4.1.1.1)! ! ! ! ∑
n≥0

(2n + 1)2xn.

(2) Fibonacci Numbers Indexed By Even Integers
Use equation (2.2.5.1) and (3.1.3.1) to give a formula for

(4.1.1.2)! ! ! ! Feven(x) = ∑
n≥0

F2nxn.

Section 1

Exercises to help build 
strong generating 
functions

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary41.mov

For a video summary of this section:

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary41.mov
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary41.mov
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(3) Fibonacci Numbers Indexed By Odd Integers
Use equation (2.2.5.1) and (3.1.3.2) to give a formula for

(4.1.1.3)! ! ! Fodd(x) = ∑
n≥0

F2n+1xn.

(4) Lucas Numbers
The Lucas numbers are defined as L0 = 1, L1 = 3, and 
Ln = Ln−1 + Ln−2 for n ≥ 2.  Use the same techniques that were 
used to derive the generating function for the Fibonacci num-
bers in Section 2.2.4 in order to give a formula for the generat-
ing function for the Lucas numbers 

(4.1.1.4)! ! ! L(x) = ∑
n≥0

Lnxn.

(5) The Lucas Numbers Indexed By Even Integers
Given the result of the last problem and equation (3.1.3.1), find 
a formula for the generating function

(4.1.1.5)! ! ! Leven(x) = ∑
n≥0

L2nxn.

(6) The Lucas Numbers Indexed By Odd Integers
Given the result of question (4) and equation (3.1.3.2), find a for-
mula for the generating function

(4.1.1.6)! ! Lodd(x) = ∑
n≥0

L2n+1xn .

(7) A Finite List Of 1’s
Show that the generating function for the sequence consisting 
of k 1’s followed by only 0’s is

(4.1.1.7)! ! ! 1 + x + x2 + ⋯ + xk−1 =
1 − xk

1 − x
.
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Some computations to make you sweat
The answers to the following questions are provided in Section 
4.1.3.  Follow the instructions below about how to derive the for-
mulas to give a proof of the equations given in the next section.  
These problems aren’t technically difficult, but do sometimes re-
quire a lot of computation.

(1) Products Of Two Fibonacci Numbers
To find formulas for the generating functions

(4.1.2.1)! ! ! D(0)(x) = ∑
n≥0

F2
n xn

(4.1.2.2)! ! ! D(1)(x) = ∑
n≥0

FnFn+1xn

(4.1.2.3)! ! ! D(2)(x) = ∑
n≥0

FnFn+2xn

we can find a system of three equations and three unknowns 
and then solve for them algebraically.

The equation

(4.1.2.4)! ! F2
n+2 = Fn+2(Fn+1 + Fn) = Fn+2Fn+1 + Fn+2Fn

follows from the defining relation on the Fibonacci numbers.  
The generating function for the left hand side of (4.1.2.4) is

(4.1.2.5)! ! ∑
n≥0

F2
n+2xn =

1
x2

(D(0)(x) − 1 − x)

The generating function for the right hand side of (4.1.2.4) is

(4.1.2.6)! ! ! 1
x

(D(1)(x) − 1) + D(2)(x).

So we can conclude by combining (4.1.2.5) and (4.1.2.6) that

(4.1.2.7)! ! D(0)(x) − 1 − x = xD(1)(x) − x + x2D(2)(x).

Use the equations

(4.1.2.8)! ! Fn+2Fn+1 = (Fn+1 + Fn)Fn+1 = F2
n+1 + Fn+1Fn

(4.1.2.9)! ! Fn+2Fn = (Fn+1 + Fn)Fn = Fn+1Fn + F2
n

to show that

(4.1.2.10)!! D(1)(x) − 1 = D(0)(x) − 1 + xD(1)(x)

and

(4.1.2.11)!! ! D(2)(x) = D(1)(x) + D(0)(x).

Solve the three equations (4.1.2.7), (4.1.2.10) and (4.1.2.11) for 
the three unknowns D(0)(x), D(1)(x) and D(2)(x) to find explicit 
equations for D(0)(x), D(1)(x) and D(2)(x) that only depend on the 
variable x.
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(2) One More Fibonacci Product
Find a formula for the generating function

(4.1.2.12)!! ! D(3)(x) = ∑
n≥0

Fn+3Fnxn

using the relation

(4.1.2.13)!! ! Fn+3Fn = Fn+2Fn + Fn+1Fn

to show

(4.1.2.14)!! ! D(3)(x) = D(2)(x) + D(1)(x).

Challenge: Conjecture and prove a formula for

(4.1.2.15)!! ! D(k)(x) = ∑
n≥0

Fn+kFnxn.

Find a formula for the generating function

(4.1.2.16)!! ! D(x, y) = ∑
k≥0

∑
n≥0

Fn+kFnxnyk.

(3) The Product Of Fibonacci Numbers And Lucas 
Numbers
Verify algebraically using the formulas that we have already de-
rived for the generating functions for the Fibonacci and Lucas 
numbers that

(4.1.2.17)!! ! F(x) + x2F(x) = 1 + xL(x)

Use this to conclude that for n ≥ 1, that Ln = Fn−1 + Fn+1.

Next, use your formulas from Exercise (1) of this section to give 
a formula for ∑

n≥0

LnFnxn, ∑
n≥0

Ln+1Fnxn and ∑
n≥0

LnFn+1xn.

(4) Lucas Numbers Squared
Use the results of the last exercise and the fact that 
Ln = Fn−1 + Fn+1 to give an expression for the generating func-
tion ∑

n≥0

L2
n xn.

(5) Even And Odd Fibonacci Numbers Squared
Use the method in Section 3.1.3 and the result of Exercise (1) 
of this section to find a generating function for ∑

n≥0

F2
2nxn and 

∑
n≥0

F2
2n+1xn.

(6) The Central Binomial Coefficients
Give a formula for the nth derivative of the equation

1

1 − 4x
.  Use it to show that the Taylor expansion of the gener-

ating function is
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! ! ! 1

1 − 4x
= ∑

n≥0

C2n,nxn.

(7) Catalan Numbers
The Catalan numbers are 1

n + 1
C2n,n and the first few terms are

! ! ! ! 1, 1, 2, 5, 14, 42, 132, ….

They appear often in combinatorics because these numbers 
count (for instance) the number of triangulations of an (n + 2) 
-gon.

Use the result of the last exercise and integration as we did in 
Section 3.1.2 to give a formula for the generating function for 
the Catalan numbers.  When you integrate, you will need to set 
the constant of integration and divide by x to ensure that the co-

efficient of xn is equal to 1
n + 1

C2n,n.

Cool down - a summary containing the 
answers
Here is a list of all of the generating functions that I have asked 
you to find in the previous sections.  Keep this list handy be-
cause you will need it in the next section.  The names that are 
given to these expressions in this section will be used in the ex-
ercises in the next section and the solutions to those exercises.

Geometric Series
See (2.2.1.2) and Section 1.2.3.

∑
n≥0

xn = 1 + x + x2 + x3 + ⋯ =
1

1 − x

A Sequence Of k Ones
See Exercise (7) in Section 4.1.1
k−1

∑
n=0

xn = 1 + x + x2 + ⋯ + xk−1 =
1 − xk

1 − x

Binomial Coefficients I
See equation (3.2.3.2)

Pn(x) = ∑
k≥0

Cn,kxk = Cn,0 + Cn,1x + ⋯ + Cn,nxn = (1 + x)n
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Binomial Coefficients II
See equation (3.2.3.4)

Qk(x) = ∑
n≥0

Cn+k,kxn = Ck,k + Ck+1,kx + Ck+2,kx2 + Ck+3,kx3 + ⋯ =
1

(1 − x)k+1

Binomial Coefficients III
This is Exercise (6) in Section 4.1.2.

R(x) = ∑
n≥0

C2n,nxn = 1 + 2x + 6x2 + 20x3 + 70x4 + ⋯ =
1

1 − 4x

Catalan Numbers
This is the result of Exercise (7) in Section 4.1.2.

C(x) = ∑
n≥0

1
n + 1

C2n,nxn = 1 + x + 2x + 5x2 + 14x3 + ⋯ =
1 − 1 − 4x

2x

Positive Integers
See equations (2.2.2.3) but it is also a special case of equation 
(3.2.3.4) with k = 1.

A(x) = ∑
n≥0

(n + 1)xn = 1 + 2x + 3x2 + 4x3 + ⋯ =
1

(1 − x)2

One Over The Positive Integers
See equation (2.2.4.8)

∑
n≥1

1
n

xn = x +
x2

2
+

x3

3
+ ⋯ = − ln(1 − x)

Odd Positive Integers
See equation (3.1.3.3) and (3.1.3.4)

Aodd(x) = ∑
n≥0

(2n + 1)xn = 1 + 3x + 5x2 + 7x3 + 9x4 + ⋯ =
1 + x

(1 − x)2

Even Positive Integers
This is included for completeness since it is just two times the 
generating function for the positive integers.

Aeven(x) = ∑
n≥0

2nxn = 2 + 4x + 6x2 + 8x3 + ⋯ =
2

(1 − x)2

Square Of The Positive Integers
See equation (2.2.3.1)

Asqr(x) = ∑
n≥0

(n + 1)2xn = 1 + 4x + 9x2 + 16x3 + ⋯ =
1 + x

(1 − x)3

The Cubes Of The Positive Integers
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See equation (2.2.4.6)

Acube(x) = ∑
n≥0

(n + 1)3xn = 1 + 8x + 27x3 + 64x3 + ⋯ =
1 + 4x + x2

(1 − x)4

Fibonacci Numbers
See equation (2.2.5.1)

F(x) = ∑
n≥0

Fnxn = 1 + x + 2x2 + 3x3 + 5x4 + ⋯ =
1

1 − x − x2

Fibonacci Numbers Indexed By Even Integers
See Exercise (2) in Section 4.1.1

Feven(x) = ∑
n≥0

F2nxn = 1 + 2x + 5x2 + 13x3 + 34x4 + ⋯ =
1 − x

1 − 3x + x2

Fibonacci Numbers Indexed By Odd Integers
See Exercise (3) in Section 4.1.1

Fodd(x) = ∑
n≥0

F2n+1xn = 1 + 3x + 8x2 + 21x3 + 55x4 + ⋯ =
1

1 − 3x + x2

Lucas Numbers
See Exercise (4) in Section 4.1.1

L(x) = ∑
n≥0

Lnxn = 1 + 3x + 4x2 + 7x3 + 11x4 + ⋯ =
1 + 2x

1 − x − x2

Lucas Numbers Indexed By Even Integers
See Exercise (5) in Section 4.1.1

Leven(x) = ∑
n≥0

L2nxn = 1 + 4x + 11x2 + 29x3 + ⋯ =
1 + x

1 − 3x + x2

Lucas Numbers Indexed By Odd Integers
See Exercise (6) in Section 4.1.1

Lodd(x) = ∑
n≥0

L2n+1xn = 3 + 7x + 18x2 + 47x3 + ⋯ =
3 − 2x

1 − 3x + x2

Squares Of Fibonacci Numbers
One of the equations in Exercise (1) of Section 4.1.2

D(0)(x) = ∑
n≥0

F2
n xn = 1 + x + 4x2 + 9x3 + ⋯ =

1 − x
(1 + x)(1 − 3x + x2)

Products Of Fibonacci Numbers With Indices Differ-
ing By 1
One of the equations in Exercise (1) of Section 4.1.2

D(1)(x) = ∑
n≥0

Fn+1Fnxn = 1 + 2x + 6x2 + ⋯ =
1

(1 + x)(1 − 3x + x2)
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Products Of Fibonacci Numbers With Indices Differ-
ing By 2
One of the equations in Exercise (1) of Section 4.1.2

D(2)(x) = ∑
n≥0

Fn+2Fnxn = 2 + 3x + 10x2 + ⋯ =
2 − x

(1 + x)(1 − 3x + x2)

Products Of Fibonacci Numbers With Indices Differ-
ing By 3
One of the equations in Exercise (2) of Section 4.1.2

D(3)(x) = ∑
n≥0

Fn+3Fnxn = 3 + 5x + 16x2 + ⋯ =
3 − x

(1 + x)(1 − 3x + x2)

Products Of Fibonacci Number With A Lucas Num-
ber With The Same Index
One of the equations in Exercise (3) of Section 4.1.2

LF(x) = ∑
n≥0

LnFnxn = 1 + 3x + 8x2 + 21x3 + 55x4 + ⋯ =
1

1 − 3x + x2

Products Of A Fiboncacci Number With A Lucas 
Number With An Index Of One Lower
One of the equations in Exercise (3) of Section 4.1.2

LF(1)(x) = ∑
n≥0

LnFn+1xn = 1 + 6x + 12x2 + 35x3 + ⋯ =
1 + 4x − 2x2

(1 + x)(1 − 3x + x2)

Products Of A Fiboncacci Number With A Lucas 
Number With An Index Of One Higher
One of the equations in Exercise (3) of Section 4.1.2

LF(−1)(x) = ∑
n≥0

Ln+1Fnxn = 3 + 4x + 14x2 + 33x3 + ⋯ =
3 − 2x

(1 + x)(1 − 3x + x2)

The Square Of The Lucas Numbers
Exercise (4) of Section 4.1.2

Lsqr(x) = ∑
n≥0

L2
n xn = 1 + 9x + 16x2 + 49x3 + ⋯ =

1 + 7x − 4x2

(1 + x)(1 − 3x + x2)

Squares Of Fibonacci Numbers Indexed By Even In-
tegers
One of the two equations from Exercise (5) of Section 4.1.2

Fevensqr(x) = ∑
n≥0

F2
2nxn = 1 + 4x + 25x2 + 169x3 + ⋯ =

1 − 4x + x2

(1 − x)(1 − 7x + x2)
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Squares Of Fibonacci Numbers Indexed By Odd Inte-
gers
One of the two equations from Exercise (5) of Section 4.1.2

Foddsqr(x) = ∑
n≥0

F2
2n+1xn = 1 + 9x + 64x2 + 441x3 + ⋯ =

1 + x
(1 − x)(1 − 7x + x2)

The Online Integer Sequence Database
In 1973, Neil Sloane published A Handbook of Integer Se-
quences.  This was an interesting book because it allowed the 
reader to glance through all types of integer sequences, per-
haps triggering mathematical ideas.

In 1995, Sloane and Plouffe updated the book to The Enclope-
dia of Integer Sequences and more than doubled the number of 
entries.  People from all over the world submitted additional en-
tries and the database grew and was turned into an on-line web 
database starting in 1996.  Today it is an enormous and useful 
tool.

Before these references, if you were given a sequence of num-
bers such as

! ! ! 1, 1, 3, 12, 56, 288, 1584, 9152,…

it would be nearly impossible to know if this sequence had been 
studied before.  Now one can go to the website oeis.org, enter 
these numbers and see what, if anything is known about it.

This sequence in particular is titled “Number of rooted bicubic 
maps: a(n)=(8n-4)a(n-1)/(n+2)” and if you look at the entry un-
der the heading “O.g.f” (for ordinary generating function) there 
is a formula given as

http://oeis.org/
http://oeis.org/
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! ! ! ! (1 − 8x)3/2 + 8x2 + 12x − 1
32x2

.

Actually, at least three formulas for the generating function are 
given there, but the other two are more complicated or use nota-
tion that we have not introduced here.

If a sequence that you are interested in is not in the database, 
there is a way of submitting it along with a description and what-
ever related information about the sequence you might have.
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In the following exercises I hope to show you the power of gen-
erating functions to prove all sorts of equations relating coeffi-
cients.  We saw a little of how this worked in Section 3.2 when 
we used a generating function to relate Fibonacci numbers with 
binomial coefficients.  In these exercises you will do these calcu-
lations yourself.

In one set of exercsises you will take two expressions that you 
can show are equal using algebra and derive an identity relat-
ing coefficients in the left hand side of the equation with the co-
efficient in the right hand side of the equation and conclude that 
the coefficients must be equal. 

In another set of exercises you will prove identities by  writing 
down a generating function for the left hand side of the equation 
and a generating function for the right hand side of the equation 
and use algebra to show that they are equal.

You will use the table of generating functions for Section 4.1.3 
to develop the generating functions for the left and the right 
hand side of the equation.

From generating functions to identities
In the following exercises you will be given an algebraic identity 
relating generating functions.  There are methods for taking co-
efficients in products or sums of generating functions like equa-
tions (3.1.2.1) and (3.1.2.2).  Since algebraically the left hand 

Section 2

Using generating 
functions to prove 
summation formulas

http://garsia.math.yorku.ca/~zabrocki/MMM1/summary42.mov

For a video summary of this section:

figure:D685E0DC-0ACC-43DF-9AA5-6C07C907B020
figure:D685E0DC-0ACC-43DF-9AA5-6C07C907B020
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary42.mov
http://garsia.math.yorku.ca/~zabrocki/MMM1/summary42.mov
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side is equal to the right hand side, their coefficients are also 
equal.

In the following exercises assume that a, b, n and k are all non-
negative integers.

(1) Use the identity

! ! ! ! (1 + x)n = xn(1 + 1/x)n

to show that Cn,k = Cn,n−k.

(2) Take the coefficient of xk in both sides of the equation

! ! ! (1 + x)a(1 + x)b = (1 + x)a+b

and use it to show that

! ! ! !
k

∑
r=0

Ca,rCb,k−r = Ca+b,k.

In particular, specialize the values of a and b and use the result 
from the previous exercise to show

! ! ! ! !
n

∑
r=0

C2
n,r = C2n,n.

(3) Take the coefficient of xk in both sides of the equation

! ! ! 1
(1 − x)a+1

⋅
1

(1 − x)b+1
=

1
(1 − x)a+b+2

and use it to derive another equation relating binomial coeffi-
cients.

(4) Assume that a > b + 1 and then take the coefficient of xk in 
both sides of the equation

! ! ! 1
(1 + x)b+1

⋅ (1 + x)a = (1 + x)a−b−1

to derive an equation relating binomial coefficients.  You will 
need to use the formula that

! ! 1
(1 + x)b+1

=
1

(1 − (−x))b+1
= ∑

k≥0

Cb+k,k(−x)k.

(5) Take the coefficient of xk for k an even number in the equa-
tion

! ! ! 1
(1 − x)a+1

⋅
1

(1 + x)a+1
=

1
(1 − x2)a+1

.

to relate an alternating sum of binomial coefficients to a single 
binomial coefficient.

(6) Use the algebraic equation

! ! ! 1

1 − 4x
⋅

1

1 − 4x
=

1
1 − 4x
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to give an identity whose left hand side is a sum of products of 
central binomial coefficients and whose right hand side is 4n.

(7) In Section 4.1.3 we saw that

! ! ! 1
1 − 3x + x2

= ∑
n≥0

F2n+1xn

and

! ! ! 1
(1 + x)(1 − 3x + x2)

= ∑
n≥0

FnFn+1xn.

Use the identity

! ! 1
1 + x

⋅
1

1 − 3x + x2
=

1
(1 + x)(1 − 3x + x2)

to relate an alternating sum of odd Fibonacci numbers to a prod-
uct of Fibonacci numbers.

(8) Look at the formulas for D(0)(x) and D(1)(x) that are given in 
Section 4.1.3.  Show that

! ! ! 2D(1)(x) =
1

1 − x /2
D(2)(x).

Find an equation relating the coefficients in the left hand side 
and the right hand side of the equation.

(9) Recall that the generating function for the cubes of positive 
integers is 

! ! ! ! 1 + 4x + x2

(1 − x)4
= ∑

n≥0

(n + 1)3xn.

Relate this to the  generating function 1
(1 − x)5

= ∑
n≥0

Cn+4,4xn to 

give a formula for

! ! ! ! 13 + 23 + 33 + ⋯ + (n + 1)3.
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From identities to generating functions
In the following exercises assume that n ≥ 0. Use the tables of 
generating functions from Section 4.1.3 and write down a gener-
ating function for the left hand side and the right hand side of 
the equation and use algebra to show that they are equal and 
thus prove that the formula is true.

A large number of these identities were taken from a website by 
R. Knott that includes a collection of Fibonacci and Lucas identi-
ties.  There will be very few identities on that website that you 
cannot prove using the same techniques that you learned here 
(warning: their Fibonacci numbers begin F0 = 0 and F1 = 1).

(1) FnLn = F2n+1

(2) F2
0 + F2

1 + F2
2 + ⋯ + F2

n = FnFn+1

(3) F0 + F2 + F4 + ⋯ + F2n = F2n+1

(4) F1 + F3 + F5 + ⋯ + F2n+1 = F2n+2 − 1

(5) F0F1 + F1F2 + F2F3 + ⋯ + F2nF2n+1 = F2
2n+1

(6) F0F1 + F1F2 + F2F3 + ⋯ + F2n+1F2n+2 = F2
2n+2 − 1

(7) F2
n+1 + 2FnFn+1 = F2n+3

(8) F2
n+2 − F2

n = F2n+3

(9) F2
n+1 = FnFn+2 + (−1)n+1

(10) Fn+1Fn+2 = FnFn+3 + (−1)n+1

(11) Fn+1Ln+1 + FnLn = L2n+2

(12) Fn+1Ln+1 − FnLn = F2n+2

(13) 5(F2
n + F2

n+1) = L2
n + L2

n+1

(14) 5F2
n − L2

n = 4(−1)n

(15) L2
n − 2L2n+1 = − 5F2

n

(16) Fn+3 − Fn = 2Fn+1

(17) Fn+3 + Fn = 2Fn+2

(18) Fn+4 + Fn = 3Fn+2

(19) Fn+4 − Fn = Ln+2

(20) 1
1 ⋅ 2

+
1

2 ⋅ 3
+

1
3 ⋅ 4

+ ⋯ +
1

(n + 1)(n + 2)
=

n + 1
n + 2

(21) Cm+1,n − Cm+1,n−1 + Cm+1,n−2 − ⋯ + (−1)nCm+1,0 = Cm,n for 
m ≥ 0.

http://www.apple.com/
http://www.apple.com/
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Generating functions for sequences de-
fined by a recurrence
In the following exercises you will be given a sequence of num-
bers that are defined recursively by a formula and some initial 
terms.  In this set of exercises I would like you to find the gener-
ating function.

The following exercises progress slightly in complexity from the 
first to the last.  I have picked a selection which uses recur-
rences that are relatively easy to solve.  You may need to use 
the quadratic formula for the roots of an equation to determine 
a solution for equations (6) through (9).

You should compute the first 5-10 terms and then

(1) when you find the generating function, use the computer to 
expand the first terms and compare the sequence to the co-
efficients in the Taylor series of the expression that you 
found.

(2) check to see if these sequences are in the Online Encyclope-
dia of Integer Sequences (see Section 4.1.4 and oeis.org).

I didn’t include examples of sequences where the generating 
function satisfies an obvious differential equation or a more com-
plex algebraic equation, but change the recurrence slightly and 

then one would need to develop more sophisticated techniques 
for solving these sorts of equations.

(1) a0 = 3, a1 = 1, an = an−1 + an−2 for n ≥ 2.  Use the resulting 
generating function to find an expression for an in terms of 
the Fibonacci numbers for n ≥ 1.

(2) b0 = 3, b1 = 1, bn = bn−1 − bn−2 for n ≥ 2.  Compare your result-
ing generating function to the formula for C(−x, x) from equa-
tion (3.2.3.1).  Use this to arrive a formula for bn in terms of 
binomial coefficients.

(3) c0 = 2, cn = 2cn−1 − 1 for n ≥ 1.  Use the generating function 
to derive an equation for cn in terms of powers of 2.

(4) d0 = 1, d1 = 4, dn = 2dn−1 − 1 for n ≥ 2.  Use the generating 
function to derive an equation for dn for n ≥ 1 in terms of pow-
ers of 2.

(5) e0 = 1, e1 = 4, en = 2en−2 − 1 for n ≥ 2. Use the generating 
function to derive an equation for en in terms of powers of 2.  
You may need to handle the case with n even and n odd 
separately.

(6)  f0 = 1, fn =
n−1

∑
i=0

fi fn−i−1 for r ≥ 1.  Compare your answer with 

one of the known generating functions in the table from Sec-
tion 4.1.3 to arrive at a formula for fn.

http://oeis.org/
http://oeis.org/
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(7)  g0 = 1, gn =
n−1

∑
i=0

gign−i−1 + 2 for n ≥ 1.

(8)  h0 = 1, hn =
n−1

∑
i=0

hihn−i−1 + hn−1 for n ≥ 1.

(9)  j0 = 1, j1 = 1, jn =
n−1

∑
i=0

ji jn−i−1 + jn−1 − jn−2 for n ≥ 2.
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Solutions from Section 4.2.1
In each of the exercises in this section I have taken the coeffi-
cient of xk with the generating functions in the order stated.

Exercises (1) and (2) have solutions in the statement of the 
problem.

In Exercise (1), we compute

! ! xn(1 + 1/x)n = xn ∑
k≥0

Cn,kx−k = ∑
k≥0

Cn,kxn−k

! ! ! = Cn,n + Cn,n−1x + Cn,n−2x2 + ⋯ + Cn,0xn

while from equation (3.2.3.2) we have

! ! (1 + x)n = Cn,0 + Cn,1x + Cn,2x2 + ⋯ + Cn,nxn.

In Exercise (2) you need only apply correctly equation (3.1.2.2) 
to find the coefficient of xk in (1 + x)a(1 + x)b is

! ! ! ! !
k

∑
r=0

Ca,rCb,k−r

and the coefficient of xk in the expression (1 + x)a+b is Ca+b,k.

In Exercise (3) you should conclude that

Section 3

Solutions
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! ! !
k

∑
r=0

Ca+r,rCb+k−r,k−r = Ca+b+1+k,k.

In Exercise (4) the coefficient of xk is equal to

! ! !
k

∑
r=0

(−1)rCb+r,rCa,k−r = Ca−b−1,k.

In Exercise (5), the coefficient of xk in 1/(1 − x2)a+1 is 0 if k is 
odd, hence

!
k

∑
r=0

(−1)k−rCa+r,rCa+k−r,k−r = {Ca+k/2,k/2  if k is even
0  if k is odd

.

Exercise (6) relates the central binomial coefficients with a 
power of 4 and it shows

! ! ! !
k

∑
r=0

C2r,rC2k−2r,k−r = 4k.

From Exercise (7), deduce that

! ! ! !
k

∑
r=0

(−1)rF2k−2r+1 = FkFk+1.

In Exercise (8), after using algebra to show the algebraic rela-
tion between the generating functions, the coefficient of xk is 
equal to

! ! ! ! 2FkFk+1 =
k

∑
r=0

Fk−rFk−r+2 /2r.

In Exercise (9), one formula you can find for the sum of the posi-
tive integers cubed is

! ! 13 + 23 + 33 + ⋯ + (k + 1)3 = Ck+4,4 + 4Ck+3,4 + Ck+2,4.

If you use the formula that we have for Ck,4, then you can show 

that the right hand side has the expression (k + 1)2(k + 2)2

4
.

Solutions from Section 4.2.2
In each of the solutions below I write down two expressions 
which can be obtained directly from manipulating the generat-
ing functions in the table in Section 4.1.3.  The full solution to 
this problem is to show using algebra that those two expres-
sions are equal to each other.

(1) The generating functions for the coefficients LnFn and F2n+1

are both (from Exercise (3) of Section 4.1.2 and Exercise (3) in 
Section 4.1.1)

! LF(x) = ∑
n≥0

LnFnxn =
1

1 − 3x + x2
= ∑

n≥0

F2n+1xn = Fodd(x).
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(2) The left hand side of the equation has generating function 
1

1 − x
D(0)(x) and the right hand side has generating function 

equal to D(1)(x).

(3) The left hand side had generating function 1
1 − x

Feven(x) and 

the right hand side has generating function Fodd(x).  Show 
that they are equal.

(4) The left hand side has generating function 1
1 − x

Fodd(x) and 

the right hand side is the generating function for one less 
than the even Fibonacci generating function with the index 
shifted up by 1 and so has generating function equal to 

(Feven(x) − 1)/x −
1

1 − x
.  Show that these two expressions 

are equal.

(5) and (6) are easier to show together than they are apart.  
The left hand side of both (5) and (6) have generating func-

tion 1
1 − x

D(1)(x).  The left hand side of (5) are the coeffi-

cients of x2n and the left hand side of (6) are the coefficients 
of x2n+1.  Show that this is equal to (D(0)(x) − 1)/x −

x
1 − x2

.

(7) The right hand side of the equation has generating function 
(D(0)(x) − 1)/x + 2D(1)(x).  The right hand side of the equation 
has generating function (Fodd(x) − 1)/x.

(8) The left hand side of the equation has generating function 
(D(0)(x) − 1 − x)/x2 − D(0)(x) and the right hand side has gen-
erating function (as in the previous question) (Fodd(x) − 1)/x.

(9) The left hand side of the equation has generating function 
equal to (D(0)(x) − 1)/x.  The right hand side has generating 

function equal to D(2)(x) −
1

1 + x
.

(10) The left hand side has generating function equal to 
(D(1)(x) − 1)/x and the right hand side has generating func-

tion D(3)(x) −
1

1 + x
.

(11) The left hand side has generating function equal to 
((1 + x)LF(x) − 1)/x and the right hand side has generating 
function (Leven(x) − 1)/x.

(12) The left hand side has generating function 
((1 − x)LF(x) − 1)/x and the right hand side has generating 
function (Feven(x) − 1)/x.

(13) Show that 5((1 + x)D(0)(x) − 1)/x is equal to 
((1 + x)Lsqr(x) − 1)/x.

(14) Show that 5D(0)(x) − Lsqr(x) is equal to 4
1 + x

.

(15) The left hand side has generating function Lsqr(x) − 2Lodd(x) 
while the right hand side has generating function −5D(0)(x).
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(16) The left hand side has generating function 
(F(x) − 1 − x − 2x2)/x3 − F(x) while the right hand side has 
generating function 2(F(x) − 1)/x.

(17) The left hand side has generating function 
(F(x) − 1 − x − 2x2)/x3 + F(x) while the right hand side has 
generating function 2(F(x) − 1 − x)/x2.

(18) The left hand side has generating function 
(F(x) − 1 − x − 2x2 − 3x3)/x4 + F(x) and the right hand side 
has generating function 3(F(x) − 1 − x)/x2.

(19) The left hand side has generating function 
(F(x) − 1 − x − 2x2 − 3x3)/x4 − F(x) and the right hand side 
has generating function (L(x) − 1 − 3x)/x2.

(20) One way of creating the generating function for the left 

hand side is to integrate 1
1 − x

 twice (ensuring that the con-

stant term of the sequence is 0 each time) and then divide 

by x2 and (using Equation (3.1.2.3)) multiply by 1
1 − x

.  This 

means that the left hand side will have generating function
1

x2(1 − x) ∫ ∫ 1
1 − x

dxdx.  You will probably need to do an inte-

gration by parts to come up with the expression 
(1 − x)ln(1 − x) + x

x2(1 − x)
.  For the right hand side you can inte-

grate x
(1 − x)2

 and then divide by x2 to get the generating 

function and if you are careful that when you integrate that 

you get ∫ 1
(1 − x)2

+
−1

1 − x
dx =

1
1 − x

+ ln(1 − x) − 1 before 

you divide by x2 then you should then show that these two 
expressions are equal.

(21) Because there are two parameters in this expression it 
may not be clear which should be the best expression to 
take, but I meant for all exercises to have the generating 
function where n is the parameter indexing the sequence.  If 
you solved the problem this way, then the left hand side has 

generating function 1
1 + x

(1 + x)m+1 and the right hand side 

has generating function (1 + x)m.

Solutions from Section 4.2.3
Solutions in this section are given by the upper case letter corre-
sponding to the lowercase letter of the sequence (e.g. 
A(x) = ∑

n≥0

anxn, B(x) = ∑
n≥0

bnxn, etc.).  The solutions in this sec-

tion do not refer to any generating functions except those in 
Section 4.2.3.

A(x) =
3 − 2x

1 − x − x2
.  an = 3Fn − 2Fn−1.
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B(x) =
3 − 2x

1 − x + x2
.  bn = ∑

k≥0

(−1)k3Cn−k,k − ∑
k≥0

(−1)k2Cn−k−1,k for 

n ≥ 1.

C(x) =
2 − 3x

(1 − x)(1 − 2x)
.  cn = 2n + 1 for n ≥ 0.

D(x) =
1 + x − 3x2

(1 − x)(1 − 2x)
.  dn = 3 ⋅ 2n−1 + 1 for n ≥ 1.

E(x) =
1 + 3x − 5x2

(1 − x)(1 − 2x)
.  e2n = 1 and e2n+1 = 3 ⋅ 2n + 1 for n ≥ 0.

F(x) =
1 − 1 − 4x

2x
.  fn =

1
n + 1

C2n,n for n ≥ 0.

G(x) =
1 − 1 − 5x − 4x2

1 − x

2x
.  gn = A110886

H(x) =
1 − x − 1 − 6x + x2

2x
. hn = A006318

J(x) =
1 − x + x2 − 1 − 6x + 7x2 − 2x3 + x4

2x
.  jn = ?????

http://oeis.org/A110886
http://oeis.org/A110886
http://oeis.org/A006318
http://oeis.org/A006318


5 If you like generating 
functions you will want to 
find out more.

This chapter includes list 
of references and 
discussion about future 
ideas for topics I would like 
to write.

Final words
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Where to go from here
After you have finished this book I hope that you have the basic 
tools to manipulate generating functions for sequences and that 
you are able to use them to prove basic identities.  This is a 
very good starting point, but you will find that what I have pre-
sented here only a very small part of the subject and you will 
need to find other references to learn more advanced aspects.

I hope to write more exposition of my own, but I also suggest 
looking at some of the references in the next section.

I am experimenting with a model of a textbook that one could 
potentially digest in a single sitting.  Here is a list of other topics 
which I think would make good subjects for similar publications 
in the future.

(1) Applications of generating functions to combinatorics

A typical question in combinatorics might ask, “how many ways 
are there of making change for 35 cents using pennies, nickels, 
dimes and quarters?”

This can be counted fairly quickly by listing out all possibilities, 
but it would be an impossibly difficult problem to solve with the 
same method if we asked how many ways are there of making 
change for $516.23 using pennies, nickels, dimes and quarters.

Section 1

Where to find more
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If we translate this into a generating function question, we 
would ask “what is the coefficient of x51623 in the generating func-
tion

! ! ! 1
(1 − x)(1 − x5)(1 − x10)(1 − x25)

?”

(2) Applications of generating functions to number theory

Some topics in number theory are related the Fibonacci and Lu-
cas numbers and we covered some basic techniques which are 
helpful in working with those sequences.

Other questions involve integer partitions, and combinatorial 
techniques are also useful in working with partitions.

A third topic in number theory involves sequences which involve 
summations of the form

! ! ! ! cn = ∑
d

adbn/d

where the sum is over all integers d which divide evenly into n.  
There is a family of generating functions called Dirichlet series 
which are useful for computing with sequences that satisfy re-
currences like this.

(3) Exponential generating functions

The sequences that we worked with in this book were all de-
fined by a linear or a simple algebraic recurrence.  Often if we 
see relations of the form

! ! ! ! dn =
n

∑
k=0

Cn,k ⋅ akbn−k

where Cn,k is the binomial coefficient.  In that case it is better to 
work with a generating functions of the form

! ! ! ! ! A(x) = ∑
n≥0

an
xn

n!
.

This is called the exponential generating function for the se-
quence a0, a1, a2, a3, ….  

Q: When do you use the exponential generating function rather 
than the ordinary generating function for a sequence?

A: When the exponential generating function “works” better.

Q: When does the exponential generating function work better 
than the ordinary generating function?

A: There are a few basic rules to help you decide, but one of 
those rules is ‘try both and see what works.’

There are many other directions to extend exposition about gen-
erating functions such as analytic aspects, relationships with 
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languages, multivariate generating functions, the theory of spe-
cies, Polyà’s counting theory.

At the end of this section I will try to list some textbooks, papers 
and references that you might consider consulting for further in-
formation.

One particularly good exposition that also focuses almost en-
tirely on generating functions and goes much further than this 
reference is Generatingfunctionology.  Other references listed 
below dedicate only a part of the text to generating functions.
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